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How does air turbulence 
affect the collision rates 

of cloud droplets?
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Resolve ~5 orders of 
magnitude in length 

scales

100 to 1000 mm

Δx ~ 1 to 2 mm

a ~ 0.02 to 0.05 mm

Resolved 
numerically

Treated 
analytically



MOTIVATION

3

Hybrid Direct Numerical Simulation 
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By interpolating in a box turbulence. !
NS equations solved using a Pseudo Spectral Method 
(FFT) with large scale forcing. !

A large linear system 
of 3Np equations 

ASSUMPTIONS: 1) There is scale separation between Δx and localized  
disturbance flows;  2) The disturbance flow is Stokes flow             .  

Ayala, Wang, & Grabowski, J. Comp. Phys (2007) 
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N	   Rλ	  
Domain	  size	  

(cm)	  	  
(400	  cm2/s3)	  

Number	  
of	  

droplets	  
32	  	   23.5	   4.2	   1.0	  x	  103	  

Published	   64	   43.3	   8.4	   8.0	  x	  103	  
128	   74.6	   16.9	   6.6	  x	  104	  

On-‐going	   256	   123.0	   34.0	   5.4	  x	  105	  
512	   204.0	   68.9	   4.5	  x	  106	  

Target	   1024	   324.0	   137.0	   3.5	  x	  107	  

MPI PARALLELIZATION - Petascale Supercomputers 
€ 

Memory ≈ 9 × N 3 + 4 × 3 × Np( ) × 8bytes ≈ 74Gbytes

€ 

Execution time ≈1379 s
timestep

×14,000 timestep
Te

× 20Te ≈ 4469days

Implications of increasing DNS grid resolutions 

~12 years!! 
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PREVIOUS CODE

5Ayala, Wang, & Grabowski, J. Comp. Phys (2007)                 OpenMP 

~70% 

~40% 
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NSF OCI-0904534  
Collaborative Research: PetaApps  

Enabling Multiscale Modeling of 
Turbulent Clouds on Petascale 

Computers 

TO BRIDGE THE GAP BETWEEN LES AND DNS
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     DIFFERENT DOMAIN 
DECOMPOSITON 

STRATEGIES
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STRATEGIES
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STRATEGIES
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2D Domain Decomposition 
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Pseudo Spectral Method
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PSM

13



14

PSM

Approaches to parallelize FFT
•  Dmitruk et al (2001)
   1-D decomposition for 3-D FFT. 

     Number of processors (P) < Number of grid points (N)

•  Takahashi (2009), Pekurovsky (2008), 
Plimpton (1993)                     

2-D decomposition for 3-D FFT.

      P < N2

•  Eleftheriou et al. (2003), (2005), Fang (2007)!
3-D decomposition for 3-D FFT.

 More communications (or develop new parallel 1DFFT lib)



The 2D Decomposition Strategy

15

(a)  (b) 

 (d) (e)  (f) 

Three Dimensional FFT Real to Complex using the 2D Decomposition Strategy: (a) Real Array, (b) 
1D FFT along X, (c) Transpose between X and Y directions, (d) 1D FFT along Y, (e) Transpose 
between Y and Z directions, (f) 1D FFT along Z. 

(c) 

PSM
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ky ky 

kx 
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kz 



The 2D Decomposition Strategy
•  Plimpton’s strategy 

–  Pack and send as much data as possible
–  MPI Send and MPI Irecv commands. 

•  Pekurovsky
–  Traditional MPI command MPIAlltoallv 

•  Takahashi 

–  MPIAlltoAll to communicate data.

    Our objective is to extend the approach used by Dmitruk et 
al. (2001) for 1D decomposition to 2D decomposition.

It is based on MPI_ISend and MPI_IRecv commands 16

PSM



Evaluation & Testing

17BLUEFIRE at NCAR 

PSM
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PSM

€ 

tMPI _ ALLtoALL
tMPI _ ISEND+IRECV
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Evaluation & Testing
PSM
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€ 

T = TCOMP +TCOMM

€ 

TCOMP =
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tc Computation time per floating point operation 

Memory-to-memory copy time per word 

€ 

ta
Time for transmission of a single word between nodes per word  

€ 

tw
Startup or latency time 

€ 

ts

Size Size 

Size 

Dmitruk’s et al (2001)
PSM
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Extension to 2D decomposition

PSM

We also developed complexity analysis for 
the case of 3D decomposition 
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Complexity Analysis
PSM

40963 
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Complexity Analysis whole code

The theory predicts 90% of 
wall-clock time spent in FFT 

Chen & Shan (1992) -> 94%  
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What about LBM or FDM?



LBM
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Lattice Boltzmann Method 
A mesoscopic approaph solving the distribution functions “fi” 
for a set of particles at each grid point: 

                                        Extension to multiple relaxation times. 
Mesoscale particles move along the mesh links, with 
prescribed discrete velocities.  



LBM
The connection with Navier-Stokes Equations
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COLLISION STREAMING 
Local calculations Needs info from neighbors 

    (COMMUNICATION) 

Calculation of hydrodynamic variables (local) 



LBM
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    Comp             Copy           Transm   Latency  
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LBM
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2D decomposition 

Comparing complexity analysis to 
runtime data Comparing three different domain 

decomposition schemes 

CHIMERA 

BLUEFIRE 

Complexity Analysis



FDM

    One of the most common approach used is the Fractional 
Step Method by Kim and Moin (1985) which is a 2nd order 

method

29

Finite Difference Method 

Approximate factorization:

(1) 

(2) 

(3) 

(4) 

(5) 

For the Poisson equation -> ADI with Thomas algorithm or           
                                               solve in the spectral space (FFT) 



FDM
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Complexity Analysis
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•  Poisson solver takes 13% of the total computation (using FFT). 
People has found it is around 30% (using iterative methods). 

Following a parallel FDM algorithm:



FLOW COMPARISON
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2563 

2563 

•  LBM vs PSM
–  Satofuka & Nishioka (1999) and  Gao H. et al (2011) 

found good agreement. No detail on small scales.

–  Peng et al (2010) paid attention to small scales and 
concluded:

•  PSM vs FDM
–  Orlandi P. (2000): found perfect agreement.
–  Moin & Mahesh (1998):
–  Wait & Smolarkiewicz (2008) -> 

€ 

ΔxFDM ≈ 0.5ΔxPSM

€ 

ΔxFDM =1.5ΔxPSM        ΔtFDM ≈ 2ΔtPSM

€ 

COMPUTATIONAL                                                       COMPUTATIONAL
EFFORT - LBM         ≈                                               EFFORT - LBM
SIMILAR PSM
ACCURACY

(2*2*2) * 2 * 

(2*2*2) * 1/2 * 

Space 
Resolution 

€ 

COMPUTATIONAL                                                       COMPUTATIONAL
EFFORT - FDM         ≈                                               EFFORT - FDM
SIMILAR PSM
ACCURACY
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Comparing the algorithms as 
serial codes 

Using	  the	  theoreCcal	  expressions	  for	  wall-‐clock	  Cme	  

FLOW COMPARISON
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10243 

81923 

FLOW COMPARISON

Don’t care much 
about accuracy 



For similar PS accuracy 
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10243 

81923 
€ 

COMPUTATIONAL                       COMPUTATIONAL
EFFORT - LBM         ≈                EFFORT - LBM
SIMILAR PSM
ACCURACY

16* 

€ 

COMPUTATIONAL                       COMPUTATIONAL
EFFORT - FDM         ≈                EFFORT - PSM
SIMILAR PSM
ACCURACY

  4* 

FLOW COMPARISON
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Interpolation
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We chose the 2nd method as it is 
less machine dependent 

€ 

PyMAX
Interp

= PzMAX
Interp

=
N
3
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HDI
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Preprint submitted to J. Computational Physics                                                           April 19, 2012	




HDI
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LHALO =  50rmax 

We used the cell index 
method and the 

concept of linked list 

€ 

PyMAX
Interp

= PzMAX
Interp

=
L

50rmax



HDI
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About ONE order of 
magnitude (or more) faster 
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Collision Detection
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LHALO = 20rmax 

If HDI, only one communication 

We used the cell index 
method and the 

concept of linked list 

€ 

PyMAX
CollDetec

= PzMAX
CollDetec

=
L

20rmax
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Particle migration
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•  1283 simulation
•  20 micron (Sv=1.78)
•  3Te
•  0.5M droplets

When migrating 
particles, we update 
the cell-index sorting 



Particle migration
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•  1283 simulation
•  40 micron (Sv=7.13)
•  3Te

  1283	  simulaCon	  
  20	  micron	  (Sv=1.78)	  
  3Te	  



Complexity Analysis
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Particle 
advance 

Collision 
Detection 

HDI 



Complexity Analysis
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Complexity Analysis
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€ 

Pymax = Pzmax = N 3

€ 

PMAX = N
2

9

FFT: 

Particles: 

Box size 



Complexity Analysis
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€ 

Execution time ≈ 0.1 s
timestep

×14,000 timestep
Te

× 20Te ≈ 8hours

Box size 



Complexity Analysis
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€ 

Execution time ≈ 0.2 s
timestep

× 27,000 timestep
Te

× 30Te ≈ 2days

Box size 



CONCLUSIONS
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 We have developed a highly scalable parallel code to model 
homogeneous isotropic turbulence with inertial particles using 
2D domain decomposition. 

 We were able to optimize HDI calculations. Now the flow (or 
FFT) calculations are the bottleneck (Pmax). 

  In comparison to LBM and FDM, PSM is still a good choice to 
model HI turbulence in Supercomputers. It is more accurate and, 
for similar accuracy, it is comparable in terms of parallel 
performance. 

  IMPROVEMENTS 
• OpenMP+MPI (but if large P, might not help).

• GPU+CPU.

• Use Plimpton’s scheme for 3DFFT for large P.


