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ABSTRACT

A simple methodology is proposed to extract impacts of cloud microphysics on macrophysical cloud-field

properties in large-eddy simulations of shallow convection. These impacts are typically difficult to assess

because of natural variability of the simulated cloud field. The idea is to use two sets of thermodynamic

variables driven by different microphysical schemes or by a single scheme with different parameters as ap-

plied here. The first set is coupled to the dynamics as in the standard model, and the second set is applied

diagnostically—that is, driven by the flow but without the feedback on the flow dynamics. Having the two

schemes operating in the same flow pattern allows for extracting the impact with high confidence. For il-

lustration, the method is applied to simulations of precipitating shallow convection applying a simple bulk

representation of warm-rain processes. Because of natural variability, the traditional approach provides an

uncertain estimate of the impact of cloud droplet concentration on the mean cloud-field rainfall even with an

ensemble of simulations. In contrast, the impact is well constrained while applying the newmethodology. The

method can even detect minuscule changes of the mean cloud cover and liquid water path despite their large

temporal fluctuations and different evolutions within the ensemble.

1. Motivation

Assessing impacts of cloud microphysics on macro-

physical properties of simulated shallow convective cloud

fields (e.g., the cloud cover, mean precipitation, liquid

water path) is difficult. This is because the cloud cover is

typically small (say, 10%), clouds evolve rapidly through

their lifestyle, and the cloud field differs significantly at

variousmoments of the simulation.Arguably, all these are

related to the natural variability of shallow convection. As

a result, many measures of the cloud-field characteristics

(such as profiles of domain-averaged cloud variables and

surface precipitation) show large departures from time

averages; see Figs. 2 and 4 in Xue and Feingold (2006),

Figs. 2 and 4 in Stevens and Seifert (2008), Fig. 3 in

vanZanten et al. (2011), Figs. 9–12 in Wyszogrodzki et al.

(2013), and Fig. 4 in Franklin (2014) for specific examples.

Extracting the impact of cloud microphysics with high

confidence requires substantial effort—for instance, ap-

plying an ensemble of simulations, using large horizon-

tal domains or extended simulations, all aimed at

limiting the impact on natural variability.

We propose here a novel methodology to provide

a confident assessment of the effect of cloud micro-

physics in large-eddy simulations of shallow convective

cloud fields. The approach has some similarities to the

method applied by Kooperman et al. (2012) to improve

estimates of the global aerosol indirect effects. To re-

duce the impact of natural variability, Kooperman et al.

nudged GCM simulations with different aerosol emis-

sions toward the same meteorological conditions and

obtained statistically significant estimates of aerosol

indirect effects in considerably shorter simulations. A

similar method is proposed here. We apply two micro-

physical schemes in the same dynamical setup; that is,

one scheme drives the dynamics and the other one just

tags along the flow field simulated by themodel. In other

words, both schemes are operating in a realistic (3D,

time evolving, etc.) flow field. Such a methodology is

a significant improvement over the kinematic (prescribed

flow) strategy used in the past to compare simulations

with various microphysical schemes (e.g., Szumowski

et al. 1998; Morrison and Grabowski 2007; Shipway and

Hill 2012).
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2. The methodology

The proposed method is embarrassingly simple. The

main idea is to use two sets of thermodynamics vari-

ables, each set affected by a different microphysics

scheme or by the same scheme featuring different sets of

scheme parameters. One set drives the dynamics as in

the standard model (the prognostic scheme) and the

other one tags along (piggybacks) the simulated flow

field (the diagnostic scheme). The model needs to be

modified to allow two sets of thermodynamics variables—

that is, the potential temperature and water vapor mix-

ing ratio as well as all variables used to describe cloud

and precipitation particles. The fields from the prog-

nostic set are used in the buoyancy, and the other set is

solved as in the kinematic model (i.e., without affecting

the dynamics). If additional processes modifying ther-

modynamic variables are included in the model physics

(e.g., surface fluxes, radiative transfer, prescribed large-

scale advective tendencies), they need to be calculated

independently for each set. After completing the first

simulation, the second simulation can be run with the

prognostic and diagnostic sets switched so the previously

diagnostic set becomes the prognostic one, and vice versa.

Comparing the two simulations hints at the impact (or lack

thereof) of the cloud microphysics on the dynamics as

discussed later in the paper. At the end, the approach re-

sults in two simulations, each featuring two sets of ther-

modynamic variables: one prognostic and one diagnostic

(i.e., four sets of thermodynamic variables altogether).

Microphysics parameterizations of various complexities

can be considered. For instance, a parameterization that

includes warm-rain processes only can be contrasted with

a schemepermitting ice processes. This allows assessing the

role of ice processes and separates a purely thermodynamic

impact (e.g., more water vapor available for particle

growth below freezing with ice microphysics) from the

dynamical effect (e.g., presence of deeper clouds because

of the increased latent heating and larger buoyancy for the

ice case).

We apply the proposed methodology to the shallow-

precipitating-convection case based on the Barbados

Oceanographic andMeteorological Experiment (BOMEX)

model intercomparison setup (Siebesma et al. 2003,

hereafter S03). To document fidelity of the approach, we

consider the impact of prescribed cloud droplet con-

centration on macroscopic cloud-field properties and

contrast simulations with a relatively small difference in

the prescribed concentrations.

3. The model and modeling setup

Themodel used in this study is a simplified serial versionof

the 3D nonhydrostatic anelastic Eulerian–semi-Lagrangian

(EULAG)model (see http://www.mmm.ucar.edu/eulag/)

sometimes referred to as the babyEULAG. As does its

parent, babyEULAG applies a nonoscillatory forward-

in-time integration scheme based on the multidimen-

sional positive definite advection transport algorithm

(MPDATA; e.g., Smolarkiewicz 2006) and uses an el-

liptic pressure solver for the anelastic dynamics [see Prusa

et al. (2008) for a review and comprehensive list of ref-

erences]. The babyEULAG does not have any subgrid-

scale turbulence scheme but it employs the implicit

large-eddy simulation (ILES) approach (Margolin et al.

2006; Grinstein et al. 2007). Such an approach exploits

the properties of high-resolution nonoscillatory finite-

volume methods; see Waite and Smolarkiewicz (2008)

for an ILES application to the large-Reynolds-number

vortex-pair dynamics in a strongly stratified fluid.

The cloudmicrophysics scheme applied in simulations

described here is the single-moment scheme documented

in Grabowski (1998, hereafter G98) with centered-in-time

integration for the saturation adjustment and forward-

Euler (uncentered) scheme for precipitation processes; see

Grabowski and Smolarkiewicz [1996, cf. Eqs. (8) and (9)

therein]. Although the scheme does include a simple rep-

resentation of ice process, these are irrelevant for the

warm (ice free) simulations considered here. The conver-

sion of cloudwater into drizzle/rain (the autoconversion) is

represented based on the formulation proposed by Berry

(1968) as applied by Simpson and Wiggert (1969, their

section 3). The warm-rain autoconversion depends on the

local values of the cloud water mixing ratio, cloud droplet

concentration, and the relative dispersion of the cloud

droplet spectrum, with the latter two required to be

specified [cf. Eq. (8) in G98]. We consider simulations

that apply two droplet concentrations, N 5 70 and N 5
100 cm23, and assume the relative spectral dispersion of

0.3. Such a formulation leads to the autoconversion term

of about 2 3 1029, 1026, and 3 3 1024 kg kg21 s21 for

cloud water mixing ratios of 0.1, 1, and 10 g kg21, re-

spectively, for N 5 70 cm23. For N 5 100 cm23, the

autoconversion is reduced by about 30% for cloud water

of 0.1 and 1 g kg21 and by about 7% for 10 g kg21. It

follows that one should expect some reduction of pre-

cipitation in the higher-droplet-concentration case. We

stress that the particular autoconversion parameteri-

zation is applied here only to document the fidelity of

the proposed methodology and not to study the impact

of the parameterization on the rain from shallow con-

vection. For the latter, perhaps a more up-to-date for-

mulation should be used—for instance, as in Kogan

(2013).

A simulation in which the thermodynamic set with

N5 70 cm23 drives the dynamics and N5 100 cm23 set

tags along will be referred to as the D70/P100 simulation
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(‘‘D’’ for ‘‘dynamic’’ and ‘‘P’’ for ‘‘piggybacking’’). A

complementary simulation with the thermodynamic

schemes switched will be referred to as D100/P70. The

two simulations result in four sets of thermodynamic

variables: namely, D70, D100, P70, and P100. Five sets

of simulations are performed, each set containing two

simulations (i.e., one D70/P100 and one D100/P70). The

only difference for each set is a different draw of random

numbers generated when imposing the initial tempera-

ture and moisture perturbations as described in S03.

D70 and D100 results can be compared as in a tradi-

tional ensemble methodology. Analyzing results for

ensemble member pairs D70–P100 and D100–P70 al-

lows for extracting microphysical impacts as docu-

mented in the following discussion.

The model setup is exactly as described in S03 except

that the simulations are run for 8 h instead of 6 h and

precipitation processes are allowed as inWyszogrodzki

et al. (2013) and Grabowski et al. (2014). The model

time step is 2.5 s. Snapshots of 3D model fields are

saved every 6min. In addition, 2D surface rain rate is

saved every minute as an average from the previous

minute. The two datasets are used in the analysis pre-

sented here.

4. Results

As already explained, assessing the impact of a rela-

tively small change in the cloud microphysics is difficult

and uncertain because of the natural variability. This is

illustrated in Fig. 1, which shows evolutions of the cloud

cover (the fraction of columns with the cloud water

somewhere within the column) and the liquid (cloud and

precipitation) water path (LWP) for D70 and D100 sets.

In agreementwith results shown in S03 (cf. Fig. 2 therein),

model spinup lasts for about 90min with solutions fol-

lowing each other. After the spinup, the solutions diverge

and follow different paths in the phase space that repre-

sent different realizations of the system evolution due to

inherently nonlinear system dynamics.

Fluctuations of the cloud field have strong impacts on

the surface precipitation. This is documented in Fig. 2,

which shows evolutions of the surface rain rate and total

rain accumulation for selected members of the D70 and

D100 ensembles. As the figure shows, significant mean

surface precipitation occurs in sporadic events, most

likely associated with the presence of the deepest clouds.

Total accumulations at the end of simulations (i.e., at 8 h)

differ significantly between the ensemble members. As

FIG. 1. Evolution of (top) the cloud cover and (bottom) LWP for five-member ensembles of (left) D70 and (right)

D100 of BOMEX simulations.
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shown in Table 1, the mean values for D70 andD100 are

2.06 3 1022 and 1.99 3 1022mm, with the standard

deviation between ensemble members of 0.63 3 1022

and 0.55 3 1022mm. Since the difference between D70

and D100 ensemble is much smaller than the standard

deviation within each ensemble, the difference can be

argued as uncertain and statistically insignificant. A

larger ensemble or longer simulations would be needed

to obtain statistically significant results.

Figure 3, in the format of Fig. 2, shows results obtained

applying the methodology advocated in this paper for

two randomly selected pairs of D70/P100 and D100/P70

ensemble members. Although cloud field evolutions are

different in the two simulations, the diagnostic scheme

(P100 and P70 in the left and right panels, respectively)

allows a confident evaluation of the autoconversion

impact. As the figure shows, the same evolution of the

cloud field and thus the same surface precipitation

events result in systematic differences in the surface rate

and total accumulation—larger for the lower-droplet-

concentration simulations. As documented in Table 1,

the increase of the surface rain accumulation is practically

the same in both ensembles: about 0.4 3 1022 mm

with the standard deviation of around 20% of this value.

Comparing results from the two ensembles (i.e.,

D70/P100 andD100/P70) hints at an insignificant impact

of the cloud microphysics on the cloud dynamics. If

there were a strong impact (e.g., one ensemble featured

significantly deeper clouds), then the difference between

FIG. 2. Evolution of (bottom) the horizontally averaged surface precipitation rate and (top) the surface rain ac-

cumulation for the two ensemble members that show the largest (solid lines) and the smallest (dashed lines) surface

rain accumulation at 8 h for (left) D70 and (right) D100 simulations. Thick lines in the top panels show the ensemble

mean and the range (the mean plus and minus one standard deviation among the members) of the accumulation

at 8 h.

TABLE 1. Domain-averaged surface rain accumulation (1022mm)

for 8 h of BOMEX simulations. St. dev. refers to the standard de-

viation of (third column) the mean and (fourth column) the mean

D 2 P difference among ensemble members. The data come from

two ensembles. Each member of the ensemble includes one set of

thermodynamic variables that drives the flow (D70 and D100) and

another set that is piggybacking the simulation (P100 for D70 and

P70 for D100). The impact is assessed by comparing the D70–P100

and D100–P70 pairs.

Set

Accumulation

for each member

Ensemble:

mean, st. dev.

D 2 P: mean,

st. dev.

D70 2.54, 1.72, 2.99, 1.81, 1.22 2.06, 0.63 0.41, 0.08

D100 1.01, 1.97, 1.96, 2.58, 2.43 1.99, 0.55 20.43, 0.07

P100 2.06, 1.33, 2.48, 1.44, 0.94 1.65, 0.55 —

P70 1.32, 2.38, 2.46, 3.04, 2.91 2.42, 0.60 —
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the ensembles and especially the change from D to P

(i.e., the reduction from D70 to P100 and the increase

from D100 to P70) would likely be different. Because

the reduction (increase) of the total accumulation be-

tween D70 and P100 (D100 and P70) is practically the

same in both ensembles, the dynamics of individual

clouds seems to be only weakly affected by the feedback

from the microphysics. In other words, the difference

between the two ensembles comes mostly from different

microphysics (i.e., more efficient conversion of cloud

water into rain) and not likely from the cloud dynamics

(e.g., deeper clouds for one of the ensembles). This is

supported by the distributions of cloud-top heights that

show statistically insignificant differences between D70

and D100 sets (not shown).

To further illustrate the fidelity of the method, we con-

sider changes of the cloud cover andLWP.As illustrated in

Fig. 1, addressing the changes using D simulations alone is

impossible. Table 2, in the format of Table 1, shows that

the D ensemble-mean cloud cover and LWP increase

(from 0.129 to 0.131 and from 6.27 to 6.52gm22, re-

spectively) with the increase of the droplet concentration.

Arguably, this is consistent with the second indirect

aerosol effect—that is, less efficient removal of cloud

FIG. 3. As in Fig. 2, but for single ensemblemembers of theD70 andD100 simulations (solid lines) and corresponding

results for P100 and P70 (dashed lines) for (left) D70/P100 and (right) D100/P70.

TABLE 2. As in Table 1, but for the hour 2–8 averages of the cloud cover and domain-averaged LWP (gm22).

Set 6-h mean for each member Ensemble: mean, st. dev. D 2 P: mean, st. dev.

Cloud cover

D70 0.126, 0.126, 0.129, 0.131, 0.135 0.129, 0.003 0.001, 0.0004

D100 0.146, 0.126, 0.120, 0.133, 0.130 0.131, 0.009 20.001, 0

P100 0.125, 0.125, 0.128, 0.129, 0.133 0.128, 0.003 —

P70 0.147, 0.127, 0.121, 0.134, 0.131 0.132, 0.008 —

Mean LWP

D70 6.49, 6.16, 6.82, 6.32, 5.59 6.27, 0.41 0.05, 0.01

D100 6.05, 6.29, 7.06, 6.39, 6.81 6.52, 0.37 20.05, 0.01

P100 6.45, 6.11, 6.76, 6.28, 5.54 6.22, 0.41 —

P70 6.10, 6.34, 7.12, 6.44, 6.87 6.57, 0.37 —
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water for weaker precipitating clouds leading to more

liquid water in the atmosphere. However, standard de-

viations among ensemble members are larger than the

difference and thus the difference is not statistically

significant. Comparing D and P sets, however, provides

a different outcome, with the cloud cover and LWP

reduced when droplet concentration is higher, by 0.001

and 0.05 gm22 for the cloud cover andLWP, respectively.

This is further illustrated in Fig. 4, which shows evolutions

of the cloud cover and LWP difference between D and P

sets (rather than evolutions of both D and P as in Fig. 3)

because the differences are extremely small (cf. the units

on the vertical axes of Figs. 1 and 4). Table 2 shows that

the differences illustrated in Fig. 4 apply to all members

of the ensemble; that is, the averaged differences for

D702 P100 are positive and forD1002 P70 are negative.

These differences are of the opposite sign when compared

to the D ensemble means and seem inconsistent with the

second indirect aerosol effect. However, an explanation is

possible and it likely involves fundamental features of the

bulk warm-rain microphysics that involve immediate

evaporation of cloud condensate in subsaturated condi-

tions and finite-time evaporation of rain. In other words,

having more rain in a bulk warm-rain scheme provides

a delay in the liquid water (cloud plus rain) evaporation.

The time-averaged differences (see Table 2) are

minuscule—roughly at the 1% level (e.g., 0.001 for 0.13

for the cloud cover and 0.05 for 6 gm22 for LWP).

However, they are statistically significant based on the

values of ensemble standard deviations.

5. Conclusions and outlook

We propose a simple methodology to improve the

understanding of the effects of cloud microphysics on

cloud simulations. The idea is to apply one set of ther-

modynamic variables (the temperature, water vapor

mixing ratio, and cloud and precipitation variables) as

usually applied in a cloudmodel (i.e., coupled to the flow

dynamics through the buoyancy term) and then drive

the second set in the kinematic manner—that is, re-

sponding to the flow evolution but not affecting the flow.

Simulations presented here document the potential of

the new approach in large-eddy simulations of shallow

precipitating convection. We also argue that reversing

the way schemes are applied (i.e., switching the pre-

viously dynamic set of variables into the kinematicmode

and vice versa) allows for estimating the impact of the

FIG. 4. Evolutions of (top) the cloud cover and (bottom) LWP differences between (left) D70 and P100 and (right)

D100 and P70 for ensemble members as in Fig. 3.
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microphysics on the dynamics. However, such an esti-

mate is uncertain because it is affected by the natural

variability between the two simulations.

We are currently applying the same methodology in

simulations of deep convection to study the problem

of convective invigoration in polluted environments

(Grabowski 2014, manuscript submitted to J. Atmos.

Sci.). The piggybacking methodology allows an un-

precedented look at the effects of the suppressed warm-

rain processes and enhanced ice processes in polluted

deep convection. We are also aware of an ongoing effort

within the U.S. Department of Energy Atmospheric

System Research Program to apply the piggybacking

methodology in order to provide improved evaluations of

microphysical schemes in cloud simulations (J. Fan et al.

2014, personal communication). We plan to apply the

piggybacking methodology to the bin microphysics sim-

ulations targeting the impact of small-scale turbulence on

warm-rain formation in shallow convection described in

Wyszogrodzki et al. (2013) and in Grabowski et al.

(2014). Finally, the samemethodology can also be used to

extract the impact of other parameterizations, such as the

surface fluxes or radiation, in model simulations.

Acknowledgments. The methodology presented here

was originally suggested to the author by Dr. Bjorn

Stevens (MPI for Meteorology, Hamburg). Comments

on an earlier draft of this manuscript by Dr. Dorota

Jarecka (University of Warsaw, Warsaw) and by two

anonymous reviewers are acknowledged. This work was

partially supported by the NSF Science and Technology

Center for Multiscale Modeling of Atmospheric Pro-

cesses (CMMAP; managed by Colorado State Univer-

sity under Cooperative Agreement ATM-0425247) and

by the DOE ASR Grant DE-SC0008648.

REFERENCES

Berry, E. X., 1968: Modification of the warm rain process. Proc.

First Conf. on Weather Modification, Albany, NY, Amer.

Meteor. Soc., 81–85.

Franklin, C. N., 2014: The effects of turbulent collision–coalescence

on precipitation formation and precipitation-dynamical feed-

backs in simulations of stratocumulus and shallow cumulus

convection. Atmos. Chem. Phys., 14, 6557–6570, doi:10.5194/

acp-14-6557-2014.

Grabowski, W. W., 1998: Toward cloud resolving modeling of

large-scale tropical circulations: A simple cloud microphysics

parameterization. J. Atmos. Sci., 55, 3283–3298, doi:10.1175/

1520-0469(1998)055,3283:TCRMOL.2.0.CO;2.

——, and P. K. Smolarkiewicz, 1996: Two-time-level semi-

Lagrangian modeling of precipitating clouds. Mon. Wea.

Rev., 124, 487–497, doi:10.1175/1520-0493(1996)124,0487:

TTLSLM.2.0.CO;2.

——, L.-P. Wang, and T. V. Prabha, 2014: Impacts of cloud and

precipitation processes on maritime shallow convection as

simulated by an LES model with bin microphysics. Atmos.

Chem. Phys. Discuss., 14, 19 837–19 873, doi:10.5194/

acpd-14-19837-2014.

Grinstein, F. F., L. G. Margolin, and W. J. Rider, 2007: Implicit

Large Eddy Simulation: Computing Turbulent Fluid Dynam-

ics. Cambridge University Press, 578 pp.

Kogan, Y., 2013: A cumulus cloud microphysics parameterization

for cloud-resolving models. J. Atmos. Sci., 70, 1423–1436,

doi:10.1175/JAS-D-12-0183.1.

Kooperman, G. J., M. S. Pritchard, S. J. Ghan, M. Wang, R. C. J.

Somerville, and L.M. Russell, 2012: Constraining the influence

of natural variability to improve estimates of global aerosol

indirect effects in a nudged version of the Community Atmo-

sphere Model 5. J. Geophys. Res., 117, D23204, doi:10.1029/

2012JD018588.

Margolin, L. G., W. J. Rider, and F. F. Grinstein, 2006: Modeling

turbulent flow with implicit les. J. Turbul., 7, doi:10.1080/

14685240500331595.

Morrison,H., andW.W.Grabowski, 2007: Comparison of bulk and

bin warm-rain microphysics models using a kinematic frame-

work. J. Atmos. Sci., 64, 2839–2861, doi:10.1175/JAS3980.

Prusa, J. M., P. K. Smolarkiewicz, and A. A. Wyszogrodzki, 2008:

EULAG, a computational model for multiscale flows.Comput.

Fluids, 37, 1193–1207, doi:10.1016/j.compfluid.2007.12.001.

Shipway, B. J., and A. A. Hill, 2012: Diagnosis of systematic dif-

ferences between multiple parametrizations of warm rain

microphysics using a kinematic framework. Quart. J. Roy.

Meteor. Soc., 138, 2196–2211, doi:10.1002/qj.1913.
Siebesma, A. P., and Coauthors, 2003: A large eddy simulation in-

tercomparison study of shallow cumulus convection. J. Atmos.

Sci., 60, 1201–1219, doi:10.1175/1520-0469(2003)60,1201:

ALESIS.2.0.CO;2.

Simpson, J., and V. Wiggert, 1969: Models of precipitating

cumulus towers.Mon. Wea. Rev., 97, 471–489, doi:10.1175/

1520-0493(1969)097,0471:MOPCT.2.3.CO;2.

Smolarkiewicz, P., 2006: Multidimensional positive definite ad-

vection transport algorithm: An overview. Int. J. Numer.

Methods Fluids, 50, 1123–1144, doi:10.1002/fld.1071.

Stevens, B., and A. Seifert, 2008: Understanding macrophysical

outcomes of microphysical choices in simulations of shallow

cumulus convection. J. Meteor. Soc. Japan, 86A, 143–162.

Szumowski, M. J., W. W. Grabowski, and H. T. Ochs III, 1998:

Simple two-dimensional kinematic framework designed to

test warm rain microphysical models. Atmos. Res., 45, 299–

326, doi:10.1016/S0169-8095(97)00082-3.

vanZanten, M. C., and Coauthors, 2011: Controls on precipitation

and cloudiness in simulations of trade-wind cumulus as ob-

served during RICO. J. Adv. Model. Earth Syst., 3, M06001,

doi:10.1029/2011MS000056.

Waite, M. L., and P. K. Smolarkiewicz, 2008: Instability and

breakdown of a vertical vortex pair in a strongly stratified fluid.

J. Fluid Mech., 606, 239–273, doi:10.1017/S0022112008001912.

Wyszogrodzki, A. A., W. W. Grabowski, L.-P. Wang, and

O. Ayala, 2013: Turbulent collision-coalescence in maritime

shallow convection. Atmos. Chem. Phys., 13, 8471–8487,

doi:10.5194/acp-13-8471-2013.

Xue, H., and G. Feingold, 2006: Large-eddy simulations of trade

wind cumuli: Investigation of aerosol indirect effects. J. At-

mos. Sci., 63, 1605–1622, doi:10.1175/JAS3706.1.

DECEMBER 2014 GRABOWSK I 4499

http://dx.doi.org/10.5194/acp-14-6557-2014
http://dx.doi.org/10.5194/acp-14-6557-2014
http://dx.doi.org/10.1175/1520-0469(1998)055<3283:TCRMOL>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1998)055<3283:TCRMOL>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1996)124<0487:TTLSLM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1996)124<0487:TTLSLM>2.0.CO;2
http://dx.doi.org/10.5194/acpd-14-19837-2014
http://dx.doi.org/10.5194/acpd-14-19837-2014
http://dx.doi.org/10.1175/JAS-D-12-0183.1
http://dx.doi.org/10.1029/2012JD018588
http://dx.doi.org/10.1029/2012JD018588
http://dx.doi.org/10.1080/14685240500331595
http://dx.doi.org/10.1080/14685240500331595
http://dx.doi.org/10.1175/JAS3980
http://dx.doi.org/10.1016/j.compfluid.2007.12.001
http://dx.doi.org/10.1002/qj.1913
http://dx.doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1969)097<0471:MOPCT>2.3.CO;2
http://dx.doi.org/10.1175/1520-0493(1969)097<0471:MOPCT>2.3.CO;2
http://dx.doi.org/10.1002/fld.1071
http://dx.doi.org/10.1016/S0169-8095(97)00082-3
http://dx.doi.org/10.1029/2011MS000056
http://dx.doi.org/10.1017/S0022112008001912
http://dx.doi.org/10.5194/acp-13-8471-2013
http://dx.doi.org/10.1175/JAS3706.1

