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ABSTRACT

A Cartesian semi-implicit solver using the Conservative Semi-Lagrangian Multitracer (CSLAM) transport

scheme is constructed and tested for shallow-water (SW) flows. The SW equations solver (CSLAM-SW) uses

a discrete semi-implicit continuity equation specifically designed to ensure a conservative and consistent

transport of constituents by avoiding the use of a constant mean reference state. The algorithm is constructed

to be similar to typical conservative semi-Lagrangian semi-implicit schemes, requiring at each time step

a single linear Helmholtz equation solution and a single application of CSLAM. The accuracy and stability

of the solver is tested using four test cases for a radially propagating gravity wave and two barotropically

unstable jets. In a consistency test using the new solver, the specific concentration constancy is preserved up to

machine roundoff, whereas a typical formulation can have errors many orders of magnitude larger. In ad-

dition to mass conservation and consistency, CSLAM-SW also ensures shape preservation by combining the

new scheme with existing shape-preserving filters. With promising SW test results, CSLAM-SW shows po-

tential for extension to a nonhydrostatic, fully compressible system solver for numerical weather prediction

and climate models.

1. Introduction

Semi-Lagrangian semi-implicit (SLSI) schemes have

been widely used in climate and numerical weather pre-

diction (NWP) models since the pioneering work of

Robert (1981) and Robert et al. (1985). The more le-

nient numerical stability condition in these schemes

allows larger time steps and thus increased computa-

tional efficiency. Traditional semi-Lagrangian schemes

are not inherently mass conserving due to their use of

gridpoint interpolation, and the lack of conservation

can lead to accumulation of significant solution errors

(Rasch and Williamson 1990; Machenhauer and Olk

1997). To address this issue, conservative semi-Lagrangian

schemes, also called cell-integrated semi-Lagrangian

(CISL) transport schemes (Rancic 1992; Laprise and

Plante 1995; Machenhauer and Olk 1997; Zerroukat

et al. 2002; Nair and Machenhauer 2002; Lauritzen et al.

2010), have been developed. Although CISL transport

schemes allow for locally (and thus globally) conserva-

tive transport of total fluid mass and constituent (i.e.,

tracer) mass, an issue related to conservation remains

when they are applied in fluid flow solvers: the lack of

consistency between the numerical representation of

the total mass continuity and constituent mass conser-

vation equations (J€ockel et al. 2001; Zhang et al. 2008).

The lack of numerical consistency between the two can

lead to the unphysical generation or removal of model
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constituent mass, which can introduce significant er-

rors in applications such as chemical tracer transport

(Machenhauer et al. 2009).

Our test bed for developing and testing CISL-based

fluid flow solvers are the shallow-water (SW) equations

on an f plane:
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where v 5 (u, y) is the horizontal velocity vector, f is

the Coriolis parameter, g0 is the reduced gravity, h is the

total fluid depth (a surrogate for total fluid mass), and

hq is the depth portion (mass fraction) of an arbitrary

constituent, where q is its specific concentration. Nu-

merical consistency is satisfied if, for q0 5 1, the dis-

cretization scheme of the constituent equation (4)

collapses to that for the continuity equation (3), also

known as free-stream preservation.

The difficulty in maintaining consistency, as will be

discussed in more detail, can partly be attributed to the

conventional linearization around a constant mean

reference state in the semi-implicit form of a CISL

continuity equation. To eliminate the reference state,

Thuburn (2008) developed a fully-implicit CISL-based

scheme for the shallow-water equations that requires

solving a nonlinear Helmholtz equation at every time

step. The solution of the Helmholtz equation is poten-

tially problematic and expensive (Thuburn et al. 2010).

To reduce the dependence of their semi-implicit scheme

on a reference state, Thuburn et al. (2010) used an alter-

native iterative approach to solve the nonlinear system, but

it requires multiple calls to a Helmholtz solver per time

step, again making the scheme potentially expensive.

In addition to consistency and mass conservation,

another desirable property is that the new scheme should

be shape preserving. A shape-preserving scheme en-

sures that no new unphysical extrema are generated in

a field due to the numerical scheme (e.g., Machenhauer

et al. 2009). For example, specific concentrations of a

passive constituent should not go outside the range of

its initial minimum and maximum values. Nonshape-

preserving schemes may generate unphysical specific

concentrations, such as negative concentration values

due to undershooting.

In this paper, using a shallow-water system, we pres-

ent a new SLSI formulation that uses a CISL scheme for

mass conservation and ensures numerical consistency

between the total mass and constituent-mass fields. The

new scheme is based on the CISL transport scheme

called the Conservative Semi-Lagrangian Multitracer

(CSLAM) transport scheme developed by Lauritzen

et al. (2010). Like other typical conservative SLSI solvers,

the algorithm requires a single linear Helmholtz equa-

tion solution and a single application of CSLAM. To

ensure shape preservation, the scheme is further ex-

tended to use existing shape-preserving filters.

The paper is organized as follows. In section 2, the

conservative semi-Lagrangian scheme CSLAM is de-

scribed and a discussion of the issue of consistency be-

tween total-mass and constituent-mass conservation in

its semi-implicit formulation is provided. A new con-

sistent semi-implicit discretization of the CSLAM con-

tinuity equation, including the implementation of the

shape-preserving schemes, is proposed in section 3. Re-

sults from four test cases are presented in section 4,

highlighting the stability and accuracy of the new scheme

for linear and highly nonlinear flows, as well as showing

the shape-preserving ability of the scheme. And finally,

in section 5, a summary of the results and a potential

extension of the new scheme are given.

2. Mass conservation and consistency in SLSI
solvers

a. CSLAM—A CISL transport scheme

The CSLAM transport scheme is a backward-in-time

CISL scheme, where the departure gridcell area dA* is

found by tracing the regular arrival gridcell areaDA back

in time one time-step Dt (Fig. 1a). The CSLAM dis-

cretization scheme for (3) is given by

hn11
exp DA5 hn*dA*,

where the superscript denotes the time level, hn11
exp is the

explicit cell-averaged height solution computed by in-

tegrating the height field hn over dA*, which gives de-

parture cell-averaged height values hn*. The departure

cell area dA* in CSLAM is found through iterative

trajectory computations from the four vertices of an

arrival grid cell (unfilled circles in Fig. 1b) to their de-

parture points (filled circles in Fig. 1b). The departure

cell area is then approximated using straight lines as cell

edges (dark gray region dA in Fig. 1b). To integrate the

height field over dA, CSLAM implements a remapping

algorithm that consists of a piecewise biparabolic sub-

gridcell reconstruction of the hn field, and then the

integration of the reconstruction function over the
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departure cell area. The area integration in CSLAM is

transformed into a series of line integrals using the

Gauss–Green theorem, and involves solving for a set of

weights that depends only on the departure cell bound-

ary. The use of line integrals greatly enhances the trans-

port scheme’s computational efficiency for multitracer

transport as the weights can be reused for all tracer

species in the model. For full details on the transport

scheme, see Lauritzen et al. (2010).

b. A discrete semi-implicit continuity equation
in velocity-divergence form using CSLAM

Lauritzen et al. (2006, hereafter LKM) developed an

SLSI SW equations solver using the explicit CISL trans-

port scheme of Nair and Machenhauer (2002). For the

momentum equations (1) and (2), they used a tradi-

tional SLSI discretization [(A1) and (A2) in the appendix

but without time off centering]. Their momentum equa-

tions are then implicitly coupled to a velocity divergence

correction term in the continuity equation. In this paper

we follow the construction of the SW equations solver

described in LKM, but we use CSLAM as the explicit

CISL transport scheme. The discrete semi-implicit CISL

continuity equation given in LKM [Eq. (31) in LKM] is

hn115 hn11
exp 2

Dt

2
H0[$eul � vn112$lag � ~vn11]

1
Dt

2
H0[$eul � vn 2$lag � vn]

dA*

DA
, (5)

where hn11
exp is as described above, Dt is the model time

step, H0 is the constant mean reference height, vn11 is

the velocity field implicitly coupled to the momentum

equations, ~vn11 5 2vn 2 vn21 is the velocity field ex-

trapolated to time-level n1 1, and vn is the velocity field

at time-level n. Their semi-implicit correction term [first

term in brackets in (5)] is the correction to the explicit

solution hn11
exp from CSLAM, and the second term in

brackets in (5) is a predictor-corrector term (where the

overbar denotes the departure cell-averaged value). The

implicit linear terms are obtained, as in the traditional

approach (e.g., Kwizak and Robert 1971; Machenhauer

and Olk 1997), by linearizing the height field around

a constant mean reference state, and hence (5) results in

a velocity-divergence form. The notations $eul and $lag

denote discretized divergence operators based on the

Eulerian and Lagrangian forms, respectively. Using

notations in Fig. 2, the Eulerian divergence operator is

given by

FIG. 1. (a) Exact departure cell area (dA*, dark gray region) and the corresponding arrival grid cell (DA, light gray

region). (b) Departure cells in CSLAM (dA) are represented as polygons defined by the departure locations of the

arrival gridcell vertices.

FIG. 2. Definition of an Eulerian arrival grid cell, and its asso-

ciated velocities at the cell faces (ul, ur, yt, yb) and cell corners

(uc, yc)i for i 5 1, 2, 3, 4.
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$eul � v5
1

Dx
(ur 2 ul)1

1

Dy
(yt 2 yb) .

The Lagrangian divergence operator [Eq. (25) in LKM]

is given by

$lag � v5
1

DA

DA2 dA

Dt
, (6)

and is computed as the change in cell area in one time

step.

The form of the semi-implicit correction term in (5) is

due to the split-divergence approximation [Eq. (26) in

LKM],

$ � vn11/2 ’
1

2
[$ � ~vn11 1$ � vn] ,

being applied to the linearized divergence term of the

semi-implicit continuity equation. The split-divergence

approximation is used to evaluate the linear divergence

term at the midpoint trajectory (at time-level n1½). As

explained in LKM, this approximation stems from

their trajectory algorithm, where the trajectory is ap-

proximated as two segments: (i) from the departure

point to the trajectory midpoint (computed iteratively),

and (ii) from the midpoint to the arrival grid point

(computed using extrapolated winds; see Fig. 1 in LKM).

Since the Lagrangian divergence is calculated based on

the change of cell area over time, and departure cell areas

are computed using the split-trajectory algorithm, the

split approximation can also be applied to the divergence

term (LKM).

Ideally, to be consistent, the implicit and the extrap-

olated divergences would both be solved in a Lagrangian

fashion; however, this would lead to a nonlinear elliptic

equation instead of a standard Helmholtz equation

(Lauritzen 2005). To retain a linear elliptic equation,

LKM implemented a predictor-corrector approach to

correct for the Eulerian discretization of the implicit

divergence term, and found that this step was necessary

to maintain stability in their model. In our implemen-

tation of the LKM solver using CSLAM, we follow the

approach of LKM, where the predictor-corrector term

[second term in brackets in (5)] is evaluated by in-

tegrating the departure cell-averaged value over dA*.

c. Numerical inconsistency in semi-implicit continuity
equations in a velocity-divergence form

Numerical consistency between total mass and con-

stituent mass is difficult to maintain in semi-implicit

CISL schemes such as LKM. The prognostic constituent

mass variable hq is typically solved explicitly using

hqn115 hqn11
exp , (7)

wherehqn11
exp is theCISL explicit solution, h is the shallow-

water height (analogous to total air mass in a full model),

and q is the specific concentration of an arbitrary con-

stituent. The cell-integrated transport equation in its flux

form helps conserve constituent mass, analogous to the

amount of water vapor and other passive tracers in an

atmospheric model—an important constraint especially

for long simulations. Since the departure cell areas are the

same for both total fluid mass and the constituent mass,

the weights of the line integrals in CSLAMwill need to be

computed only once per time step, and represents one of

the advantages of this scheme.

If the discrete constituent equation is consistent with the

discrete continuity equation, the former should reduce to

the latter when q 5 1, and an initially spatially uniform

specific concentration field should remain so. For a di-

vergent flow, however, the semi-implicit correction term

in (5) may become large enough such that (7), in its ex-

plicit form, is no longer consistent (Lauritzen et al. 2008).

Alternatively, one can formulate the discrete con-

stituent equation by including the semi-implicit correc-

tion and predictor-corrector terms in (5) to maintain

numerical consistency between the two equations:

hqn115 hqn11
exp 2

Dt

2
HQ0[$eul � vn11 2$lag � ~vn11]

1
Dt

2
HQ0[$eul � vn 2$lag � vn]

dA*

DA
, (8)

whereHQ0 is a constant mean reference constituent mass,

the velocities vn11 are solutions from the Helmholtz

solver, and ~vn11 and vn are the same velocities as in (5).

However, the dependence on a constant mean refer-

ence constituent mass HQ0 may create a source of nu-

merical errors for regions with little constituent mass.

For example, in regions where hqn11
exp 5 0, if the flow is

highly divergent such that the terms in square brackets

in (8) are nonzero, spurious constituent mass will be

erroneously generated as a result of a nonzero constant

mean constituent mass. Similarly, in areas where hqn11
exp

is a nonzero constant, spurious deviation from constancy

can be generated by the correction terms.

The issue with an inconsistent constant mean refer-

ence state for the total fluid mass and constituent mass

fields can be resolved with the formulation we present in

the next section.

3. A consistent and mass-conserving semi-implicit
SW solver

Our new scheme ensures numerical consistency be-

tween the continuity and constituent equations by formu-

lating the discrete equations, specifically the semi-implicit
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correction and the predictor-corrector terms, in flux form

instead of a velocity-divergence form. The goal is to avoid

the use of a constant reference state, such as (5). We test

this approach for the SWequations, and refer to themodel

using the flux-form scheme asCSLAM-SW.We formulate

the semi-implicit flux-form continuity equation as

hn115 hn11
exp 2

Dt

2
[$eul � (hn11

exp v
n11)2$lag � (hn11

exp ~v
n11)]

1
Dt

2
[$eul � (hnvn)2$lag � (hnvn)]

dA*

DA
,

(9)

and use the explicit CSLAM solution hn11
exp as the refer-

ence state in the semi-implicit correction term. The

shallow-water model CSLAM-SW, like the LKMmodel,

couples the semi-implicit height continuity equation with

the traditional semi-Lagrangian momentum equations, as

described in the appendix, and solves the resulting elliptic

system with a conjugate-gradient Helmholtz solver.

To ensure consistency, we simply express the con-

stituent equation as

hqn11

5 hqn11
exp 2

Dt

2
[$eul � (hqn11

exp v
n11)2$lag � (hqn11

exp ~v
n11)]

1
Dt

2
[$eul � (hqnvn)2$lag � (hqnvn)]

dA*

DA
,

(10)

where hqn11
exp is the explicit CSLAM update to the con-

stituentmass, the velocities vn11 in$eul � (hqn11
exp v

n11) are

from the SLSI solution, and hqn and vn are the constit-

uent mass and velocity at time-level n, respectively. This

scheme also resolves the problem of spurious generation

of constituent mass for regions with near-zero specific

concentration (as described in the previous section). The

specific concentration q is diagnosed by decoupling the

constituent mass using

qn115
hqn11

hn11
. (11)

We note that to ensure numerical consistency, we must

eliminate machine-roundoff and convergence errors in

the Helmholtz solver. In solving for hqn11, we substitute

the solutions of vn11 derived from the Helmholtz solu-

tion hn11 into (10). Prior to diagnosing q using (11), we

must correct the solution hn11 by substituting solutions

of vn11 back into (9); otherwise, the values of hn11 can

become inconsistent with hqn11. The consistent hn11

solution is then used to solve for q using (11) and in the

next time step. To compute hqn11
exp , we follow Nair and

Lauritzen (2010) in separating the subgridcell recon-

structions for h and q, and then compute hq(x, y) using

hq(x, y)5 hq1 q(h2 h) ,

where h5 h(x, y) and q5 q(x, y) are the reconstruction

functions, and (h, q) are cell averages.

The new flux-form conservation equations (9) and (10)

involve the computation of an Eulerian flux divergence

and a Lagrangian flux divergence using extrapolated ve-

locities. Using the mesh described in Fig. 2, the discrete

Eulerian flux divergence is given as

$eul � (hv)5
1

Dx
[(h

x
u)r 2 (h

x
u)l]1

1

Dy
[(h

y
y)t 2 (h

y
y)b] ,

(12)

where Dx and Dy are the grid spacing in the x and y di-

rections, and each of the fluxes are evaluated as h
x

rur,

h
x

l ul, h
y

t yt, and h
y

byb, respectively.

The Lagrangian flux divergence in (10) needs to be

consistent with the Lagrangian velocity divergence in

(6). To derive the new operator, we begin by computing

the Lagrangian backward trajectories of the arrival

gridcell vertices given in Fig. 2. We define the arrival

cell corner points to be at (x1, x2, x3, x4), i.e., (x1, y1), (x2,

y2), (x3, y3), (x4, y4), and the departure cell corner

points as

xd15 x12Dt � (uc, yc)1 ,
xd25 x22Dt � (uc, yc)2 ,
xd35 x32Dt � (uc, yc)3 ,
xd45 x42Dt � (uc, yc)4 ,

where (uc, yc)i 5 (uy, yx)i denote the x- and y-velocity

components at the ith vertex, where i 5 1, 2, 3, 4.

The area of the departure cell is computed as

dA5
1

2
[xd21xd41 1 xd43xd23] ,

where xd21 5 xd2 2 xd1; xd41 5 xd4 2 xd1; xd43 5 xd4 2 xd3;

and xd23 5 xd2 2 xd3. We can then rewrite the departure

cell area as

dA5DxDy2Dt[F r 2F l 1F t 2F b] , (13)

where

F r 5 ur
yyDy2 (uc2yc32 uc3yc2)Dt/2 ,

F l 5 ul
yyDy2 (uc1yc42 uc4yc1)Dt/2 ,

F t 5 yt
xxDx2 (uc3yc42 uc4yc3)Dt/2 ,

F b 5 yb
xxDx2 (uc2yc12 uc1yc2)Dt/2 .
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Using (13), the velocity divergence can be written as

D5
1

DxDy
[F r 2F l 1F t 2Fb] ,

which is identical to the Lagrangian divergence in (6).

The first flux term in each of F r, F l, F t, and F b is

identical to the Eulerian velocity divergence and the

remaining terms give the geometric correction for a

Lagrangian representation (see Fig. 9 in Lauritzen 2005).

Using this velocity divergence, we now approximate the

Lagrangian flux-divergence term in (9) as

$lag � (hv)5
1

DxDy
[F rh

x
r 2F lh

x
l 1F th

y
t 2F bh

y
b] . (14)

Using (12) and (14) and replacing h with hq, we can

further combine each of the terms in brackets of the

constituent equation (10), which becomes

hqn115 hqn11
exp 2

Dt

2
[$eul � (hn11

exp q
n11*
exp v0n11)]

1
Dt

2
[$eul � (hnqn*v0n)]

dA*

DA
, (15)

where

$eul � (hq*v0)

5
1

Dx
[h

x
rqr*(ur 2F r/Dy)2 h

x
l ql*(ul 2F l/Dy)]

1
1

Dy
[h

y
t qt*(yt 2F t/Dx)2h

y
bqb*(yb 2F b/Dx)] .

The corrective velocity v0 is defined as the difference

between the velocity field used in the Eulerian flux di-

vergence in (12) and that derived from the Lagrangian

flux areas F r, F l, F t, and F b, divided by the cell face

length. The corrective velocity v0n11 in (15) is computed

using vn11 from the Helmholtz solver and the Lagrangian

flux areas based on extrapolated winds divided by the cell

face length. The velocity v0n used in the predictor-corrector
term in (15) is computed using the velocity field vn at

time-level n and the Lagrangian flux areas based on

vn, and again divided by the cell face length. Shape-

preserving schemes (e.g., the first-order upwind scheme)

or higher-order methods such as flux-corrected trans-

port schemes or flux-limiter schemes can then be ap-

plied to the fluxes in (15). The first-order upwind scheme

is used here, where the upstream values (denoted by the

asterisks) qn11*
exp

and qn* at each cell face are determined

by the directions of v0n11 and2v0n, respectively [see e.g.,
Durran (2010), his Eq. (5.109)]. The first-order upwind

scheme is numerically diffusive (Durran 2010), but the

damping effect on the correction and predictor-corrector

terms should beminimal as the corrective velocities v0n11

and v0n are typically very small. To ensure shape preser-

vation in the explicit CSLAM solution, we implement a

simple 2D monotonic filter (Barth and Jespersen 1989)

that searches for new local minima and maxima in the

reconstruction function of q, and scales the function if

these values exceed those in the neighboring cell.

Testing of the CSLAM-SW model [based on (9) for

h, and (A1) and (A2) for the velocity components] re-

vealed an instability related to the averaging of the

C-grid velocities to the cell corner points in the conti-

nuity equation and its interaction with the rotational

modes. Following Randall (1994), we can write a gen-

eralized discretized dispersion relation for the linear-

ized shallow-water equations as

v32v(c2lylh 1 c2kukh1 fufy)2 ic2( fukhly2 fykulh)5 0,

(16)

where the terms fu and fy are the discrete Coriolis op-

erators, ku and ly are the discrete height-gradient op-

erators, kh and lh are the discrete velocity-divergence

operators in the continuity equation (the letter sub-

scripts refer to the equations in which they appear), and

c2 5 gH. In the linearized shallow-water dispersion

relation for C grid, the last two terms on the lhs of (16),

fukhly and fykulh, cancel each other and thus there are

no numerical frequencies v with imaginary parts that

amplify in time. Although the CSLAM-SWmodel uses

the C grid, we have found that the discretization of

the linearized Lagrangian divergence is equivalent to

taking an average of the u and y velocities to the cor-

ners of the grid cell followed by an averaging back to

the cell faces (i.e., the discretization is equivalent to

using a 1–2–1 averaging of the u velocities in the y di-

rection, and of the y velocities in the x direction, at the

Eulerian gridcell faces). This averaging leads to non-

cancellation of fukhly and fykulh, and growing modes.

We have found that using the averaging operators yxy
xx

and uxy
yy
(see the appendix for operator definitions) on

the Coriolis terms in the x- and y-momentum equations,

respectively, recovers the cancellation and eliminates

the unstable mode.

4. Test cases

We present four test problems involving divergent

flows: a radially propagating gravity wave (with two dif-

ferent initial perturbations), and two highly nonlinear

barotropically unstable jets [the Bickley and the Gaussian

jets from Poulin and Flierl (2003)]. The gravity wave

problem (section 4a) is a simple case to assess the
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stability and accuracy of the new SLSI solver (CSLAM-

SW) with respect to an imposed mean flow speed and

the gravity wave propagation speed. We also use this

test case to highlight the issue of numerical incon-

sistency in the constituent transport scheme of LKM.

The nonlinearity of the unstable jet in the second

problem is particularly useful in testing the stability

limits of the new scheme. The Bickley jet (section 4b)

has a moderate gradient in the initial height profile,

while the steeper profile in the Gaussian jet (section 4c)

drives a more unstable jet. These strong gradients

provide a severe test for advection schemes. In addition

to those from LKM, solutions from a traditional semi-

Lagrangian formulation and an Eulerian formulation

(see the appendix) are also presented for compari-

son. We use the highly divergent Gaussian jet case to

compare the solutions between the shape-preserving

CSLAM-SW solver described by (15) and the LKM

with a shape-preserving explicit transport scheme (sec-

tion 4d).

a. A radially propagating gravity wave

A nonrotating ( f5 0) 2D radially propagating gravity

wave is initiated by a circular height perturbation h0

and advected by a mean background flow:

u(x, y, t5 0)5 u0 5 1:2m s21 ,

y(x, y, t5 0)5 y05 0:9m s21 ,

h(x, y, t5 0)5 h01 h0 ,

where

h05

8><
>:

1

2
Dh

h
11 cos

� pr

10 km

�i
, if r# 10 km,

0, otherwise,

and h0 is the initial background height, Dh is the

magnitude of the initial height perturbation, r5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 xc)

2 1 (y2 yc)
2

r
, and (xc, yc) is the center of a

200 km 3 200 km domain. We perform tests for two

different initial height perturbations: a linear case with

Dh 5 10 m and h0 5 990 m; and a nonlinear case with

Dh 5 500 m and h0 5 1000 m. A reduced gravitational

acceleration of g0 ’ 0.0204 m s22 is used, giving an

initial gravity wave speed c5
ffiffiffiffiffiffiffi
g0h

p
of 4.5 and 5.5 m s21

for the two cases, respectively. The mean advection

speed ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 1 y20

q
5 1:5m s21Þ is chosen to emulate the

speed ratio of the fastest advection of sound waves

(’300 m s21) in the atmosphere to the speed of the jet

stream (’100 m s21). The background flow velocities

u0 6¼ y0 are also chosen to ensure that the flow does not

align with the mesh.

The model domain consists of 400 3 400 grid cells,

with a grid spacing of Dx 5 Dy 5 500 m, and is periodic

in both x and y directions. Since there is no analytical

solution to the test problem, to evaluate CSLAM-SW,

we produce a fine-resolution Eulerian reference solu-

tion with a grid spacing of Dx 5 Dy 5 100 m and a time

step of Dt 5 10 s. The center of the gravity wave dis-

turbance in the reference solution is stationary (i.e., u05
y0 5 0 m s21), and we compare the solutions by trans-

lating the gravity wave disturbance in CSLAM-SW to

the center of the domain.

In addition to CSLAM-SW, we also run the two initial

perturbation cases using LKM, the traditional semi-

Lagrangian formulation, and an Eulerian formulation.

We use the l2 norm of error as the error measure, which

for a uniform mesh is

l25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
i,j
[h(i, j)2 href(i, j)]

2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
i,j
[href(i, j)]

2
r ,

where i, j are the grid indices, h(i, j) is the model solu-

tion, and href(i, j) is the Eulerian high-resolution refer-

ence solution. The l2 norm of error in the height field

(at time T 5 1 3 105 s) for different time-step sizes is

shown in Fig. 3 for all fourmodels. Results from both the

linear and nonlinear initial perturbations are plotted.

The time truncation error in CSLAM-SW is very com-

parable to those in the other two semi-Lagrangian models

for both cases. Except for the Eulerian model, all model

solutions converge as the time-step size is reduced to

less than Dt 5 50 s. At this point, differences between

the errors are mainly due to the spatial discretization

schemes (more noticeably in the nonlinear case). The

Eulerian model and the traditional semi-Lagrangian

model have a commonality that they both use a ‘‘true’’

C-grid divergence operator in the continuity equation;

whereas as discussed in section 3, the CISL computa-

tion of divergence in both CSLAM-SW and LKM con-

sists of an extra averaging operator. For this reason, one

may see a smaller spatial discretization error in the tra-

ditional semi-Lagrangian model and ‘‘coarse’’ Eulerian

model when compared to an Eulerian high-resolution

reference solution than those in the CISL models, as is

the case in Fig. 3.

To evaluate the consistency in CSLAM-SW and

LKM, a constituent with an initially constant specific

concentration distribution (q0 5 1) is initialized in each

model. The CSLAM explicit transport scheme conserves

constituent mass in both models; however, as discussed

in section 2c, when numerical consistency is violated,

constancy of the specific concentration is not guaranteed,
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and generation or removal of constituent mass is pos-

sible. The specific concentration is diagnosed by de-

coupling the constituent mass variable using (11). A

time step of Dt 5 100 s is used. Figure 4 shows an ex-

ample of the specific concentration error in LKM at

time T 5 1 3 105 s for both the linear and nonlinear

perturbation cases. The error is largest near the leading

edge of the gravity wave, where the flow is most di-

vergent and the semi-implicit correction term is non-

zero. Figure 5 shows the variation in error with time

step size for both the linear and nonlinear perturba-

tions at the same simulation time as in Fig. 4. The error

measures used are the maximum absolute error, the

mean absolute error, and the root-mean-squared error.

Errors in the solutions from LKM and CSLAM-SW are

shown in solid and dashed lines, respectively. Since the

inconsistent semi-implicit correction in (5) is propor-

tional to Dt, errors in the scalar field grow with time-step

FIG. 3. Comparison of the height field L2 error norms for the

radially propagating gravity wave solutions. Errors are plotted at

time T 5 1 3 105 s for the (a) linear (Dh 5 10 m and h0 5 990 m)

and (b) nonlinear (Dh 5 500 m and h0 5 1000 m) test cases com-

puted on a 500-m mesh. Note the different scales in the plots.

FIG. 4. Specific concentration error (q2 q0) in LKMfor a divergent

flow initialized with a constant q05 1 in the (a) linear (Dh5 10 m and

h05 990 m) and (b) nonlinear (Dh5 500 m and h05 1000 m) height

perturbation cases. Note the different scales in the plots.
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size, which can become a major issue for semi-Lagrangian

models that take advantage of larger stable time steps.

For the nonlinear test, the maximum absolute error from

LKM is in the order of 1022 to 1021, and is significant for

constituents like water vapor, which has a typical mixing

ratio of roughly 0.1%–3% in air. On the other hand,

CSLAM-SW using a consistent formulation is free-

stream preserving (up to machine roundoff) for both

cases and all time-step sizes tested.

b. Bickley jet—Ro 5 0.1

The stability of CSLAM-SW is further evaluated with

two perturbed jets; we begin with the Bickley jet from

Poulin and Flierl (2003). The Bickley jet is simulated at

the Rossby number, Ro 5 U/fL 5 0.1, where U is the

flow velocity scale, f is the Coriolis parameter, and L is

the length scale of the jet width. We choose the Froude

number, Fr 5 (fL)2/g0H 5 0.1. The jet is characterized

by greater heights to the left of the channel and dropping

off to smaller heights to the right, geostrophically bal-

anced by amean flow velocity down the channel (Fig. 6).

A height perturbation is superimposed at the initial

time, causing wave amplification and eventual breaking

of the jet into vortices, and formation of a vortex street

along the channel. These vortex streets consist of thin

filaments of vorticity with strong horizontal velocity

shear, making it a good test because it is challenging for

all numerical schemes. A more detailed description of

the evolution of these jets can be found in Poulin and

Flierl (2003).

The initial geostrophically balanced mean state (u0,

y0, and h0) and height perturbation h
0 of the Bickley jet is

given by

u(x, y, t5 0)5 u05 0,

y(x, y, t5 0)5 y052
g0Dh
fa

sech2
�x
a

�
,

h(x, y, t5 0)5 h01 h0 ,

where

h0 5 1002Dh tanh
�x
a

�
,

h0 5 0:1Dh sech2
�x
a

�
sin

�
2py

Y
n

�
.

The parameter Dh is the maximum amplitude of the

height perturbation and depends on Ro, g0 is the gravi-

tational acceleration, a is the jet width, Y is the length

of the channel, and n is the wavenumber mode of the

height perturbation. In our simulations, L 5 a 5 1 3
105 m, X (width of channel) 5 Y 5 2 3 106 m, f 5 1 3
1024 s21, and g0 5 10 m s22. For the specified scale of

the jet width and a flow with Fr 5 0.1, the mean height

of h0 is 100 m. The amplitude of the height perturbation

Dh 5 1 m is determined by the scale of the initially

FIG. 5. Variation of specific concentration error (q2 q0) (maximum absolute error, mean absolute error, and root-

mean-square error) with time-step size in LKM (solid line) and CSLAM-SW (dashed line) for the (a) linear height

perturbation and (b) nonlinear height perturbation cases.
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geostrophically balanced flow speed (U ; 1 m s21) for

Ro 5 0.1. We choose the most unstable mode of wave-

number n 5 3 (Poulin and Flierl 2003) for all of our jet

simulations.

Each grid domain has 202 3 202 grid cells and a grid

spacing of Dx 5 Dy 5 9950 m, with solid boundary

conditions at x 5 2X/2 and x 5 X/2 and periodic

boundary conditions in y where y 2 [2Y/2, Y/2]. A time

step of Dt 5 2000 s was used in all simulations. Based

on the initial gravity wave speed c ’ 32 m s21 and ini-

tial flow speed jyj 5 1 m s21, the Courant numbers are

Crgw 5 6.4 and Cradv 5 0.2, respectively.

To maintain numerical stability in the Eulerian

model, we implemented a second-order explicit diffusion

term with a numerical viscosity parameter bx 5 by 5
nDt/Dx2 5 0.02 (where n is analogous to the physical vis-

cosity). This value corresponds to the numerical Reynolds

number, Re 5 UL/n 5 102, a factor of 10 smaller than

that used in the forward-in-time Eulerian model of

Poulin and Flierl (2003). Explicit diffusion was not ap-

plied to any of the semi-Lagrangian models because the

schemes have sufficient inherent damping to maintain

numerical stability. For the traditional semi-Lagrangian

model, however, we found that time off centering in the

semi-implicit scheme was needed to maintain stability.

Figure 7 shows the solutions from CSLAM-SW and

the three comparison models. Although the exact form

of the initial height perturbation was not provided in

Poulin and Flierl (2003), we were able to reproduce re-

sults very similar to theirs [cf. Fig. 4c of Poulin and Flierl

(2003)]. The most noticeable difference among the dif-

ferent model solutions is in the shape and magnitude of

the relative vorticity maxima and minima. CSLAM-SW

showed very similar vortex shapes to those from LKM

and TRAD-SL. The vortices in the Eulerian results are

similar to those from the Eulerian model of Poulin and

Flierl (2003). The difference between the Eulerian so-

lution and the semi-Lagrangian solutions can be attrib-

uted to the inherent damping in the reconstruction step

of the CISL schemes and the gridpoint interpolation

in the traditional semi-Lagrangian scheme.

c. Gaussian jet—Ro 5 5.0

The third test case is the Gaussian jet with Ro 5 5.0.

Similar to the Bickley jet, the Gaussian jet has Fr5 0.1,

and has an initially geostrophically balanced mean state

with greater heights to the left of the channel and drop-

ping off to smaller heights to the right (Fig. 6). The main

difference between the two jets is that the Gaussian jet

has a slightly steeper height profile at the center of the

channel, and therefore, produces a more pronounced

nonlinear flow, especially at larger Ro. The initial mean

state and height perturbation for the Gaussian jet is

given as

u(x, y, t5 0)5 u05 0,

y(x, y, t5 0)5 y052
2g0Dhffiffiffiffi
p

p
fa

exp[2(x/a)2],

h(x, y, t5 0)5 h01 h0 ,

where

h05 1002Dh erf
�x
a

�
,

h05 0:1Dh

�
2ffiffiffiffi
p

p exp[2(x/a)
2
]

�
sin

�
2py

yL
n

�
,

and the notation is as before. All the parameters remain

the same, exceptDh5 50 m for Ro5 5.0, andDt5 100 s

FIG. 6. Initial mean (top) height h0 and (bottom) velocity y0 profiles for the Bickley jet

(Dh 5 1 m, Dy 5 1 m s21) and Gaussian jet (Dh 5 50 m, Dy 5 56 m s21).
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is used.With an initial gravity wave speed andmaximum

flow speed of 38 and 56 m s21, respectively, Crgw 5 0.4

and Cradv 5 0.56. We note that U . c (i.e., the flow is

supercritical). Despite the existence of supersonic waves

in the solution, CSLAM-SW is stable even at larger

Courant numbers.

As pointed out in Poulin and Flierl (2003), jets in this

Rossby regime are highly unstable and of particular in-

terest is the formation of an asymmetric vortex street

with triangular cyclones and elliptical anticyclones. As

the vortex street is advected toward the deeper water,

a strong cutoff cyclone develops due to vortex stretch-

ing (adjacent to the main anticyclonic feature). All of

our models, including CSLAM-SW, were able to re-

produce these features [Fig. 8; cf. Fig. 10e in Poulin and

Flierl (2003)]. As in the Bickley jet case, we find that

CSLAM-SW produced solutions similar to the other

two semi-Lagrangian models (LKM and TRAD-SL).

In addition to comparing solutions of CSLAM-SW at

time steps allowable by the Eulerian scheme, we also

tested the stability of CSLAM-SW at a much larger

Cradv5 2.5. Figures 9a–c show solutions at various times

from the previous CSLAM-SW simulation (Cradv 5 0.56),

and Figs. 9d–f show solutions at each of the correspond-

ing time for Cradv 5 2.5, using the largest time step al-

lowable by the Lipschitz condition for this flow. The

FIG. 7. Solutions of the Bickley jet at time T5 53 106 s (after 2500 time steps) for Ro5 0.1, Fr5 0.1 and Cradv 5
0.2. Plotted are positive (solid line) and negative (dashed line) vorticity between213 1025 s21 and 13 1025 s21 with

a contour interval of 5 3 1027 s21.
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solution from the Cradv 5 2.5 simulation is almost

identical to the solution using Cradv 5 0.56.

The CSLAM-SW is numerically stable for the highly

nonlinear flow in the Gaussian jet and at Courant num-

bers much greater than unity. To check that consistency

and shape preservation in such a highly divergent flow

can be maintained, we repeat the Gaussian jet case using

CSLAM-SW and the shape-preserving extensions de-

scribed in section 3.

d. Gaussian jet—Ro 5 5.0 with shape preservation

The shape-preserving CSLAM-SW solver in (15) is

tested using the divergent flow of the Gaussian jet as

described in section 4c. We also test the LKM solver

with the Barth and Jespersen (1989) filter implemented

in the explicit scalar transport scheme of hqn11
exp . All pa-

rameters are as described in section 4c, and a time step

of Dt 5 100 s is used for results in Figs. 10 and 11.

To test for numerical consistency in the two solvers,

we repeat the consistency test described in section 4a by

initializing a constant specific concentration field q05 1.

The shape-preserving CSLAM-SW solution is able to

maintain numerical consistency between h and hq up

to machine roundoff for this highly divergent flow and

the result is independent of time-step size. As for LKM,

despite the shape-preserving transport scheme in the

solver, numerical inconsistency is still an issue with a

maximum absolute error (defined as the deviation from

FIG. 8. Solutions of the Gaussian jet for Ro5 5.0 and Cradv 5 0.56 at time T5 1.83 105 s (after 1800 time steps).

Plotted are positive (solid line) and negative (dashed line) vorticity between 25 3 1024 s21 and 5 3 1024 s21 with

a contour interval of 5 3 1025 s21.
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q0 5 1) of 6.79 3 1023, a mean absolute error of 4.82 3
1024, and a root-mean-square error of 1.063 1023 at time

T5 1.83 105 s (Fig. 10), and as in section 4a, the error is

a function of the time-step size (not shown).

To compare the shape-preservation ability between

CSLAM-SW and LKM, we initialize a specific-

concentration distribution that varies only in the x di-

rection and has a sharp gradient that coincides with the

center of the initial jet:

q(x, y, t5 0)5

�
1:0, if 2X/2# x, 0.

0:1, if 0# x,X/2 .

Solutions of q diagnosed from hq from the nonshape-

preserving CSLAM-SW, LKM with shape-preserving

transport, and the shape-preserving CSLAM-SW are

presented in Figs. 11a–c. The simulation time T5 1.83
105 s in the figure corresponds to the vorticity field

shown in Fig. 8.

For the nonshape-preserving CSLAM-SW solver

(Fig. 11a), q reaches an unphysical peak value of 1.233

and an unphysical minimum value of 20.145 (specific

concentrations cannot be negative). The LKM solver

with shape-preserving transport (Fig. 11b) has less se-

vere errors than the nonshape-preserving CSLAM-SW,

but loses its shape-preserving ability as a result of nu-

merical inconsistency. The minimum and maximum q

values are 0.099 97 and 1.0063, respectively, at time T5
1.83 105 s. The overshooting of q (which may generate

spurious constituent mass) appears to be greater in

amplitude than the undershooting for this flow. Over-

shooting occurs mostly within the strongest anticyclones

(negative vorticity centers on the left side of the channel,

highlighted in solid black lines in Fig. 11b). Using the

shape-preserving CSLAM-SW solver (Fig. 11c), mini-

mum and maximum values of q are kept within its

physical limits (0.1 and 1.0, respectively, up to machine

roundoff) and shape preservation is ensured.

FIG. 9. CSLAM-SW solutions of the Gaussian jet for Ro 5 5.0 at three different times (from left to right on each row) of the

simulation at time T 5 5 3 104, 1.0 3 105, and 1.43 105 s. (a)–(c) Solutions using a Cradv of 0.56 (same simulation as in Fig. 8) (d)–(f)

Solutions using a larger Cradv. of 2.5. Plotted are positive (solid line) and negative (dashed line) vorticity between 253 1024 and 5 3
1024 s21 with a contour interval of 5 3 1025 s21.
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5. Conclusions

A conservative and consistent semi-Lagrangian semi-

implicit solver is constructed and tested for shallow-

water flows (CSLAM-SW). The model uses a new

flux-form discretization of the semi-implicit cell-integrated

semi-Lagrangian continuity equation that allows a straight-

forward implementation of a consistent constituent trans-

port scheme. Like typical conservative semi-Lagrangian

semi-implicit schemes, the algorithm requires at each

time step a single Helmholtz equation solution and a

single application of CSLAM.

Specifically, our new discretization uses the flux di-

vergence as opposed to a velocity divergence that re-

quires linearization about a constant mean reference

state. For traditional semi-implicit schemes, the depen-

dence on a constant mean reference state makes it dif-

ficult to ensure consistency between total fluid mass

and constituent mass. When numerical consistency is

not maintained, constituent mass conservation can be

violated even for solvers that use inherently conserva-

tive transport schemes. More unacceptably, constituent

fields may no longer preserve their shapes (e.g., losing

constancy or positive definiteness).

We have shown an example of a traditional discrete

cell-integrated semi-Lagrangian semi-implicit continuity

equation (LKM), in which inconsistency can generate

significant numerical errors in the specific constituent

concentration. The inconsistent semi-implicit correc-

tion term in LKM causes errors to grow proportionally

with time-step size and with the nonlinearity of the flow.

The ideal radially propagating gravity wave tests using

the LKM solver showed a maximum absolute error in

an initially constant specific concentration (q05 1) field

ranging from an order of 1027 to 1023 in the linear case,

and an order of 1024 to 1021 in the nonlinear case. The

orders of magnitude of these errors are significant rel-

ative to the specific concentration of tracers and water

vapor in the atmosphere. The consistent formulation

FIG. 10. Specific concentration error (q 2 q0) in LKM for the

Gaussian jet at timeT5 1.83 105 s, initializedwith a constant q05 1

field.

FIG. 11. Specific constituent concentration q at time T 5 1.8 3 105 s. Initial minimum and maximum q are 0.1 and 1.0, respectively.

Regions with unphysical overshooting (red) and undershooting (purple) are highlighted.
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in the new CSLAM-SW on the other hand eliminates

these errors (up to machine roundoff).

The new flux-form solver (CSLAM-SW) is tested for

a range of flows and Courant numbers for the shallow-

water system, and is stable and compares well with

other existing semi-implicit schemes, including a two-

time-level traditional semi-Lagrangian scheme and an

Eulerian leapfrog scheme. The Gaussian jet test (the

more nonlinear jet of the two presented) showed that

CSLAM-SW remains numerically stable when large

time steps are used.

We have also identified and eliminated a compu-

tational unstable mode in CSLAM-SW and LKM, us-

ing the discrete dispersion relation of the linearized

shallow-water equations. The numerical instability, as-

sociated with the Lagrangian divergence operator on a

C grid, can be eliminated by introducing a new aver-

aging operator on the Coriolis terms in the momentum

equations.

Shape preservation in CSLAM-SW is ensured by ap-

plying a 2D shape-preserving filter in the CSLAM

transport scheme and the first-order upwind scheme to

compute the predictor-corrector and flux-form correc-

tion terms. As shown in the Gaussian jet case, without

any shape-preserving filter, unphysical negative and un-

reasonable positive specific concentrations may de-

velop as a result of undershoots and overshoots. For

inconsistent formulations such as that in LKM, the use

of a shape-preserving explicit transport scheme cannot

guarantee shape preservation either because of nu-

merical consistency errors. CSLAM-SW, on the other

hand, allows for straightforward implementation of

existing shape-preserving schemes and filters and en-

sures shape preservation (up to machine roundoff).

The initial testing of the semi-implicit formulation in

CSLAM-SW shows promising results. We are currently

implementing the extension of CSLAM-SW to a 2D

(x–z) nonhydrostatic, fully compressible atmospheric

solver. The desirable properties of mass conservation,

consistency, and shape preservation for moisture vari-

ables and tracers will likely be important for both

short- and long-term meteorological applications.
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APPENDIX

Numerical Schemes for Comparison

a. A two-time-level traditional semi-Lagrangian
semi-implicit model

A traditional gridpoint semi-implicit semi-Lagrangian

model on a staggered C grid is constructed for com-

parison purposes. The scheme uses a forward-in-time

off-centering parameter b for numerical stability pur-

poses. The discretized system is given by

un11
A 5Dt

�
11b

2

�
[f yxy2 g0dxh]

n11
A

1Rn
u , (A1)

yn11
A 5Dt

�
11b

2

�
[2f uxy 2 g0dyh]

n11

A
1Rn

y ,

hn11
A 52Dt

�
11b

2

�
H0(dxu1 dyy)

n11

A
1Rn

h1Rn11/2
h ,

(A2)

where

Rn
u 5und1Dt

�
12b

2

�
[ f yxy 2 g0dxh]

n

d
,

Rn
y 5 ynd 1Dt

�
12b

2

�
[2f uxy 2 g0dyh]

n

d
,

Rn
h 5hnd2Dt

�
12b

2

�
H0(dxu1 dyy)

n

d
,

Rn11/2
h 52Dt(h0dxu1 h0dyy)

n11/2

d/2
,

and h0 5 h 2 H0. The operators are defined as

dxf5
fi,j 2fi21,j

Dx
; dyf5

fi, j 2fi, j21

Dy
,

f
x
5

1

2
(fi, j1fi11, j),

f
xy
5f

xy
5f

yx
5

1

4
(fi,j 1fi,j111fi11, j 1fi11, j11) .

The Rn terms define the known terms that are evalu-

ated at time level n and interpolated to the departure

point. The Rn11/2 term is the nonlinear term evaluated

by extrapolating values from time level n and n 2 1 to

time level n1 1/2, and interpolated to the estimated

midpoint trajectory. The time off-centering parameter b

is set to 0.1 for all runs.

b. An Eulerian leapfrog semi-implicit advective
model

The Eulerian C-grid staggering model uses the semi-

implicit leapfrog time-stepping scheme and momentum
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equations in the advective form. The model has an

Asselin time filter and a time off-centering parameter

(b 5 0.1) to eliminate spurious oscillations. Numerical

viscosity is also applied for certain test cases (see section

4b). Using the same notations as for the traditional semi-

Lagrangian model, the discretized system is given by

un115Dt(11b)( f y xy 2 g0dxh)
n11 1Ru,

yn115Dt(11b)(2f uxy2 g0dyh)
n111Ry ,

hn1152Dt(11b)H0(dxu1 dyy)
n111Rh ,

where

Ru 5 un212 2Dt(udxu1 ydyu)
n

1Dt(12b)( f y xy 2 g0dxh)
n21,

Ry 5 yn212 2Dt(udxy1 ydyy)
n

1Dt(12b)(2f uxy 2 g0dyh)
n21,

Rh 5 hn212Dt(12b)H0(dxu1 dyy)
n21

2 2Dt(h0dxu1h0dyy)
n11/2 .
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