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Abstract. Physically based models provide insights into key

hydrologic processes but are associated with uncertainties

due to deficiencies in forcing data, model parameters, and

model structure. Forcing uncertainty is enhanced in snow-

affected catchments, where weather stations are scarce and

prone to measurement errors, and meteorological variables

exhibit high variability. Hence, there is limited understanding

of how forcing error characteristics affect simulations of cold

region hydrology and which error characteristics are most

important. Here we employ global sensitivity analysis to ex-

plore how (1) different error types (i.e., bias, random errors),

(2) different error probability distributions, and (3) different

error magnitudes influence physically based simulations of

four snow variables (snow water equivalent, ablation rates,

snow disappearance, and sublimation). We use the Sobol’

global sensitivity analysis, which is typically used for model

parameters but adapted here for testing model sensitivity to

coexisting errors in all forcings. We quantify the Utah Energy

Balance model’s sensitivity to forcing errors with 1 840 000

Monte Carlo simulations across four sites and five different

scenarios. Model outputs were (1) consistently more sensi-

tive to forcing biases than random errors, (2) generally less

sensitive to forcing error distributions, and (3) critically sen-

sitive to different forcings depending on the relative magni-

tude of errors. For typical error magnitudes found in areas

with drifting snow, precipitation bias was the most important

factor for snow water equivalent, ablation rates, and snow

disappearance timing, but other forcings had a more dom-

inant impact when precipitation uncertainty was due solely

to gauge undercatch. Additionally, the relative importance of

forcing errors depended on the model output of interest. Sen-

sitivity analysis can reveal which forcing error characteristics

matter most for hydrologic modeling.

1 Introduction

Physically based models allow researchers to test hypotheses

about the role of specific processes in hydrologic systems and

how changes in environment (e.g., climate, land cover) may

impact key hydrologic fluxes and states (Barnett et al., 2008;

Deems et al., 2013; Leavesley, 1994; Clark et al., 2011b).

Due to the complexity of processes represented, these models

usually require numerous meteorological forcing inputs and

model parameters. Most inputs are not measured at the loca-

tions of interest and require estimation; hence, large uncer-

tainties may propagate from hydrologic model inputs to out-

puts. Despite ongoing efforts to quantify forcing uncertain-

ties (e.g., Bohn et al., 2013; Flerchinger et al., 2009; Clark

and Slater, 2006) and to develop methodologies for incor-

porating uncertainty into modeling efforts (e.g., Slater and

Clark, 2006; He et al., 2011a; Kavetski et al., 2006a; Kuczera

et al., 2010), many analyses continue to ignore uncertainty.

These often assume either that all forcings, parameters, and

structure are correct (Pappenberger and Beven, 2006) or that

only parametric uncertainty is important (Vrugt et al., 2008).

Neglecting uncertainty in hydrologic modeling reduces con-

fidence in hypothesis tests (Clark et al., 2011b), thereby lim-

iting the usefulness of physically based models.
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There are fewer detailed studies focusing on forcing un-

certainty relative to the number of parametric and structural

uncertainty studies (Bastola et al., 2011; Benke et al., 2008;

Beven and Binley, 1992; Butts et al., 2004; Clark et al., 2008,

2011b, 2015a, b; Essery et al., 2013; Georgakakos et al.,

2004; Jackson et al., 2003; Kelleher et al., 2015; Kuczera and

Parent, 1998; Liu and Gupta, 2007; Refsgaard et al., 2006;

Slater et al., 2001; Smith et al., 2008; Vrugt et al., 2003a,

b, 2005; Yilmaz et al., 2008). Di Baldassarre and Montanari

(2009) suggest that forcing uncertainty has attracted less at-

tention because it is “often considered negligible” relative to

parametric and structural uncertainties. Nevertheless, forcing

uncertainty merits more attention in some cases, such as in

snow-affected watersheds where meteorological and energy

balance measurements are scarce (Bales et al., 2006; Raleigh,

2013; Schmucki et al., 2014) and prone to errors due to en-

vironmental or instrumental factors (Huwald et al., 2009;

Lundquist et al., 2015; Rasmussen et al., 2012). Forcing un-

certainty is enhanced in complex terrain where meteorologi-

cal variables exhibit high spatial variability (Feld et al., 2013;

Flint and Childs, 1987; Herrero and Polo, 2012; Lundquist

and Cayan, 2007). As a result, the choice of forcing data can

yield substantial differences in calibrated model parameters

(Elsner et al., 2014) and in modeled hydrologic processes,

such as snowmelt and evapotranspiration (Mizukami et al.,

2014; Wayand et al., 2013). Thus, forcing uncertainty de-

mands more attention in snow-affected watersheds.

Previous work on forcing uncertainty in snow-affected re-

gions has yielded basic insights into how forcing errors prop-

agate to model outputs and which forcings introduce the most

uncertainty in specific outputs. However, these studies have

typically been limited to (1) empirical/conceptual models

(He et al., 2011a, b; Raleigh and Lundquist, 2012; Shamir

and Georgakakos, 2006; Slater and Clark, 2006), (2) errors

for a subset of forcings (e.g., precipitation or temperature

only) (Burles and Boon, 2011; Dadic et al., 2013; Durand and

Margulis, 2008; Lapo et al., 2015; Xia et al., 2005), (3) model

sensitivity to choice of forcing parameterization (e.g., long-

wave) without considering uncertainty in parameterization

inputs (e.g., temperature and humidity) (Guan et al., 2013),

and (4) simple representations of forcing errors (e.g., Kavet-

ski et al., 2006a, b). The last is evident in studies that only

consider single types of forcing errors (e.g., bias) and sin-

gle distributions (e.g., uniform) and examines errors sepa-

rately (Burles and Boon, 2011; Koivusalo and Heikinheimo,

1999; Raleigh and Lundquist, 2012; Xia et al., 2005). Lapo

et al. (2015) show that biases have a greater impact than

random errors on modeled snow water equivalent and sur-

face temperature but their analysis only considers longwave

and shortwave forcings and considers errors separately. Ex-

amining uncertainty in one factor at a time remains popu-

lar but fails to explore the uncertainty space adequately, ig-

noring potential interactions between forcing errors (Saltelli

and Annoni, 2010; Saltelli, 1999). In contrast, global sensi-

tivity analysis explores the uncertainty space more compre-

hensively by considering uncertainty in multiple factors at

the same time.

The purpose of this paper is to use global sensitivity anal-

ysis to assess how specific forcing error characteristics in-

fluence outputs of a physically based snow model. To our

knowledge, no previously published study has investigated

this topic in snow-affected regions. It is unclear how (1) dif-

ferent error types (bias vs. random errors), (2) different er-

ror distributions, and (3) different error magnitudes across

all forcings affect model output. The impact of forcing errors

on models can be tested by corrupting forcings with specified

characteristics (e.g., artificial biases and random errors) and

quantifying the impact on model outputs (e.g., Oudin et al.,

2006; Spank et al., 2013), but we are unaware of any de-

tailed studies that have done this type of experiment for all

meteorological forcings commonly required for physically

based snow models. We hypothesize that (1) model outputs

are more sensitive to biases than random errors in forcing

variables, (2) the assumed probability distribution for biases

will alter the relative ranking of importance in forcing errors,

and (3) the magnitude of forcing biases will have a strong

influence on which forcing errors are most important.

In our view, it is important to clarify the relative impact of

specific error characteristics on modeling applications, so as

to prioritize future research directions, improve understand-

ing of model sensitivity, and to address questions related to

network design. For example, given budget constraints, is

it better to invest in a heating apparatus for a radiometer

(to minimize bias due to frost formation on the radiometer

dome) or in a higher quality radiometer (to minimize ran-

dom errors associated with measurement precision)? Addi-

tionally, it is important to contextualize different meteorolog-

ical data errors, as these errors are usually studied indepen-

dently of each other (e.g., Flerchinger et al., 2009; Huwald

et al., 2009), and it is unclear how they compare in terms of

model sensitivity.

The overarching research question is how do assump-

tions regarding forcing error characteristics impact our un-

derstanding of uncertainty in physically based model output?

Using the Sobol’ (1990) global sensitivity analysis frame-

work, we investigate how artificial errors introduced into

high-quality, observed forcings (temperature, precipitation,

wind speed, humidity, shortwave radiation, and longwave ra-

diation) at four sites in contrasting snow climates propagate

to four snow model outputs (snow water equivalent, ablation

rates, snow disappearance timing, and sublimation) that are

important to cold region hydrology. We select a single model

structure and set of parameters to clarify the impact of forc-

ing uncertainty on model outputs. Specifically, we use the

physically based Utah Energy Balance (UEB) snow model

(Mahat and Tarboton, 2012; Tarboton and Luce, 1996) be-

cause it is computationally efficient. The presented frame-

work could be extended to other models.
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Table 1. Basic characteristics of the snow study sites, ordered from left to right by increasing elevation.

Site name Imnavait Creek Col de Porte Reynolds Mountain East Swamp Angel Study Plot

(sheltered site)

Site ID IC CDP RME SASP

Location Alaska, USA Rhône-Alpes, France Idaho, USA Colorado, USA

Latitude (N) 68.62 45.30 43.07 37.91

Longitude (E) −149.30 5.77 −116.75 −107.71

Elevation (m) 930 1330 2060 3370

Study period (WY) 2011 2006 2007 2008

Snow climate Tundra Mountain (maritime) Mountain (intermountain) Mountain (continental)

Operators NRCS, CRREL, Ameriflux Météo-France Northwest Watershed Research Center, Center for Snow and

Agricultural Research Service Avalanche Studies

Oct–Dec Tair (◦C) −16.1 2.0 0.2 −3.7

Jan–Mar Tair (◦C) −14.7 −1.6 −2.0 −8.7

Apr–Jun Tair (◦C) −1.4 8.9 8.4 2.7

Oct–Mar P b (mm) 200 690 480 1000

Mean U (m s−1) 2.2 1.0 1.6 1.1

Sensors Tair: Vaisala HMP45C Tair: PT 100/4 wires Tair: Vaisala HMP 45 Tair: Vaisala CS500

P : Campbell Scientific TE 525 P : PG2000, GEONOR P : Belfort Universal Gauges P : ETI Noah II

U : Met One 014A U : Chauvin Arnoux Tavid 87 U : Met One 013/023 U : RM Young Wind Monitor 05103-5

RH: Vaisala HMP45C RH: Vaisala HMP 45D RH: Vaisala HMP 45 RH: Vaisala CS500

Qsi: Kipp & Zonen CMA 6 Qsi: Kipp & Zonen CM14 Qsi: Eppley Precision Pyranometer Qsi: Kipp & Zonen CM21

Qli: NA a Qli: Eppley PIR Qli: Eppley PIR Qli: Kipp & Zonen CG-4

a At IC, Qli was taken as Qli =Qnet − (Qsi −Qso)+ (5.67× 10−8) T 4
surf

, where Qnet is measured net radiation (W m−2), Qsi is measured incoming shortwave radiation (W m−2), Qso is measured reflected shortwave

radiation (W m−2), and Tsurf is measured snow surface temperature (K). b Note that P data were adjusted with a multiplier (see Sect. 2) prior to conducting the sensitivity analysis.

2 Study sites and data

We selected four seasonally snow covered study sites (Ta-

ble 1) in distinct snow climates (Sturm et al., 1995; Tru-

jillo and Molotch, 2014). The sites included (1) the Im-

navait Creek (IC, 930 m) site (Euskirchen et al., 2012; Kane

et al., 1991; Sturm and Wagner, 2010), located in the tundra

north of the Brooks Range in Alaska, USA, (2) the maritime

Col de Porte (CDP, 1330 m) site (Morin et al., 2012) in the

Chartreuse Range in the Rhône-Alpes of France, (3) the in-

termountain Reynolds Mountain East (RME, 2060 m) shel-

tered site (Reba et al., 2011) in the Owyhee Range in Idaho,

USA, and (4) the continental Swamp Angel Study Plot

(SASP, 3370 m) site (Landry et al., 2014) in the San Juan

Mountains of Colorado, USA. We selected these sites be-

cause of the quality and completeness of the forcing data and

because they spanned contrasting climates (Table 1), allow-

ing us to check for potential climate dependencies in sen-

sitivity to forcing errors. Generalization of the results with

climate was not possible due to the low sample size of sites.

The sites had high-quality observations of model forcings

at hourly time steps. Serially complete published data sets

are available at CDP, RME, and SASP (see citations above).

At IC, data were available from multiple co-located stations

(Griffin et al., 2010; Bret-Harte et al., 2010a, b, 2011b, c,

a; Sturm and Wagner, 2010). These data were quality con-

trolled, and gaps in the data were filled as described in

Raleigh (2013).

We considered only 1 year for analysis at each site (Ta-

ble 1) due to the high computational costs of the experi-

ment. Measured evaluation data (e.g., snow water equivalent,

SWE) at daily resolution were used only for qualitative as-

sessment of model output. SWE was observed at snow pil-

lows at IC and RME. At CDP, a cosmic ray detector col-

lected SWE data. At SASP, acoustic snow depth data were

converted to daily SWE using density inferred from nearby

Snow Telemetry (SNOTEL) (Serreze et al., 1999) sites and

local snow pit measurements (Raleigh, 2013).

Before conducting the sensitivity analysis, we adjusted the

available precipitation data at each site with a multiplica-

tive factor to correct for potential undercatch errors (e.g.,

Goodison et al., 1998; Rasmussen et al., 2012; Yang et al.,

2000) and to ensure the base model simulation with all ob-

served forcings reasonably represented observed SWE. Sev-

eral studies have demonstrated the necessity of precipita-

tion adjustments for realistic SWE simulations, even at well-

instrumented sites (e.g., Hiemstra et al., 2006; Reba et al.,

2011; Schmucki et al., 2014). Precipitation adjustments were

most necessary at IC, where windy conditions preclude ef-

fective measurements (Yang et al., 2000). In contrast, only

modest adjustments were necessary at the other three sites

because they were located in sheltered clearings and because

some corrections were already applied to the published data.

We considered adjustment multipliers ranging from 0.5 to 2.5

(increments of 0.05) and selected the multiplier that yielded

the lowest root mean squared error between observed and

modeled SWE. Precipitation multipliers were 1.6 at IC and

1.15 at SASP, and 0.9 at CDP and RME. The undercatch er-

rors at IC were consistent with the 61–68 % of the undercatch

errors found by Yang et al. (2000) for Wyoming-type gauges

in wind-blown regions.

The initial discrepancies between modeled and observed

SWE (prior to applying the above precipitation multipliers)

may have resulted from deficiencies in the measured forc-

ings, model parameters, model structure, and measured veri-

fication data, and justification of our decision to apply pre-
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cipitation multipliers was warranted. Manual observations

of SWE (e.g., snow surveys, snow pits) generally supported

the automatically collected SWE observations (no figures

shown) and thus differences between observed and mod-

eled SWE did not likely stem from issues in the verification

data. Sites where we decreased the precipitation data (CDP

and RME) were also the warmer sites and experienced more

mixed rain–snow events in the winter. Hence, we considered

multiple hypotheses to explain the SWE differences at these

sites: (1) the choice of rain–snow parameterization, (2) the

choice of parameters (e.g., threshold temperatures) for the

rain–snow parameterization, and (3) the quality of the forc-

ing data (e.g., precipitation). For these warmer sites, an ex-

ploratory analysis revealed that either (1) or (3) could explain

the SWE differences, but auxiliary data (e.g., precipitation

phase data) were not available to discriminate these hypothe-

ses. Choosing a different rain–snow parameterization might

minimize the SWE differences at the warmer sites but would

not rectify the SWE differences at the colder sites (IC and

SASP) where most winter precipitation falls as snow. There-

fore, the most straightforward and consistent approach was to

adjust the precipitation data and to leave the native UEB pa-

rameterizations intact. It was beyond the scope of this study

to optimize model parameters and unravel the relative contri-

butions of uncertainty for factors other than the meteorologi-

cal forcings. Nevertheless, we suggest these precipitation ad-

justments minimally affected the sensitivity analysis, as we

did not quantitatively compare the model outputs to the ob-

served response variables (e.g., SWE).

3 Methods

3.1 Model and output metrics

The UEB is a physically based, one-dimensional snow model

(Mahat and Tarboton, 2012; Tarboton and Luce, 1996; You

et al., 2014). UEB represents processes such as snow accu-

mulation, snowmelt, albedo decay, surface temperature vari-

ation, liquid water retention and refreezing, and sublimation.

Due to the one-dimensional structure of the model, UEB does

not account for lateral mass transfer of snow (e.g., wind-

induced snow drifting) and therefore these processes must

be represented in other model components (e.g., precipita-

tion uncertainty; see Sect. 3.2.3). UEB has a single bulk snow

layer and an infinitesimally thin surface layer for energy bal-

ance computations at the snow–atmosphere interface. UEB

tracks state variables for snowpack energy content, SWE,

and a dimensionless snow surface age (for albedo computa-

tions). We ran UEB at hourly time steps with six forcings: air

temperature (Tair), precipitation (P ), wind speed (U ), relative

humidity (RH), incoming shortwave radiation (Qsi), and in-

coming longwave radiation (Qli). We used fixed parameters

across all scenarios (Table 2). We initialized UEB during the

snow-free period; thus, model spin-up was unnecessary.

Table 2. UEB model parameters used in all simulations and sites.

Description of parameter Units Value

Rain threshold temperature ◦C 3

Snow threshold temperature ◦C −1

Snow emissivity – 0.99

Bulk snow density kg m−3 300

Liquid water holding capacity fraction 0.05

Snow saturated hydraulic conductivity m h−1 20

Visual new snow albedo – 0.85

Near-infrared new snow albedo – 0.65

New snow threshold depth to reset albedo m 0.01

Snow surface roughness m 0.005

Forest canopy fraction fraction 0

Ground heat flux W m−2 0

With each UEB simulation, we calculated four summary

output metrics: (1) peak (i.e., maximum) SWE, (2) mean ab-

lation rate, (3) snow disappearance date, and (4) total annual

snow sublimation. The first three metrics are important for

the timing and magnitude of water availability and identifi-

cation of the snowpack regime (Trujillo and Molotch, 2014),

while the fourth impacts the partitioning of annual P into

runoff and evapotranspiration. We calculated the snow disap-

pearance date as the first date when 90 % of peak SWE had

ablated, similar to other studies that use a minimum SWE

threshold for defining snow disappearance (e.g., Schmucki

et al., 2014). The mean ablation rate was calculated in the

period between peak SWE and snow disappearance and was

taken as the absolute value of the mean of all SWE decreases.

3.2 Forcing error scenarios

To test how error characteristics in forcings affect model out-

puts, we examined five scenarios (Fig. 1, Table 3) with dif-

ferent assumptions regarding error types, distributions, and

magnitudes (i.e., error ranges). In the first scenario, only

bias (normally distributed for additive errors or lognormally

distributed for multiplicative precipitation errors) was intro-

duced into all forcings at a level of high uncertainty (based

on values observed in the field; see Sect. 3.2.3 below). This

scenario was named NB, where N denotes normal (or lognor-

mal) error distributions and B denotes bias only. The remain-

ing scenarios were identical to NB except one aspect was

changed: scenario NB+RE considered both bias and random

errors (RE) in all forcings, scenario UB considered uniformly

distributed biases in all forcings, scenario NB_gauge con-

sidered precipitation error magnitudes associated with gauge

undercatch, and scenario NB_lab considered error magni-

tudes for all forcings at minimal values (i.e., specified in-

strument accuracy as found in a laboratory). Constructed in

this way (Fig. 1), we could test model sensitivity to (1) bias

vs. random errors by comparing NB and NB+RE, (2) error

distributions by comparing NB and UB, and (3) error magni-
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Table 3. Details of error types, distributions, and uncertainty ranges for the five scenarios.

Forcing Error Distributionb Range Units Citations and notes

typea

Scenario NB (k= 6, N = 10 000)

Tair B Normal [−3.0, +3.0] ◦C Bolstad et al. (1998), Chuanyan et al. (2005),

Fridley (2009), Hasenauer et al. (2003)

P B Lognormal [−75, +300]c % Goodison et al. (1998), Luce et al. (1998),

Rasmussen et al. (2012), Winstral and Marks (2002)

U B Normal [−3.0, +3.0] m s−1 Winstral et al. (2009)

RH B Normal [−25, +25] % Bohn et al. (2013), Déry and Stieglitz (2002), Feld et al. (2013)

Qsi B Normal [−100, +100] W m−2 Bohn et al. (2013), Jepsen et al. (2012),

Jing and Cess (1998), Niemelä et al. (2001b)

Qli B Normal [−25, +25] W m−2 Bohn et al. (2013), Flerchinger et al. (2009),

Herrero and Polo (2012), Niemelä et al. (2001a)

Scenario NB+RE (k= 12, N = 10 000)

This scenario has six bias parameters (identical to NB above), plus the following six random error parameters

Tair RE Normal [0.0, 7.5] ◦C Chuanyan et al. (2005), Fridley (2009), Hasenauer et al. (2003),

Huwald et al. (2009), Phillips and Marks (1996)

P RE Lognormal [0.0, 25] % Guan et al. (2005), Hasenauer et al. (2003),

Hutchinson et al. (2009)

U RE Normal [0.0, 5] m s−1 Cheng and Georgakakos (2011), Liston and Elder (2006),

Luo et al. (2008), Winstral et al. (2009)

RH RE Normal [0.0, 15] % Bohn et al. (2013), Liston and Elder (2006),

Phillips and Marks (1996)

Qsi RE Normal [0.0, 160] W m−2 Hasenauer et al. (2003), Jepsen et al. (2012),

Liston and Elder (2006), Thornton et al. (2000)

Qli RE Normal [0.0, 80] W m−2 Bohn et al. (2013), Flerchinger et al. (2009),

Liston and Elder (2006)

Scenario UB (k= 6, N = 10 000)

This scenario is identical to NB, except all probability distributions are uniform

Scenario NB_gauge (k= 6, N = 10 000)

Identical to NB, except P uncertainty mimics documented differences between P and SWE at SNOTEL sites

P B Normal [−10, +10] ◦C Meyer et al. (2012)

Scenario NB_labd (k= 6, N = 10 000)

Tair B Normal [−0.30, +0.30] ◦C Vaisala HMP45 specified accuracy

P B Lognormal [−3.0, +3.0]e % RM Young 52202 specified accuracy

U B Normal [−0.30, +0.30] m s−1 RM Young 05103 specified accuracy

RH B Normal [−3.0, +3.0] % Vaisala HMP45 specified accuracy

Qsi B Normal [−25, +25] W m−2 Li-Cor 200X specified accuracy of ∼ 5 %

Qli B Normal [−15, +15] W m−2 Assumed ∼ 5 % of mean intersite values

a B: bias, RE: random errors. Biases are additive (bi = 0, Eq. 5) for all forcings except P , which has multiplicative bias (bi = 1). b Probability distributions were truncated

in instances when introduction of errors caused non-physical forcing values (see Sect. 3.3.5). c The high upper P bias (300 %) mimics cases where snowfall data collected

in an area of drift deposition are assumed (incorrectly) to represent other basin locations. d Uncertainty ranges in this scenario are based primarily on manufacturer’s

specified accuracy for typical sensors deployed at SNOTEL sites (NRCS Staff, personal communication, 2013). We assume the P storage gauge has the same accuracy as a

typical tipping bucket gauge. e We neglect P undercatch errors in the lab uncertainty scenario.

tudes by comparing NB (high forcing uncertainty) to both

NB_gauge (moderate uncertainty in precipitation but high

uncertainty for all other forcings) and NB_lab (low forcing

uncertainty).

3.2.1 Error types

Forcing data inevitably have some (unknown) combination

of bias and random errors. However, hydrologic sensitivity

analyses have tended to focus more on bias with little or no

attention to random errors (Raleigh and Lundquist, 2012),

whereas data assimilation methods often focus on random er-

rors but assume bias does not exist (e.g., Dee, 2005). Rarely
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Figure 1. Scenarios of interest and the type, distribution, and magnitude of errors considered in each. NB considers normally (or lognormally)

distributed biases with error magnitudes found in the field. NB+RE is the same as NB but also considers random errors. UB is the same

as NB but considers uniformly distributed errors instead. NB_gauge is the same as NB but with reduced precipitation uncertainty (typical

difference between precipitation gauge and snow pillow). NB_lab is the same as NB but considers laboratory error magnitudes.

is there any consideration of interactions between these error

types. As a recent example, Lapo et al. (2015) tested biases

and random errors in Qsi and Qli forcings, finding that bi-

ases generally introduced more variance in modeled SWE

than random errors. Their experiment considered biases and

random errors separately (i.e., no error interactions allowed)

and examined only a subset of the required forcings (i.e., ra-

diation). Here, we examined coexisting biases in all forcings

in NB, UB, NB_gauge, and NB_lab, and coexisting biases

and random errors in all forcings in NB+RE.

Table 3 shows the assignment of error types for the five

scenarios. We relied on studies that assess errors in measure-

ments or estimated forcings to identify typical characteristics

of biases and random errors. Published bias values were more

straightforward to interpret than random errors because com-

mon metrics, such as root mean squared error (RMSE) and

mean absolute error (MAE), encapsulate both systematic and

random errors. Hence, when defining random errors, the pub-

lished RMSE and MAE served as qualitative guidelines.

3.2.2 Error distributions

In their recent review of global sensitivity analysis applica-

tions in hydrological modeling, Song et al. (2015) identified

the selection of probability distributions (this section) and

ranges (Sect. 3.2.3) as among the most important consider-

ations. While it is common practice in sensitivity analysis to

assume a uniform distribution when sampling model param-

eters (e.g., Campolongo et al., 2011; Rosero et al., 2010),

this may fail to represent the real distribution of errors in

meteorological forcing data, as the uniform distribution im-

plies that extreme and small biases are equally probable. It

is more likely that real error distributions more closely re-

semble non-uniform distributions, with higher probability of

smaller biases and lower probability of more extreme bi-

ases (e.g., normal distributions). Investigators in other fields

(e.g., Foscarini et al., 2010; Touhami et al., 2013) have tested

how distribution assumptions (uniform vs. normal) change

their computed measures of model sensitivity. These stud-

Hydrol. Earth Syst. Sci., 19, 3153–3179, 2015 www.hydrol-earth-syst-sci.net/19/3153/2015/



M. S. Raleigh et al.: Physical model sensitivity to forcing error characteristics 3159

ies broadly suggest that the grouping of most important fac-

tors may be similar under different distribution assumptions,

particularly in cases when interactions are minimal, but the

relative ranking of factors within those groups may vary de-

pending on the distribution. Here we test how the assumed

probability distribution influences the sensitivity of a snow

model to forcing errors.

We designed the UB scenario with the naive hypothesis

that the probability distribution of biases was uniform for all

six meteorological variables. In contrast, error distributions

(Table 3) were assumed non-uniform (described below) in

scenarios NB, NB+RE, NB_gauge, and NB_lab. Unfortu-

nately, error distributions are reported less frequently than er-

ror statistics (e.g., bias, RMSE) in the literature. We assumed

that Tair and RH errors follow normal distributions (Mardikis

et al., 2005; Phillips and Marks, 1996), as do Qsi and Qli er-

rors. Conflicting reports over the distribution of U indicated

that errors may be approximated with a normal (Phillips

and Marks, 1996), a lognormal (Mardikis et al., 2005), or

a Weibull distribution (Jiménez et al., 2011). For simplicity,

we assumed that U errors were normally distributed. Finally,

we assumed P errors followed a lognormal distribution to ac-

count for snow redistribution due to wind drift/scour (Liston,

2004) or to account for precipitation gauge undercatch (Du-

rand and Margulis, 2007). Error distributions were truncated

in cases when the introduced errors violated physical limits

(e.g., negative U ; see Sect. 3.3.5).

3.2.3 Error magnitudes

We considered three magnitudes of forcing uncertainty (Ta-

ble 3): levels of uncertainty found (1) in the field for all forc-

ings (i.e., NB), (2) in the field for all forcings except pre-

cipitation (which has uncertainty due to precipitation gauge

undercatch, i.e., NB_gauge), and (3) in a controlled labora-

tory setting (i.e., NB_lab). These cases were considered be-

cause they sampled realistic errors (NB and NB_gauge) and

minimum errors (NB_lab). We expected that the error ranges

exerted a major control on model uncertainty and sensitiv-

ity, as demonstrated in several prior sensitivity analyses (see

review of Song et al., 2015).

Consideration of error magnitudes was achieved in each

scenario by assigning a range to each error probability distri-

bution (see Sect. 3.2.2 and Table 3). While non-uniform dis-

tributions (e.g., normal) are typically described by measures

other than the range (e.g., mean and variance), we scaled

these distributions (see Sect. 3.3.5 for details) such that they

were bounded within a specified range. This convention was

necessary to ensure that differences between scenarios NB

and UB were due solely to the shape of the error probability

distributions, and not due to differences in both distribution

shape and the domain. Additionally, this followed the typical

practice of sensitivity analysis where the range specifies the

domain of the distribution.

We considered field uncertainties in all forcings in NB,

NB+RE, and UB, and in all forcings except precipitation

in NB_gauge. Field uncertainties depend on the source of

forcing data and on local conditions (e.g., Flerchinger et al.,

2009; Lundquist et al., 2015). To generalize the analysis, we

chose error ranges for the field uncertainty that enveloped the

reported uncertainty of different methods for acquiring forc-

ing data. Tair error ranges spanned errors in measurements

(Huwald et al., 2009) and commonly used models, such

as lapse rates and statistical methods (Bolstad et al., 1998;

Chuanyan et al., 2005; Fridley, 2009; Hasenauer et al., 2003;

Phillips and Marks, 1996). U error ranges spanned errors

in topographic drift models (Liston and Elder, 2006; Win-

stral et al., 2009) and numerical weather prediction (NWP)

models (Cheng and Georgakakos, 2011). RH error ranges

spanned errors in observations (Déry and Stieglitz, 2002)

and empirical methods (e.g., Bohn et al., 2013; Feld et al.,

2013). Qsi error ranges spanned errors in empirical meth-

ods (Bohn et al., 2013), radiative transfer models (Jing and

Cess, 1998), satellite-derived products (Jepsen et al., 2012),

and NWP models (Niemelä et al., 2001b). Qli error ranges

spanned errors in empirical methods (Bohn et al., 2013;

Flerchinger et al., 2009; Herrero and Polo, 2012) and NWP

models (Niemelä et al., 2001a).

P error ranges spanned both undercatch (e.g., Rasmussen

et al., 2012) and wind drift/scour errors in NB, NB+RE, and

UB but only undercatch errors in NB_gauge. We assumed

that P biases due to gauge undercatch in NB_gauge ranged

from −10 to +10 % because Meyer et al. (2012) found 95 %

of SNOTEL sites (often in forest clearings) had observa-

tions of accumulated P within 20 % of peak SWE. Results

of NB, NB+RE, and UB were thus most relevant to ar-

eas with prominent snow redistribution (e.g., alpine zone),

whereas NB_gauge results were more relevant to areas with

minimal wind drift errors. It could be argued that uncer-

tainty due to snow drift processes is a structural issue and

not a source of forcing error; however, this distinction de-

pends strongly on what type of model is considered. This

process is clearly a structural component for snow models

with explicit (e.g., three dimensional models with dynamic

wind transport, Lehning et al., 2006) or implicit (e.g., one-

dimensional models with probabilistic subgrid snow variabil-

ity routines, Clark et al., 2011a) treatment of snow redistri-

bution. However, when a one-dimensional snow model is ap-

plied at length scales shorter than drift process length scales

(as assumed here with UEB), it is not possible to account for

snow drift in a structural sense. Therefore, we treat drifting

snow as a form of precipitation error in NB, NB+RE, and

UB. Because UEB lacks dynamic wind redistribution, accu-

mulation uncertainty was not linked to U errors but instead

to P errors (e.g., drift factor, Luce et al., 1998).

In contrast, scenario NB_lab assumed laboratory levels of

uncertainty (i.e., measurement accuracy) for each forcing.

Skiles et al. (2012) considered a similar scenario in their sen-

sitivity analysis of the SNOBAL model (Marks and Dozier,
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1992; Marks et al., 1992) to instrument accuracy at SASP,

finding a 5-day range in uncertainty in modeled snow disap-

pearance, with longwave uncertainty having the greatest im-

pact. An emerging sensitivity analysis (Sauter and Obleitner,

2015) with the CROCUS model (Brun et al., 1992) applied

on the Kongsvegen Glacier (Svalbard) indicates that long-

wave measurement uncertainty has an approximately compa-

rable effect on modeled snow depth as ±25 % precipitation

uncertainty and is the most dominant influence on the mod-

eled energy balance and turbulent heat flux (relative to the

measurement uncertainty of other forcings). Here we build

on these efforts to examine how instrument accuracy impacts

modeled snow variables in a variety of seasonal snow cli-

mates. In reality, laboratory uncertainty levels vary with the

type and quality of sensors, as well as related accessories

(e.g., radiation shield for the temperature sensor), which we

did not explicitly consider. Because the actual sensors avail-

able varied between sites (Table 1) and we needed consistent

errors across sites within scenario NB_lab, we assumed that

the manufacturers’ specified accuracy of meteorological sen-

sors at a typical SNOTEL site were representative of mini-

mum uncertainties in forcings because of the widespread use

of SNOTEL data in snow studies. While we used the spec-

ified accuracy for idealized P measurements in NB_lab, we

note that the instrument uncertainty of ±3 % was likely un-

representative of errors likely to be encountered. For exam-

ple, corrections applied to the P data (see Sect. 2) exceeded

this uncertainty by factors of 3–20.

3.3 Sensitivity analysis

Numerous approaches that explore uncertainty in numeri-

cal models have been developed in the literature of statistics

(Christopher Frey and Patil, 2002), environmental model-

ing (Matott et al., 2009), and optimization/calibration of hy-

drology and earth systems models (Beven and Binley, 1992;

Duan et al., 1992; Kavetski et al., 2002, 2006a, b; Kucz-

era et al., 2010; Razavi and Gupta, 2015; Song et al., 2015;

Vrugt et al., 2009, 2008). Among these, global sensitivity

analysis is an elegant platform for testing the impact of in-

put uncertainty on model outputs and for ranking the relative

importance of inputs while considering coexisting sources of

uncertainty. Global methods are ideal for non-linear models

(e.g., snow models). The Sobol’ (1990) (hereafter Sobol’)

method is a robust global method based on the decompo-

sition of variance (see below). We investigate Sobol’, as it

is often the baseline for testing sensitivity analysis methods

(Herman et al., 2013; Li et al., 2013; Rakovec et al., 2014;

Tang et al., 2007).

3.3.1 Overview: model conceptualization and

sensitivity

One can visualize any hydrology or snow model (e.g., UEB)

as

Y=M(F,θ), (1)

where Y is a matrix of model outputs (e.g., SWE), M is the

model operator, F is a matrix of forcings (e.g., Tair, P , U ),

and θ is an array of model parameters (e.g., Table 2). The

goal of sensitivity analysis is to determine which input fac-

tors (F and θ ) are most important to specific outputs (Y)

(Matott et al., 2009). Sensitivity analyses often focus more

on the model parameter array (θ ) than on the forcing ma-

trix (Foglia et al., 2009; Herman et al., 2013; Li et al., 2013;

Nossent et al., 2011; Rakovec et al., 2014; Rosero et al.,

2010; Rosolem et al., 2012; Tang et al., 2007; van Werkhoven

et al., 2008). However, recent analyses have considered other

input factors and sources of uncertainty (e.g., Baroni and

Tarantola, 2014; Schoups and Hopmans, 2006). Here, we ex-

tend the sensitivity analysis framework to forcing uncertainty

by creating k new parameters (φ1, φ2, . . . , φk) that specify

forcing uncertainty characteristics (Vrugt et al., 2008) and

reformulate Eq. (1) as

Y=M(F,θ ,φ). (2)

By fixing the original model parameters (Table 2), we focus

solely on the influence of forcing errors on model outputs

(Y). Note it is possible to consider uncertainty in both forc-

ings and parameters in this framework.

3.3.2 Sobol’ sensitivity analysis

Sobol’ sensitivity analysis uses variance decomposition to at-

tribute output variance to input uncertainty. First-order and

higher-order sensitivities can be resolved; here, only the

total-order sensitivities were examined (see below) for clar-

ity and because the resulting first-order sensitivity indices

were typically comparable to the total-order sensitivity in-

dices (e.g., 83 % of all cases had total-order and first-order

indices within 10 % of each other), suggesting minimal error

interactions. The Sobol’ method is advantageous in that it

is model independent, can handle non-linear systems, and is

among the most robust sensitivity methods (Saltelli and An-

noni, 2010; Saltelli, 1999). The primary limitation of Sobol’

is that it is computationally intensive, requiring a large num-

ber of samples to account for variance across the full param-

eter space. A key assumption to the Sobol’ approach used in

this paper (see Sect. 3.3.3) is that the factors are independent;

hence, our analysis does not consider cases of correlated er-

rors (e.g., a positive measurement bias in Tair that causes a

negative RH bias). Frameworks have been proposed for the

case of correlated factors (e.g., forcing errors) in a sensi-

tivity analysis (e.g., Kucherenko et al., 2012), but we leave
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those applications for future work. Below, we provide a brief

summary of the Sobol’ sensitivity analysis methodology im-

plemented here but note that further details can be found in

Saltelli et al. (2010).

3.3.3 Sensitivity indices and sampling

Within the Sobol’ global sensitivity analysis framework, the

total-order sensitivity index (STi) describes the variance in

model outputs (Y ) due to a specific forcing error (φi), includ-

ing both unique (i.e., first-order) effects and all interactions

with all other parameters:

STi =
E [V (Y |φ∼i)]

V (Y )
= 1−

V [E(Y |φ∼i)]

V (Y )
, (3)

where E is the expectation (i.e., average) operator, V is the

variance operator, and φ∼i signifies all parameters except φi .

The latter expression defines STi as the variance remaining

in Y after accounting for variance due to all other parameters

(φ∼i). STi values have a range of [0, 1]. Interpretation of STi

values was straightforward because they explicitly quantified

the variance introduced to model output by each parameter

(i.e., forcing errors). As an example, an STi value of 0.7 for

bias parameter φi on output Yj indicates 70 % of the output

variance was due to bias in forcing i (including unique effects

and interactions).

A number of numerical methods are available for evalu-

ating sensitivity indices, and most adopt a Monte Carlo ap-

proach (Saltelli et al., 2010). Evaluation of Eq. (3) requires

two sampling matrices, which we refer to as matrices A

and B (Fig. 2a). To construct A and B, we first specified

the number of samples (N ) in the parameter space and the

number of parameters (k), depending on the error scenario

(Table 3). Selecting input factor samples for these two ma-

trices was achieved using the quasi-random Sobol’ sequence

(Saltelli and Annoni, 2010). The sequence can be approx-

imated as a uniform distribution in the range [0, 1]. Fig-

ure 2a shows input factor samples from an example Sobol’

sequence in two dimensions. For each scenario and site, we

generated a (N × 2k) Sobol’ sequence matrix with quasi-

random numbers in the [0, 1] range, and then divided it in

two parts such that matrices A and B were each distinct

(N × k) matrices. Calculation of STi required perturbing fac-

tors; therefore, a third Sobol’ matrix (A
(i)
B ) was constructed

from A and B. In matrix A
(i)
B , all columns were from A, ex-

cept the ith column, which was from the ith column of B, re-

sulting in a (kN × k) matrix (Fig. 2a). Section 3.3.5 provides

specific examples of this implementation. From Eq. (3), we

compute STi as (Jansen, 1999; Saltelli et al., 2010)

STi =

1
2N

N∑
j=1

[
f (A)j − f

(
A
(i)
B

)
j

]2

V (Y )
, (4)

where f (A) is the model output evaluated on the A ma-

trix, f (A
(i)
B ) is the model output evaluated on the A

(i)
B ma-

trix where the ith column is from the B matrix, and i des-

ignates the parameter of interest. Evaluation of STi required

N(k+ 2) simulations at each site and scenario.

3.3.4 Bootstrapping of sensitivity indices

To test the reliability of STi , we used bootstrapping with re-

placement across the N(k+ 2) outputs, similar to Nossent

et al. (2011). The mean and 95 % confidence interval were

calculated using the Archer et al. (1997) percentile method

and 10 000 samples. For all cases, final STi values (i.e., com-

puted sensitivity indices with all samples considered) were

close to the mean bootstrapped values (i.e., 99 % had a dif-

ference of less than 0.001 and no difference was greater

than 0.003), suggesting convergence. Thus, we report only

the mean and 95 % confidence intervals of the bootstrapped

STi values.

3.3.5 Workflow and error introduction

Figure 2 shows the workflow for creating the Sobol’ A, B,

and A
(i)
B matrices, mapping input factor samples to errors, ap-

plying errors to the original forcing data, executing the model

and saving outputs, and calculating STi values. The workflow

was repeated at all sites and scenarios. Each step is described

in more detail below.

– Step 1: generate an initial (N × 2k) Sobol’ matrix (with

N and k values for each scenario; Table 3), separate

into A and B, and construct A
(i)
B (Fig. 2a). NB+RE had

k= 12 (six bias and six random error parameters). All

other scenarios had k= 6 (all bias parameters).

– Step 2: in each simulation, map the input factor sam-

ple of each forcing error parameter (φi) to the speci-

fied error distribution and range (Fig. 2b, Table 3). Here

we treat the input factor samples as quantiles, which al-

lows us to map these to errors via different probabil-

ity distributions. For a uniform distribution, the quantile

values scale linearly between the specified lower and

upper error ranges (Fig. 2b). This linear scaling is not

possible for normal (or lognormal) distributions (due

to differences in distribution shape) and we therefore

map the quantile values to normal (or lognormal) dis-

tributions scaled within the specified range. We begin

by generating a probability distribution of random num-

bers with specified mean= 0 and standard deviation of 1

for the case of a normal distribution, and with specified

mean= 20 and standard deviation of 0.5 for the case of a

lognormal distribution. The random numbers of the dis-

tribution are normalized in the [0, 1] range by subtract-

ing the minimum value and dividing by the maximum

value, and then quantiles of these normalized values are

computed. The final step of the mapping is to multiply

the normalized quantile by the specified range of uncer-

tainty and adding the lower bound value. For example,
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Figure 2. Conceptual diagram showing methodology for imposing errors on the forcings with error parameters (φi ) within the Sobol’

sensitivity analysis framework, and workflow for model execution and calculation of sensitivity indices on model outputs (Y ).

aQsi bias parameter of φi = 0.75 (quantile value) in the

[−100 W m−2,+100 W m−2] range would map to aQsi

bias of +50 W m−2 when assuming a uniform proba-

bility distribution but only +14 W m−2 when assuming

a normal distribution. For context, a bias parameter of

+50 W m−2 or higher has about a 25 % probability of

occurring in the uniform distribution but only 2 % in the

normal distribution.

– Step 3: in each simulation, perturb (i.e., introduce arti-

ficial errors) the observed time series of the ith forcing

(F i) with bias (all scenarios) or both bias and random

errors (NB+RE only) (Fig. 2c):

F ′i = F iφB,ibi +
(
F i +φB,i

)
(1− bi)+φRE,iRci, (5)

where F ′i is the perturbed forcing time series, φB,i is

the bias parameter for forcing i, bi is a binary switch

indicating multiplicative bias (bi = 1) or additive bias

(bi = 0), φRE,i is the random error parameter for forc-

ing i, R is a time series of randomly distributed noise

(normal distribution, mean= 0) scaled in the [−1, 1]

range, and ci is a binary switch indicating whether ran-

dom errors are introduced (ci = 1 in scenario NB+RE

and ci = 0 in all other scenarios). For Tair, U , RH, Qsi,

and Qli, bi = 0; for P , bi = 1. The decision to treat bi-

ases as multiplicative for P but additive for all other

forcings was made based on practical considerations

(e.g., multiplicative biases in Tair are difficult to inter-

pret) and on convention of past studies that report forc-

ing errors. However, we note this is somewhat subjec-

tive, as errors in some forcings (e.g., radiation) have

been reported in both conventions. For P , U , and Qsi,

we restricted random errors to periods with positive val-

ues. Similar to other sensitivity analyses (e.g., Baroni

and Tarantola, 2014), we checked F ′i for non-physical
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values (e.g., negative Qsi) and set these to physical lim-

its. This was most common when perturbingU , RH, and

Qsi; negative values of perturbed P only occurred when

random errors were considered (Eq. 5). Due to this re-

setting of non-physical errors, the error distribution was

truncated (i.e., it was not always possible to impose ex-

treme errors). Additional tests (not shown) suggested

that distribution truncation changed sensitivity indices

minimally (i.e., < 5 %) and thus we assumed this trun-

cation did not alter the relative ranking of forcing errors.

– Step 4: input the N (k+ 2) perturbed forcing data sets

into UEB (Fig. 2d). At each site, NB+RE required

140 000 simulations, whereas the other four scenar-

ios each required 80 000 simulations, for a total of

1 840 000 simulations in the analysis. The doubling of k

in NB+RE did not result in twice as many simulations

because the number of simulations scaled as N(k+ 2).

– Step 5: save the model outputs for each simulation

(Fig. 2e). The outputs included daily time series of

SWE, and four summary outputs including peak SWE,

mean ablation rate, snow disappearance date, and total

snow sublimation.

– Step 6: calculate STi for each forcing error parameter

and model output (Fig. 2f) based on Sects. 3.3.3 and

3.3.4. Prior to calculating STi , we screened the model

outputs for cases where UEB simulated too little or too

much snow (which can occur with perturbed forcings);

this was an essential step to ensure meaningful results.

Other studies (e.g., Pappenberger et al., 2008) have also

applied screening methods to model output prior to cal-

culating sensitivity indices. For a valid simulation, we

required a minimum peak SWE of 50 mm, a minimum

continuous snow duration of 15 days, and identifiable

snow disappearance. We rejected samples that did not

meet these criteria to avoid meaningless or undefined

metrics (e.g., peak SWE in ephemeral snow or snow

disappearance for a simulation that did not melt out).

The number of rejected samples varied with site and

scenario (Table 4). On average, 94 % passed the require-

ments. All cases had at least 86 % satisfactory samples,

except in UB at SASP, where only ∼ 34 % met the re-

quirements. In this case, the most common reason for

rejecting a simulation was that too much snow was sim-

ulated, such that it never disappeared by the end of the

model run. The rejected runs were characterized by high

(positive) precipitation biases and low (negative) biases

in Tair, Qsi, and Qli. Despite this attrition, STi values

still converged in all cases.

Table 4. Number of samples (N ) and model simulations (in paren-

theses) meeting the requirements for minimum peak SWE and snow

duration and valid snow disappearance dates at each site (rows) in

each scenario (columns). The number of model simulations scaled

asN (k+ 2), where k= 12 in scenario NB+RE and k= 6 in all other

scenarios. When a simulation was rejected, all related simulations

(based on resampling) were also rejected.

NB NB+RE UB NB_gauge NB_lab

IC 9898 10 000 8608 10 000 10 000

(79 184) (140 000) (68 864) (80 000) (80 000)

CDP 9792 9869 8925 9999 10 000

(78 336) (138 166) (71 400) (79 992) (80 000)

RME 8799 9233 9102 10 000 10 000

(70 392) (129 262) (72 816) (80 000) (80 000)

SASP 9984 9984 3399 10 000 10 000

(79 872) (139 776) (27 192) (80 000) (80 000)

4 Results

4.1 Propagation of forcing uncertainty to model

outputs

Figure 3 shows density plots of daily SWE from UEB at the

four sites and five forcing error scenarios (Fig. 1, Table 3),

while Fig. 4 summarizes the model outputs. As a reminder,

NB assumed normal (or lognormal) biases at field level un-

certainty. The other scenarios were the same as NB, except

NB+RE considered both biases and random errors, UB con-

sidered uniform distributions, NB_gauge considered gauge

undercatch biases in precipitation, and NB_lab considered

lower error magnitudes in all forcings (i.e., laboratory level

uncertainty).

Large uncertainties in SWE were evident, particularly in

NB, NB+RE, and UB (Fig. 3a–l). The large range in mod-

eled SWE within these three scenarios often translated to

large ranges in mean ablation rates (Fig. 4e–h), snow dis-

appearance dates (Fig. 4i–l) and total sublimation (Fig. 4m–

p). In contrast, SWE and output uncertainties in NB_gauge

and NB_lab were comparatively small (Figs. 3m–t, 4). Model

output ranges were generally larger in NB_gauge than in

NB_lab. The envelope of SWE simulations in NB_lab more

tightly encompassed observed SWE at all sites, except dur-

ing early winter at IC (Fig. 3m), which was possibly due to

initial P data quality and redistribution of snow to the snow

pillow site.

NB and NB+RE generally yielded similar SWE density

plots (Fig. 3a–h) but NB+RE yielded a slightly higher fre-

quency of extreme SWE simulations. NB and NB+RE also

had very similar (but not equivalent) mean outputs values and

ensemble spreads at all sites except IC (Fig. 4). This initial

observation suggested that random errors in the forcings had

minimal impact on model behavior at CDP, RME, and SASP.

NB+RE and NB model outputs were slightly different at IC
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Figure 3. Observed (black line) and modeled SWE (color density plot) at the four sites across the five uncertainty scenarios (see Fig. 1

and Table 3). The number of model simulations in the density plots varies with the site and scenario (see Table 4). The density plots were

constructed using 100 bins in the SWE dimension with relative frequency tabulated in each bin each day. Note the frequency color bar is on

a logarithmic scale. Sites are arranged from top to bottom in order of increasing elevation and decreasing latitude. Scenarios are defined as

normally distributed bias (NB), normally distributed bias and random errors (NB+RE), uniformly distributed bias (UB), normally distributed

bias with precipitation gauge uncertainty (NB_gauge), and normally distributed bias at laboratory error magnitudes (NB_lab).

(particularly for the ablation rates), indicating that random

errors had some influence there, and this was possibly due to

the low snow accumulation (∼ 200 mm peak SWE observed)

at that site and brief snowmelt season (less than 10 days in

the observations).

NB and UB yielded generally very different model out-

puts (Figs. 3, 4). The only difference in these two scenar-

ios was the assumption regarding error distribution (Table 3).

Uniformly distributed forcing biases (scenario UB) yielded a

relatively uniform ensemble of SWE simulations (Fig. 3i–l),

larger mean values of peak SWE and ablation rates, and later

snow disappearance, as well as larger uncertainty ranges in

all outputs (Fig. 4). At some sites, UB also had a higher fre-

quency of simulations where seasonal sublimation was neg-

ative (i.e., condensation).

Contrasting NB and NB_gauge, NB_gauge had a lower

uncertainty range in SWE and slightly higher mean peak

SWE at all sites (Figs. 3, 4). With the exception of RME,

the ranges in ablation rates in NB_gauge were at least

50 % smaller than in NB (Fig. 4e–h). Snow disappearance

ranges were marginally smaller in NB_gauge relative to NB

(Fig. 4i–l). Finally, sublimation ranges were very similar be-

tween NB and NB_gauge (Fig. 4m–p).
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Figure 4. Distributions of model outputs (rows) at the four study sites (columns) arranged by scenario. For each scenario, the circle is the

mean and the whiskers show the range encompassing 95 % of the simulations (see Table 4 for number of simulations for each site and

scenario). The dashed lines in (a)–(d) and (i)–(l) are the observed values. Axes are matched between sites for a given model output; note that

the range in scenario UB in (d) is truncated by the axes’ limits (upper value= 3030 mm).

Relative to NB, NB_lab had smaller uncertainty ranges

in all model outputs (Figs. 3, 4), an expected result given

the lower magnitudes in forcing errors in NB_lab (Table 3).

Likewise, NB_lab SWE simulations were generally less bi-

ased than NB, relative to observations (Fig. 3). NB_lab gen-

erally had higher mean peak SWE and ablation rates and later

mean snow disappearance timing than NB (Fig. 4).

4.2 Model sensitivity to forcing error characteristics

Total-order sensitivity indices (STi) were calculated for four

summary variables of model output (peak SWE, mean abla-

tion rates, snow disappearance dates, and total sublimation)

and for daily SWE output at all sites and error scenarios. Ex-

amination of the total-order indices with sample size indi-

cated that most indices stabilized after evaluating the model

at 3000–5000 samples (no figures shown). Below we sequen-

tially compare sensitivity indices from different scenarios to

scenario NB to test the impact of differences in error charac-

teristics (type, probability distribution, and magnitudes).

4.2.1 Impact of error types

We first focus on sensitivity to forcing bias, as this error type

was common to scenarios NB and NB+RE. Figure 5 shows

the computed total-order sensitivity indices from the two sce-

narios (with sensitivities to biases and random errors shown

separately in NB+RE). Both NB and NB+RE showed that
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Figure 5. Model sensitivity as a function of forcing error type. Shown are the total-order sensitivity indices (STi ) of four model response

variables (columns) at the four sites (rows) from scenarios NB and NB+RE. In NB+RE, bias and random error parameters are shown

separately. NB+RE considers normally distributed bias and random errors, while NB considers normally distributed bias only. The bar

indicates the mean (bootstrapped) sensitivity indices and associated 95 % confidence intervals.

UEB peak SWE was most sensitive to P bias at all sites

(Fig. 5a–d). In both scenarios, P bias was also the most im-

portant factor for ablation rates and snow disappearance at

all sites (Fig. 5e–l). For ablation rates in NB, Tair bias was

the next most important factor (after P bias) at CDP, while

biases in Qsi and Qli were secondarily important at RME

(Fig. 5f, g). For ablation rates at IC in NB+RE, most types of

errors had some baseline influence (i.e., STi = 0.5) on model

sensitivity (Fig. 5e). In both NB and NB+RE, biases in the

radiation terms were of secondary importance to snow dis-

appearance timing (Fig. 5i–k). In contrast to the other three

model outputs, sublimation in NB and NB+RE was insen-

sitive to P bias and the most important factors varied some-

what between sites and scenarios (Fig. 5m–p). In both sce-

narios, sublimation was most sensitive to RH bias at IC and

U bias at SASP. At CDP and RME, sublimation was most

sensitive to RH bias in NB; however, in NB+RE, sublima-

tion was most sensitive to Qli bias at CDP and to Tair bias

at RME (Fig. 5n, o). In both scenarios, biases in Tair, Qsi, or

Qli were generally of secondary importance for sublimation.

We hypothesized that the snow model outputs would have

higher sensitivity to biases than to random errors in the forc-

ings. The results of our analysis generally supported this hy-

pothesis. Across all outputs and sites, STi values for random

errors were always less than or comparable to the small-

est STi bias values, and the most important factor was al-

ways a bias term (Fig. 5). Furthermore, there was typically

high correspondence between NB and NB+RE (bias terms

only) in terms of identifying the most important forcing er-

ror (e.g., P bias in peak SWE and ablation rates at all sites,

Fig. 5a–h). The main exceptions were snow disappearance

at IC (Fig. 5i), and sublimation at CDP and RME (Fig. 5n,

o), where the two scenarios identified different errors as the

most important factor. However, even in these exceptional

cases, the two scenarios yielded similar groupings of more

important vs. least important errors. For example, biases in

Tair and RH were important to sublimation at RME in both
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scenarios (Fig. 5o), though they distinguished these sensitiv-

ities differently (i.e., NB found the RH bias was more impor-

tant whereas NB+RE found the Tair bias was more impor-

tant).

While there was general correspondence between NB and

NB+RE (bias terms), sensitivity indices were not identical

across cases, due to interactions between biases and random

errors in NB+RE. Random errors changed model sensitiv-

ity to biases, and the change in sensitivity was more notable

(i.e., absolute change exceeding 0.10) for ablation rates and

snow disappearance at IC (Fig. 5e, i) and sublimation at all

sites (Fig. 5m–p). Random errors amplified model sensitiv-

ity to biases in some cases (e.g., U bias in all sublimation

scenarios) but diminished model sensitivity to biases in other

cases (e.g., RH bias in all sublimation scenarios). Because

consideration of second-order sensitivity indices was beyond

the scope of the study, we were unable to determine which

specific interactions were important in terms of error types,

and leave this topic for future work.

4.2.2 Impact of probability distribution of errors

We hypothesized that the assumed probability distribution of

errors would alter the relative hierarchy of forcing biases.

However, the results did not consistently support this hypoth-

esis (Fig. 6). In all cases, scenarios NB and UB identified

the same factor as the most important and similar factors as

the least important at all sites. Specifically, P bias was most

important for peak SWE, ablation rates, and snow disappear-

ance at all sites in both scenarios (Fig. 6a–l). The only ex-

ception was in scenario UB at IC, where ablation rates had

similar sensitivity to P bias and U bias. In both scenarios,

Tair bias was the second most important factor for peak SWE

and ablation rates at the warmest site, CDP. Both scenarios

showed that RH bias was the least important factor to snow

disappearance at all four sites (Fig. 6i–l). Finally, both NB

and UB showed that P bias was least important for subli-

mation (in contrast to the other model outputs) and that RH

andU biases were among the most sensitive factors for subli-

mation (Fig. 6m–p). More specifically, sublimation was most

sensitive to RH bias at IC, CDP and RME, and to U bias at

SASP (Fig. 6m–p).

For a few specific forcings and outputs, the selected prob-

ability distribution played a role in model sensitivity to that

type of forcing bias. For example, assumption of a uniform

probability distribution (UB) for forcing errors enhanced

the sensitivity of sublimation to U and RH biases but re-

duced sublimation sensitivity to Qsi and Qli biases at all

sites (Fig. 6m–p). In contrast, assuming a normal distribu-

tion (NB) of biases yielded the opposite results. Additionally,

modeled ablation rates at IC were notably more sensitive to

forcing biases (precipitation excluded) in scenario UB than

in NB.

4.2.3 Impact of error magnitude

We hypothesized that the relative magnitude of forcing errors

would exert a strong control on model sensitivity. Compar-

ing NB to NB_gauge and to NB_lab generally supported this

hypothesis (Fig. 7). The contrast in STi values between sce-

narios NB, NB_gauge, and NB_lab implied that the specified

ranges of forcing errors was a critical determinant of model

sensitivity.

While P bias was the most important factor at all sites in

NB for peak SWE, ablation rates, and snow disappearance, P

bias was never the most important factor for these model out-

puts in NB_gauge and in many cases was among the least im-

portant errors (Fig. 7a–l). In NB_gauge, peak SWE was most

sensitive to RH bias at IC, to Tair bias at CDP and RME, and

to Qli bias at SASP (Fig. 7a–d). Ablation rates in NB_gauge

were most sensitive to Tair bias at CDP and to Qli bias at

IC, RME, and SASP (Fig. 7e–h). Snow disappearance was

also most sensitive to Qli bias at all four sites in NB_gauge

(Fig. 7i–l). However, for sublimation at all sites, NB and

NB_gauge yielded very similar sensitivities to forcing bi-

ases (Fig. 7m–p). Specifically, in both NB and NB_gauge,

modeled sublimation was most sensitive to RH bias at IC,

CDP, and RME and to U bias at SASP (Fig. 7m–p). The

similarity in sublimation sensitivity indices between NB and

NB_gauge emerged because these scenarios only differed in

terms of P uncertainty (Table 3) and because P bias was

not important to modeled sublimation. The contrast between

sensitivity indices in these two scenarios and for these four

outputs illustrated that model sensitivity may depend on both

the magnitudes of uncertainty for specific forcings and on the

output of interest.

Whereas NB_gauge demonstrated that reducing the mag-

nitude of forcing uncertainty in one factor (i.e., precipita-

tion) was sufficient to change which factors were most and

least important, NB_lab showed that changing the magni-

tude of forcing uncertainty in all terms could yield a sub-

stantially different pattern of model sensitivity (Fig. 7). As a

primary example, scenarios NB and NB_lab did not agree on

whether P bias or Qli bias was the most important factor for

peak SWE, ablation rates, and snow disappearance dates at

all four sites (Fig. 7a–l). For sublimation, NB_lab sensitivity

indices indicated that Qli bias was most important, whereas

RH bias (IC, CDP, and RME) and U bias (SASP) were most

important in NB (Fig. 7m–p). Across all sites and outputs in

NB_lab, Qli bias was consistently the most important fac-

tor (Fig. 7). In one sense, this was surprising, given that the

bias magnitudes were lower for Qli than for Qsi (Table 3).

However, the albedo of snow minimizes the amount of en-

ergy transmitted to the snowpack from Qsi, thereby render-

ing Qsi errors less important than Qli errors. Additionally,

the non-linear nature of the model may enhance the role of

Qli through interactions with other factors. The general lack

of importance in P bias in NB_lab (main exception was peak

SWE at IC, Fig. 7a) was due to the discrepancy between the
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Figure 6. Same as Fig. 5, but comparing STi values from scenarios NB and UB to test model sensitivity as a function of error probability

distribution. UB considers uniformly distributed bias, while NB considers normally distributed bias.

laboratory-specified accuracy for P gauges and typical errors

encountered in the field.

4.2.4 Relative controls of forcing error characteristics

on SWE sensitivity

The above results sequentially compared sensitivity indices

from different error scenarios to NB in order to ascertain

how different assumptions regarding error types, probability

distributions, and magnitudes translated to changes in model

sensitivity. To summarize the relative controls of these three

forcing error characteristics on model sensitivity, we calcu-

lated daily sensitivity indices of modeled SWE to forcing bi-

ases at each site and scenario (Fig. 8). This final analysis was

conceptually different than the previous analyses (Figs. 5–7)

in terms of the model output considered. Whereas the pre-

vious analyses computed sensitivity indices for summative

model outputs (e.g., peak SWE, total sublimation), the final

analysis recalculated sensitivity indices for SWE each day.

This approach allowed us to examine how SWE model sen-

sitivity changed as a function of time within the snow season.

Comparing the broad patterns in the time varying STi val-

ues across the five scenarios, it was evident that error mag-

nitudes were the greatest determinant in model sensitivity to

forcing errors through the snow season (compare Fig. 8a–l

with m–t). NB, NB+RE, and UB exhibited similar patterns,

with high STi in P bias throughout the year and with the

other forcing biases yielding low STi values in the winter

and increasing STi values in the spring and early summer

for some forcings (Fig. 8a–l). In contrast, NB_gauge and

NB_lab (Fig. 8m–t) had lower STi values for P bias and more

coherent changes in STi values that were more synchronized

with the specific part of the snow season.

After error magnitudes, the next most important determi-

nant to model sensitivity was the probabilistic distribution of

forcing errors (compare Fig. 8a–d and i–l). Relative to NB,

UB tended to yield lower STi values for P bias. UB also had

higher STi values for biases in Tair, Qli, and Qsi as time pro-

gressed at IC, CDP, and RME (Fig. 8i–k). Finally, the ad-

dition of random errors was least important to model sensi-

tivity, as the evolution of STi bias values was very similar

between NB and NB+RE at most sites (compare Fig. 8a–d
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Figure 7. Same as Fig. 5, but comparing STi values from scenarios NB, NB_gauge, and NB_lab to test model sensitivity as a function

of error magnitudes. NB considers normally distributed bias at error magnitudes found in the field. NB_gauge has lower precipitation

uncertainty (gauge undercatch) than NB but is otherwise identical. NB_lab considers normally distributed bias at error magnitudes found in

the laboratory.

and e–h). Random errors mattered the most to modeled SWE

at IC, but random errors only changed STi values (on aver-

age) by less than 10 %.

5 Discussion

Here we examined the sensitivity of physically based snow

simulations to forcing error characteristics (i.e., types, proba-

bility distributions, and magnitudes) using the Sobol’ global

sensitivity analysis. A key result is that among these three

characteristics, the magnitude of biases had the most signifi-

cant impact on UEB simulations (Figs. 3, 4) and on model

sensitivity (Figs. 7, 8). The assumed probability distribu-

tion of biases was important in that it increased the range

of model outputs (compare NB and UB in Fig. 4) but, sur-

prisingly, this usually translated to only modest changes in

model sensitivity to forcing errors (Figs. 6, 8). Random er-

rors were usually less important than biases. Although ran-

dom errors changed model sensitivity to biases through error

interactions, this effect was only large in specific conditions

(e.g., ablation rates at IC; Fig. 5e), and the snow model was

never more sensitive to random errors than to biases (Fig. 5).

Below we discuss these three error characteristics (in order

of importance, as suggested by the results), place forcing un-

certainty in the context of structural uncertainty, and identify

limitations of the analysis and future research directions.

5.1 Ranges of error magnitudes

The results supported our hypothesis that the magnitude of

biases strongly influences the relative importance of forc-

ing errors. The three magnitudes of uncertainty considered

(NB, NB_gauge, and NB_lab) all resulted in different pat-

terns in model sensitivity to forcing biases, and these pat-

terns also varied with the output of interest (Fig. 7). Mod-

eled peak SWE, ablation rates, and snow disappearance were

consistently sensitive to P bias in scenario NB and to Qli

bias in scenario NB_lab, but there was less consistency in

the dominant forcing errors across these three outputs in sce-
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Figure 8. Variation of daily SWE sensitivity to forcing bias based on site (columns) and error scenario (rows). The normalized range (where

1=maximum SWE) in modeled SWE is shown (gray area) for context. Sensitivity indices in the early and late part of the snow season were

screened out, as a high number of simulations with SWE= 0 yielded invalid sensitivity indices.

nario NB_gauge. While peak SWE, ablation rates, and snow

disappearance dates had similar sensitivities to forcing er-

rors (particularly to P biases), sublimation exhibited notably

different sensitivity to forcing errors. P bias was frequently

the least important factor for sublimation, in contrast to the

other model outputs. Biases in RH, U , and Tair were often

the major controls on modeled sublimation in NB, NB+RE,

UB, and NB_gauge, while Qli bias controlled modeled sub-
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limation in NB_lab. These field results partially agree with

the sensitivity analysis of Lapp et al. (2005), who showed

the most important forcings for sublimation in the Canadian

Rockies were U andQsi. However, they did not considerQli

in their sensitivity analysis, so the experiments are not ex-

actly comparable. These results suggest that no single forc-

ing is important across all modeled variables and that model

sensitivity strongly depends on the output of interest.

The dominant effect of P bias on modeled peak SWE, ab-

lation rates, and snow disappearance in the field scenarios

(e.g., NB) confirmed previous reports that P uncertainty is a

major control on snowpack dynamics (Durand and Margulis,

2008; He et al., 2011a; Schmucki et al., 2014). It was sur-

prising that P bias was often the most critical forcing error

for ablation rates in these scenarios (Figs. 5, 6). Prior inves-

tigations into the relative importance of forcings to ablation

were typically framed for a snowpack at the end of winter,

such that P uncertainty was not considered (e.g., Zuzel and

Cox, 1975). The results here showed that ablation rates were

highly sensitive to P bias and this is likely because it con-

trolled the timing and length of the ablation season. Posi-

tive P bias extends the fraction of the ablation season in the

warmest summer months when ablation rates and radiative

energy approach maximum values, whereas negative P bias

truncates the fraction of ablation in the warm season. Tru-

jillo and Molotch (2014) reported a similar result based on

SNOTEL observations.

The contrast between scenarios NB, NB_gauge, and

NB_lab highlights that selection of the error ranges is a

critical step in sensitivity analysis. However, we recognize

that there is some subjectivity in the specification of these

ranges. Quantification of errors in forcing estimation meth-

ods is best achieved through comparisons with surface ob-

servations (e.g., Bohn et al., 2013; Flerchinger et al., 2009),

but it remains challenging to specify error ranges with con-

fidence (Song et al., 2015). Key considerations controlling

the ranges and impacts of forcing errors include the repre-

sentativeness of the forcing data (e.g., reanalysis, numerical

weather model output, extrapolated surface measurements)

in the study area, the length scale of dominant processes

(e.g., snow drifting), and the configuration of the snow model

(e.g., spatial scale, complexity). Here we selected ranges in

the field scenarios to encompass errors encountered across a

variety of possible forcing data sources (Table 3), but ulti-

mately the appropriate ranges must be tailored to the specific

application. This supports the need for continual evaluation

of forcing data sets across a variety of climates and environ-

mental conditions.

5.2 Probability distribution of errors

The results did not universally support our hypothesis that

the assumed probability distribution of biases was important

to the relative ranking of forcing errors. The relative consis-

tency in the dominant forcing errors between NB and UB

may have emerged because the probability distributions of

all six forcing biases varied together between these two sce-

narios (i.e., all forcing biases were uniform in UB and either

normal or lognormal in NB). While we did not conduct addi-

tional tests, we suspect that changing the probability distribu-

tion of just a single forcing error (e.g., Tair bias) from normal

to uniform would have uniquely enhanced model sensitivity

to that particular forcing error (Touhami et al., 2013).

The similarity of results between scenarios NB and UB

conform to findings in previous studies (e.g., Foscarini et al.,

2010; Touhami et al., 2013) where uniform and normal dis-

tributions identified similar factors as the most important.

These previous studies imply that greater differences in sen-

sitivity indices (as a function of distribution) will emerge

when factor interactions are more prominent. The case with

the strongest error interactions here (i.e., ablation rates at IC)

also yielded the largest differences in sensitivity indices be-

tween scenarios NB and UB, which is consistent with the

prevailing logic.

5.3 Error types

The results were consistent with our hypothesis that the

snow model is more sensitive to biases than to random er-

rors in the forcings. While previous investigations supported

this idea for shortwave and longwave forcings in physically

based snow models (i.e., Lapo et al., 2015), the current study

showed that biases are more important than random errors

for all commonly required meteorological forcings (and not

just irradiances). The model was more sensitive to biases and

less sensitive to random errors due to the systematic nature

of biases. In contrast, the effect of random errors tended to

cancel out when integrating model outputs over long peri-

ods. Our selected model outputs were generally a function

of several months of mass and energy exchange in the snow-

pack, thereby ensuring minimization of effects from random

errors. Random errors only had a greater impact on ablation

rates at IC (Fig. 5e) and this was because the relatively brief

snowmelt period presented an opportunity for the random er-

rors to not cancel out. Hence, the model may have greater

sensitivity to random errors for other model outputs not con-

sidered here that integrate over relatively short timescales

(e.g., snowmelt over a single day).

5.4 Contextualizing forcing and structural

uncertainties

Our central argument at the onset was that forcing uncer-

tainty may be comparable to parametric and structural un-

certainty in snow-affected catchments. To support our argu-

ment and to place our results in context, we compare our re-

sults at CDP in 2005–2006 to Essery et al. (2013), who as-

sessed the impact of structural uncertainty in a suite of local

snowpack processes (i.e., snow compaction, fresh snow den-

sity, snow albedo evolution, surface heat and moisture fluxes,
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Figure 9. Uncertainty ranges (95 % intervals) in (a) peak SWE,

(b) ablation rates, and (c) snow disappearance date at CDP in

WY2006 for three forcing uncertainty scenarios and the Essery et al.

(2013) structural uncertainty.

snow cover fraction, snow hydrology, and thermal conductiv-

ity) on SWE simulations from 1701 physically based snow

models at the same site/year. Figure 9 compares the 95 %

uncertainty ranges in peak SWE, ablation rates, and snow

disappearance in NB, NB_gauge, and NB_lab to the ranges

found across the 1701 snow models of Essery et al. (2013).

From the comparisons at this site, it is clear that the un-

certainty associated with drifting snow (i.e., scenario NB)

overwhelms the structural uncertainty in local snowpack pro-

cesses for all three model outputs. As discussed previously,

it could be argued that the uncertainty due to drifting snow

is a structural issue (not a forcing issue) and that this does

not represent the uncertainty of sheltered areas where drift-

ing snow is less important. Hence, NB_gauge may be a better

determinant of the level of uncertainty that can be attributed

unambiguously to errors in forcing data. In that case, the out-

put uncertainty range due to model forcing is still larger than

that due to the structural uncertainty (as considered by Essery

et al., 2013) in the cases of peak SWE and snow disappear-

ance but is smaller for ablation rates (Fig. 9). As expected,

the case of forcing uncertainty in NB_lab yields the lowest

range in model outputs at CDP (Fig. 9), though it is interest-

ing to note that the uncertainty in peak SWE due to structural

uncertainty (90 mm) is only marginally larger than that due

to the specified instrument accuracy (60 mm). These compar-

isons illustrate that forcing uncertainty cannot be discounted

and that the magnitude of forcing uncertainty is a critical fac-

tor in how forcing uncertainty compares to other sources of

uncertainty (e.g., structural). This resonates with the recent

work of Magnusson et al. (2015), who found that uncertainty

in the P forcing was a greater determinant of model perfor-

mance than structural considerations.

5.5 Caveats and future research

Limitations of the analysis are that the impact of forcing er-

ror characteristics on model behavior is evaluated through

the lens of a single sensitivity analysis method and a single

snow model. It is possible that alternative sensitivity anal-

ysis methods might yield different results than the Sobol’

method, as suggested in previous studies (e.g., Pappenberger

et al., 2008). Likewise, we recognize it is possible that dif-

ferent snow models may yield different sensitivities to forc-

ing uncertainty. As one example, both Koivusalo and Heik-

inheimo (1999) and Lapo et al. (2015) found UEB (Tarboton

and Luce, 1996) and SNTHERM (SNow THERmal Model)

(Jordan, 1991) exhibited significant differences in radiative

and turbulent heat exchange. As another example, the role

of U bias on snowpack formation may vary strongly de-

pending on the snow model configuration. Because of the

lack of wind transport in UEB, we lumped snow drift un-

certainty into P uncertainty via a “drift factor” formulation

(Luce et al., 1998) and this could not account for the role of

wind in snow drift/scour processes (Mott and Lehning, 2010;

Winstral et al., 2013). This convention would be unneces-

sary for a model that explicitly models this process (e.g.,

the SNOWPACK model, Lehning et al., 2006), and for this

type of model we would expect the role of U bias to be en-

hanced (relative to UEB) for outputs such as peak SWE and

snow disappearance timing. While sensitivity may vary with

model selection in these examples, there is also evidence sug-

gesting that similar results may emerge when using differ-

ent snow models for a similar type of error scenario. Despite

using different models, a somewhat different suite of forc-

ing variables, and slightly different error ranges, our NB_lab

experiment corroborated independent reports that Qli mea-

surement uncertainty was the most important to both mod-

eled snow disappearance (Skiles et al., 2012) and sublima-

tion/latent heat exchange (Sauter and Obleitner, 2015). Our

analysis demonstrated this result was consistent across four

snow climates and this result was apparent in four different

model outputs (Fig. 7). The implication here is that more

work is needed to better understand how different snow mod-

els respond to forcing uncertainty.

Generalizing the relationship between model sensitivity

and site climate is a research topic of high interest. Although

we found similarities in model sensitivity to specific forc-

ing errors across sites (e.g., high sensitivity to P bias in

peak SWE, ablation rates, and snow disappearance in NB,

NB+RE, and UB; Fig. 8a–l), we note that the sites exhib-
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ited some differences in sensitivity when P uncertainty was

reduced to gauge levels (Fig. 8m–p). Additionally, the sites

exhibited differences in the relative importance of secondary

forcing errors (Figs. 6, 7). There may be interesting linkages

between climate and model sensitivity but we were unable to

generalize relationships between site geo-characteristics and

sensitivity indices because of the relatively low number of

sites represented here (n= 4 sites, 1 year each) and the con-

founding number of differences between sites. A much larger

population of snow measurement sites is required in order to

test relationships between sensitivity indices and site charac-

teristics, and this is an important avenue of future research. A

successful example of relating climate characteristics to sen-

sitivity indices when many study sites and years are available

can be found in van Werkhoven et al. (2008).

While the Sobol’ method is often considered the “base-

line” method in global sensitivity analysis, we note the lim-

itation is that it comes at a relatively high computation cost

(1 840 000 simulations across four sites and five error sce-

narios) and it may be prohibitive for many modeling appli-

cations (e.g., for models of higher complexity and dimen-

sionality). For context, the typical time required for a single

simulation was 1.4 s, resulting in a total computational ex-

pense of 720 h (30 days) across all scenarios. Examination

of the convergence rates indicated that most sensitivity in-

dices stabilized after one-third of the simulations completed

and hence the same results could have been found using sig-

nificantly fewer simulations (no figures shown). Ongoing re-

search is developing new sensitivity analysis methods that

compare well to Sobol’ but with reduced computational de-

mands (e.g., Cukier et al., 1973; Morris, 1991; Rakovec et al.,

2014), and is continuing to compare how different meth-

ods classify sensitive factors differently (Pappenberger et al.,

2008; Tang et al., 2007). We expect that detailed sensitivity

analyses that concurrently consider uncertainty in forcings,

parameters, and structure in a hydrologic model will be more

feasible in the future with better computing resources and

advances in sensitivity analysis methods.

The question remains “what can be done about forc-

ing errors in hydrologic modeling? First, the results sug-

gest model-based hypothesis testing must account for un-

certainties in forcing data. The results also highlight the

need for continued research in constraining P uncertainty

in snow-affected catchments. Progress is being achieved

with advanced pathways for quantifying snowfall precipita-

tion such as NWP models (Rasmussen et al., 2011, 2014)

and through systematic intercomparisons of precipitation

and snow gauges (e.g., Solid Precipitation Intercompari-

son Experiment, http://www.rap.ucar.edu/projects/SPICE/).

However, in a broader sense, the hydrologic community

should also consider whether deterministic forcings (i.e., sin-

gle time series for each forcing) are a reasonable practice

for physically based models, given the large uncertainties in

both future (e.g., climate change) and historical data (espe-

cially in poorly monitored catchments) and the complexities

of hydrologic systems (Gupta et al., 2008). We suggest that

probabilistic model forcings (e.g., Clark and Slater, 2006),

which have a legacy in data assimilation methods (e.g., pre-

cipitation uncertainty Durand and Margulis, 2007), present

one potential path forward where measures of forcing uncer-

tainty can be explicitly included in the forcing data sets. The

challenges are (1) to ensure statistical reliability in our un-

derstanding of forcing errors and (2) to assess how best to

input probabilistic forcings into current model architectures.

6 Conclusions

Application of the Sobol’ sensitivity analysis framework

across sites in contrasting snow climates reveals that forc-

ing uncertainty can significantly impact model behavior in

snow-affected catchments. Model output uncertainty due to

forcings can be comparable to or larger than model uncer-

tainty due to model structure. Furthermore, this work demon-

strates that sensitivity analysis can be applied to understand

the role of specific error characteristics in model behavior.

Key considerations in model sensitivity to forcing errors are

the magnitudes of forcing errors and the outputs of interest.

For the physically based snow model tested, random errors

in forcings are generally less important than biases, and the

probability distribution of biases is relatively less important

to model sensitivity than the magnitude of biases.

The analysis shows how forcing uncertainty might be in-

cluded in a formal sensitivity analysis framework through

the introduction of new parameters that specify the charac-

teristics of forcing uncertainty. The framework could be ex-

tended to other physically based models and sensitivity anal-

ysis methodologies and could be used to quantify how uncer-

tainties in model forcings and parameters interact. Based on

this framework, it would be interesting to assess the interplay

between coexisting uncertainties in forcing errors, model pa-

rameters, and model structure, and to test how model sensi-

tivity changes in relation to all three sources of uncertainty.
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