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DART, developed and maintained at the National Center for Atmospheric Research, provides 

well-documented software tools for data assimilation education, research, and development.

D	ata assimilation combines observations with  
	model forecasts to estimate the state of a physi- 
	cal system. Developed in the 1960s (Daley 

1991; Kalnay 2003) to provide initial conditions for 
numerical weather prediction (NWP; Lynch 2006), 
data assimilation can do much more than initialize 
forecasts. Repeating the NWP process after the fact 
using all available observations and state-of-the-
art data assimilation produces reanalyses, the best 

available estimate of the atmospheric state (Kistler 
et al. 2001; Uppala et al. 2005; Compo et al. 2006). 
Data assimilation can estimate the value of existing 
or hypothetical observations (Khare and Anderson 
2006a; Zhang et al. 2004). Applications include 
predicting efficient f light paths for planes that re-
lease dropsondes (Bishop et al. 2001) and assessing 
the potential impact of a new satellite instrument 
before it is built or launched (Mourre et al. 2006). 
Data assimilation tools can also be used to evalu-
ate forecast models, identifying quantities that are 
poorly predicted and comparing models to assess 
relative strengths and weaknesses. Data assimilation 
can guide model development by estimating values 
for model parameters that are most consistent with 
observations (Houtekamer et al. 1996; Aksoy et al. 
2006). Assimilation is now used also for the ocean 
(Keppene and Rienecker 2002; Zhang et al. 2005), 
land surface (Reichle et al. 2002), cryosphere (Stark 
et al. 2008), biosphere (Williams et al. 2004), and 
chemical constituents (Constantinescu et al. 2007). 
Assimilation tools under different names are used 
in other areas of geophysics, engineering, economics, 
and social sciences.

The Data Assimilation Research Testbed (DART) 
is an open-source community facility that pro-
vides software tools for data assimilation research, 
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development, and education. Using DART’s carefully 
engineered ensemble data assimilation algorithms 
and diagnostic tools, atmospheric scientists, oceanog-
raphers, hydrologists, chemists, and other geophysi-
cists can construct state-of-the-art data assimilation 
systems with unprecedented ease. A basic data 
assimilation system for a large model can be built in 
person-weeks, and comprehensive systems have been 
built in a few months. Incorporating new observation 
types only requires creating a forward operator that 
computes the expected value of an observation given 
a model’s state.

DART includes interfaces to a number of large 
community atmospheric and oceanic models. For 
global NWP, DART produces ensemble mean analy-
ses comparable to analyses from major centers along 
with initial conditions for ensemble predictions. 
Forward operators for standard, in situ observations 
and novel types, like GPS radio occultation sound-
ings, are available. Tools to support applications like 
parameter estimation, sensitivity analysis, observing 
system design, and smoothing are also part of DART. 
The DART algorithms scale well on parallel comput-
ers, allowing large data assimilation problems to be 
studied. DART also includes many low-order models 
and an ensemble assimilation tutorial appropriate for 
undergraduate and graduate instruction.

Most operational NWP assimilation systems 
are based on variational calculus (Talagrand and 
Courtier 1987) and require enormous software de-
velopment efforts with large amounts of computer 

code specific to a particular prediction model and ob-
serving system (Mahfouf and Rabier 2000; Okamoto 
and Derber 2006). For now, these costs preclude the 
development of variational assimilation systems by 
small research groups.

Ensemble filters like those provided by DART are 
an alternative assimilation methodology. An ensem-
ble of forecasts is used every time data are assimilated. 
The forecasts are treated as a random draw from the 
probability distribution of the model’s state given all 
previously used observations. The sample covari-
ance between different state components determines 
how additional observations improve the ensemble 
estimate. Basic ensemble filters require only a predic-
tion model and a forward operator to compute the 
expected value of an observation given a model state. 
By way of contrast, the most advanced variational 
assimilation methods also require linearized models 
and forward operators, their adjoints, and additional 
prior knowledge about the covariance between differ-
ent model components (Kalnay et al. 2007).

DART takes advantage of the simplicity of ensem-
ble methods to facilitate the use of data assimilation 
with new models and novel observation types. A 
small, well-defined set of interface routines is needed 
for a new model to be used with DART. Several 
comprehensive atmosphere and ocean general cir-
culation models (GCMs) have been added to DART 
by modelers from outside the National Center for 
Atmospheric Research (NCAR; Table 1). Forward 
operators for new observation types also require a 

Table 1. A list of large geophysical models that have been used with the DART system.

Model Description Lead institution

Simple advection Tracer source/sink; low-order NCAR/Institute for Mathematics Applied to Geosciences (IMAGe)

Two-layer primitive equation Idealized GCM NOAA/Earth System Research Laboratory (ESRL)

Bgrid dynamical core Dynamical core of GCM NOAA/Geophysical Fluid Dynamics Laboratory (GFDL)

MIT GCM annulus Flow on rotating annulus MIT

WRF Regional/global prediction NCAR/Mesoscale and Microscale Meteorology Division (MMM)

WRF-Mars Martian GCM Caltech

WRF 1D column Column version of WRF NCAR/Research and Applications Lab (RAL)

GFDL AM2 Climate prediction GCM NOAA/GFDL NOAA/ESRL

CAM Climate prediction GCM NCAR/Climate and Global Dynamics (CGD)

CAM/Chem Climate chemistry GCM NCAR/Atmospheric Chemistry Division (ACD)

COAMPS Short-range NWP NRL Monterey

CMAQ Regional air quality University of Chicago

NCEP GFS (earlier version) Global NWP model NOAA/ESRL NOAA/NCEP

Rose Middle-atmosphere GCM NCAR/High Altitude Observatory (HAO)

MIT ocean GCM Ocean prediction model Scripps
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small set of interface routines and can be created 
nearly independently of the forecast model.

DART provides a framework for developing, 
testing, and widely distributing advances in en-
semble data assimilation. The DART software and 
documentation have been downloaded by more than 
200 users during the last 2 yr from www.image.ucar.
edu/DAReS/DART/. DART runs “out of the box” on 
a variety of compilers and hardware, including those 
listed in Table 2. In addition, DART can be custom-
ized for real-time applications that require efficient 
use of large computers.

Some capabilities of the DART tools are described 
here using a series of examples ranging from assimila-
tion in toy models to global NWP, observing system 
design, and model improvement. Although the large 
model examples are for atmospheric applications, 
DART is also being used with models of the ocean 
and land surface, and for applications as diverse as 
economics and target tracking. The examples are 
followed by a description of the DART ensemble 
filter algorithms.

SAMPLE DART APPLICA-
TIONS. Low-order models. DART 
includes a dozen low-order dy-
namical systems that are used in 
the tutorial as educational tools 
and by data assimilation scientists 
for testing novel assimilation tech-
niques. Figure 1, from the DART 
tutorial, illustrates the operation 
of an ensemble filter in the Lorenz 
(1963, hereafter LOR) three-variable 
dynamical systems with its familiar 
butterfly attractor.

Ensemble analyses and uncertainty. 
DART algorithms and code identical 
to those used in LOR are applied to 
enormous models like atmosphere 
or ocean GCMs. Figure 2 shows 
a “spaghetti” plot produced by an 
80-member ensemble filter using 
NCAR’s Community Atmosphere 
Model (CAM) version 3.5 (Collins 
et al. 2006) and assimilating wind 
components and temperatures from 
radiosondes and aircraft and sat-
ellite cloud motion vectors every 
6 h. Operational NWP centers like 
the National Centers for Environ-
mental Prediction (NCEP) and 

the European Centre for Medium-Range Weather 
Forecasts (ECMWF) solve similar data assimilation 
problems with higher-resolution models, variational 
assimilation tools, and additional observations like 
satellite radiances. The figure shows the major winter 
storm that affected the 2007 American Meteorological 

Table 2. DART runs on the compilers and hardware 
shown here. Linux indicates single processor or 
clusters.

Compiler Hardware

Intel ifort Linux, Mac Intel, SGI Altix

Absoft f90 Mac PowerPC/Intel

PGI pgf90 Linux, Mac PowerPC/Intel

gfortran Linux, Mac PowerPC/Intel, cygwin

g95 Linux, Mac PowerPC

IBM x1f IBM Power 5/6

Pathscale pathf90 Linux

Lahey lf95 Linux

Fig. 1. The evolution of an ensemble Kalman filter assimilation system 
in the LOR model from the DART tutorial. Synthetic observations 
(black stars) are created by “observing” a long integration of the 
model and adding random noise to simulate observational error. 
The forecasts from an 80-member ensemble assimilation valid at 
four consecutive observing times are shown by colored dots; the 
background attractor is depicted by the thin gray curve resulting from 
the long integration. At time 1, the prior estimate is fairly compact. 
At time 2 the ensemble is passing through the bifurcating region, and 
the prior at time 3 is stretched out with members heading into each 
attractor lobe. The observation at time 3 is enough to compel all 
ensemble members into the correct lobe at time 4, but uncertainty 
is greater at this time.
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Society annual meeting in San Antonio, Texas. The 
ensemble mean height contours (not shown) fit the 
observations as well as the NCEP Global Forecast 
System (GFS), but the ensemble system provides in-
formation about the forecast uncertainty. Variability 
is smallest along contours with parcels that have been 
in well-observed regions for a long time. Contours 
over the western United States and adjacent Pacific 
have more variability than 
those over the northeast 
United States. The position 
and tilt of the deep trough 
over the Rocky Mountains 
are uncertain. Quantifying 
uncertainty in analyses 
and forecasts is a distinct 
advantage of ensemble data 
assimilation over varia-
tional methods.

Global NWP. The most ad-
vanced variational assimi-
lation systems are used for 
global NWP. Ensemble 
assimilation methods are 
competitive with three-
dimensional variational 
assimilation algorithms 
(Houtekamer et al. 2005; 
Whitaker et al. 2008), while 

the relative capabilities of ensemble 
filters and four-dimensional varia-
tional methods are a topic of ongoing 
research (Kalnay et al. 2007). The 
DART algorithms out of the box 
compare favorably with opera-
tional systems for the global NWP 
problem.

Figure 3 shows the monthly-
mean root-mean-square (RMS) 
error and bias of the ensemble mean 
for DART/CAM assimilations and 
6-h forecasts for January 2007. The 
data are generated by applying 
forward operators to the ensemble 
members to compute estimated 
values of radiosonde temperature 
observations and comparing the 
ensemble mean to the observations. 
The 6-h forecast metrics are the most 
informative, since the analysis fits 
are compared to observations that 
have already been assimilated and 

overfitting is a possibility (in any data assimilation 
system). These results depend on the assimilation 
system, the model, and the observations. Despite a 
lower-resolution model and fewer observations, the 
DART results for January 2007 compare favorably 
with the operational GFS system at NCEP for this 
month (see http://wwwt.emc.ncep.noaa.gov/gmb/
ssaha/ for comparison).

Fig. 2. A spaghetti plot of 6-h forecast 500-hPa height showing con-
tours from 20 of 80 ensemble members in a DART assimilation using 
the CAM GCM. The forecasts are valid at 1800 UTC 14 Jan 2007. 
Forecasts are more certain where the contours are more similar 
and less certain where spread is greater.

Fig. 3. Jan 2007 monthly mean bias (dashed) and RMSE (solid) for analyses 
(blue) and 6-h forecasts (green) of observed radiosonde temperatures aver-
aged over different vertical bands indicated by shading. The forecasts are 
produced by an 80-member ensemble filter using the CAM model and as-
similating radiosonde, ACARS, and cloud drift wind observations.
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Assimilating novel observation types. DART enables research-
ers to quantify the potential impact of new observation types 
on predictions of high-impact weather like tropical storms. 
Figures 4 and 5 show ensemble forecasts for Typhoon 
Shanshan in 2006 with initial conditions from DART 
with the Weather Research and 
Forecasting (WRF) regional 
prediction model (Skamarock 
et al. 2005). (DART has inter-
faces to all recent versions of the 
Advanced Research WRF model 
and works with both regional 
and global domains with nested 
higher-resolution subdomains.) 
Differences between the two 
ensembles of forecasts reflect the 
impact of assimilating GPS radio 
occultation measurements from 
the Constellation Observing Sys-
tem for Meteorology, Ionosphere 
and Climate (COSMIC) satellites 
(Rocken et al. 2000; Anthes et al. 
2008). A local refractivity for-
ward operator (Kuo et al. 2000) 
was used to map from the WRF 
state vector to the expected value 
of the observation. About 100 
COSMIC soundings per day are 
available in the region covered 
by the model.

The initial minimum surface pressure of the 
typhoon is significantly too weak (Fig. 4), in part 
because of the coarse 45-km WRF used in the 
assimilation. A quantitative assessment of sig-
nificance can be made by comparing the ensemble 

Fig. 4. The minimum sea level pressure of Typhoon Shanshan (2006) from an ensemble of 16 forecasts (black), 
the ensemble mean (green), and the best estimate of the observed (red). The forecasts are made with a 15-km 
grid WRF model while the initial conditions are 16 randomly chosen members of a 32-member ensemble 
analysis performed with a coarser 45-km WRF configuration. The assimilation uses (a) radiosondes, ACARS, 
cloud drift winds, QuikSCAT surface winds, and satellite thickness, and (b) all of the above as well as COSMIC 
radio occultation observations (Liu et al. 2008). About 100 COSMIC soundings per day are available in the 
region covered by the model.

Fig. 5. Forecasts of the estimated probability that rainfall will exceed 60 mm 
during the period from 1200 UTC 14 Sep to 1200 UTC 15 Sep 2007 initiated 
36 h before the start of the period. The probability at each grid point is com-
puted by dividing the number of forecast members that predicted excessive 
precipitation by 16, the total number of forecasts. As in Fig. 4, the assimilations 
producing the forecasts were made both (b) with and (a) without COSMIC 
radio occultation observations.
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samples for the two cases. As the 15-km forecasts ad-
vance, the predicted storms intensify but the forecasts 
from the analyses with COSMIC are significantly 
stronger. Even the forecasts with COSMIC are too 
weak in general, suggesting that further model im-
provements and additional observations are needed 
for better predictions.

Figure 5 demonstrates another ensemble capabil-
ity, estimating the probability of occurrence of an 
event. Ensemble forecasts starting from analyses 
using COSMIC observations indicate larger prob-
abilities of excessive precipitation and are more 
consistent with observations of heavy rainfall over 
northern Taiwan.

Adding the ability to assimilate a new type of ob-
servation like GPS radio occultation to DART only 
requires coding the forward operator function that 
maps from the model state to the expected observed 
value. No adjoints, linear tangents, or prior estimates 
of error covariances between the observation and 
state components are required. The same forward 
operator can be used with many models. For in-
stance, the COSMIC forward operator is also used 
with CAM, the AM2 atmospheric GCM from the 
National Oceanic and Atmospheric Administration’s 
(NOAA’s) Geophysical Fluid Dynamics Laboratory, 
and versions of NCEP’s GFS global model. DART 
has two radio occultation forward operators, one 
using local and another using nonlocal refractivity 
(Sokolovskiy et al. 2005).

Data assimilation support for field experiments. DART 
assimilations with NCAR’s Community Atmosphere 
Model with Chemistry (CAM-Chem) model provided 

real-time predictions for the 2008 Arctic Research of 
the Composition of the Troposphere from Aircraft 
and Satellites (ARCTAS) field experiment. This re-
quired incorporating an extended version of CAM 
and new observations into DART and running the 
system in real time. Ensemble-mean analyses of 
carbon monoxide (CO) concentration for a case used 
to prototype the real-time data assimilation system 
are shown in Fig. 6. Assimilations of the standard 
observations used in the CAM NWP experiments 
(Fig. 6a) are compared to a case that also assimilates 
observations from the Measurements of Pollution 
in the Troposphere (MOPITT) instrument on the 
National Aeronautics and Space Administration’s 
(NASA’s) Earth Observing System (EOS) Terra satel-
lite (Fig. 6b). The MOPITT observations modify the 
CO analysis to be more consistent with independent 
aircraft observations (Arellano et al. 2007). Because 
ensemble data assimilation provides estimates of the 
prior covariance between any model state component 
and any observation, incorporating additional state 
variables like  chemical tracers into existing DART-
compliant models is straightforward and can lead to 
improved estimates of all model variables.

Observing system design. As part of the ARCTAS cam-
paign, forecasts from several models and assimilation 
systems were used to make flight plans for aircraft 
taking special observations. Ensemble assimilations 
and forecasts provide estimates of the sensitiv-
ity of analyzed and predicted state components to 
additional observations. Questions like where an 
additional observation of CO concentration must be 
taken 6 h from the present to give the best possible 

Fig. 6. Ensemble-mean concentration of carbon monoxide at 700 hPa at 1800 UTC 17 Apr 2006 produced by 
20-member ensemble assimilations with the CAM/CHEM model. (a) Radiosondes, ACARS, and satellite cloud 
drift winds were assimilated; (b) same as (a), but augmented by observations of CO retrieved from MOPITT.
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forecast of concentrations at a given point 24 h further 
in the future can be answered quantitatively. Related 
experiments called Observation System Simulation 
Experiments (OSSEs) can assess the value of existing 
or planned observations. In an OSSE, a long time 
series from a model integration is treated as a proxy 
for the physical system. This model time series is 
referred to as the “truth” or a “nature run.” Synthetic 
observations are generated by computing the value of 
the observed quantities given the model’s state and 
adding random draws from the prescribed observa-
tional error distribution. The synthetic observations 
are then assimilated to investigate how they reduce 
differences between an analysis and the “true” model 
state. DART provides tools to do a variety of evalua-
tions of planned observations or enhanced observing 
system (Khare and Anderson 2006b).

Sensitivity analysis. Sensitivity analysis evaluates how a 
forecast is affected by changes to its initial conditions. 
DART ensemble analyses and forecasts can be used 
for sensitivity analysis to learn more about the impact 
of observations and the data assimilation system on 
forecasts and to increase understanding of model 
dynamics (Ancell and Hakim 2007; Torn and Hakim 
2008). Ensemble sensitivity is similar to adjoint and 
singular vector sensitivity (Baker and Daley 2000; 
Langley et al. 2002) from variational assimilation sys-
tems but requires little additional computation given 
the ensemble analyses and forecasts. Figure 7 displays 
the sensitivity of a 48-h forecast of 
Hurricane Katrina’s longitude to the 
initial conditions for the deep layer 
mean (850–250 hPa) zonal wind. 
The longitude forecast is sensitive to 
Katrina’s initial position and to the 
wind in the Gulf of Mexico. When 
a storm is farther east or easterly 
winds in the Gulf are weaker, the 
forecast storm is farther east.

Improving prediction models. Ensemble 
data assimilation is a powerful tool 
for improving prediction mod-
els, particularly climate models 
that are not normally confronted 
by high-frequency observations. 
Investigating the source of distinc-
tive gridpoint noise along 67°N in an 
ensemble mean analysis of 266-hPa 
meridional wind (Fig. 8a) revealed 
an incorrect implementation of the 
polar filter in an earlier version of 

the finite-volume CAM dynamical core. Figure 8b 
shows results from a reanalysis with a corrected polar 
filter. Subsequent examination revealed this noise in 
climate integrations of CAM. More subtle problems 

Fig. 7. The shading shows the sensitivity of a 48-h 
forecast of Hurricane Katrina’s longitude to the value 
of the analyzed 850–250-hPa-layer mean zonal wind. 
Units for the sensitivity are degrees of change per each 
standard deviation change in the analysis value. The 
contours are the analyzed ensemble-mean, layer-mean 
zonal wind (m s−1). The results are produced using fore-
casts initialized from a 96-member DART assimilation 
with a 27-km grid WRF model.

Fig. 8. The ensemble-mean 266-hPa meridional wind for 0000 UTC 
25 Sep 2006 from an 80-member DART assimilation with (a) an early 
version of CAM 3.5 and (b) a later version in which problems with 
the polar filter have been corrected.
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with the CAM dynamics were also detected with 
DART/CAM, catalyzing an on-going effort to im-
prove the numerical diffusion in the model.

Ensemble data assimilation can also tune model 
parameters directly to make predictions that are as 
consistent with observations as possible. Model pa-
rameters are recast as additional state variables so that 
each ensemble has its own estimate of each parameter. 
Parameter estimates are updated by observations just 
like the regular state variables (Aksoy et al. 2006). 
For instance, parameters from the gravity wave drag 
scheme in CAM were added to the state vector, and 
the resulting predictions fit observations better than 
the baseline DART/CAM. Parameter tuning remains 
a challenging statistical and numerical research prob-
lem that can be attacked with tools in DART.

Support for education. Many universities use the DART 
tutorial to introduce undergraduate and graduate 
students to ensemble data assimilation. DART can 
also be adapted to provide examples and exercises 
for particular applications. For instance, conveners 
of a workshop on carbon data assimilation at NCAR 

in July 2007 developed a low-order model of tracer 
production, transport, and destruction to investigate 
the relative value of observations of meteorological 
quantities and tracer concentration. The DART en-
semble smoother (Evensen and van Leeuwen 2000) 
estimated tracer sources using only observations in 
the free “atmosphere.” This low-order model was 
incorporated into DART in less than a day.

SEQUENTIAL ENSEMBLE DATA ASSIMI-
LATION. Figure 9 illustrates the assimilation algo-
rithms used in DART starting with a three-member 
(20 or more are needed for real applications) ensemble 
of model state vectors at time tk. A model produces 
ensemble forecasts for time tk+1 when the next obser-
vation is taken. Assuming that observational error 
distributions for all pairs of observations are inde-
pendent (which can be relaxed using more advanced 
algorithms), means observations can be assimilated 
sequentially (Anderson 2003). Therefore, the as-
similation algorithm can be described for a single 
observation without loss of generality.

A forward observation operator h is applied to each 
state vector to give prior estimates of the observation 
y. The observed value comes from the instrument 
while the observation likelihood depends on the 
instrument’s error characteristics. The likelihood 
is the probability that the instrument would have 
observed what it did if y were the true value of the 
observed quantity.

An ensemble filter combines the prior ensemble, 
the observation, and the likelihood to compute 
an updated ensemble estimate and corresponding 
increments to the prior ensemble. Most differences 
between ensemble filter algorithms in the geophysi-
cal literature (Evensen 2003; Pham 2001; Whitaker 
and Hamill 2002; Ott et al. 2004) are associated with 
computing the updated ensemble for the observed 
quantity.

DART includes a variety of algorithms for com-
puting the updated observation ensemble including 
the perturbed observation ensemble Kalman filter 
(EnKF; Burgers et al. 1998) and the ensemble ad-
justment Kalman filter (EAKF; Anderson 2001). 
The EnKF is a true Monte Carlo algorithm with a 
random number generator producing draws from 
the observation likelihood distribution, whereas the 
EAKF is a deterministic ensemble square root filter 
(Tippett et al. 2003).

The EAKF computes the updated ensemble for the 
observation as illustrated in Fig. 10. A normal distribu-
tion with the sample mean and standard deviation of a 
five-member prior is plotted. The observed likelihood 

Fig. 9. Idealized operation of an ensemble Kalman filter 
with major error sources indicated for each step. A 
three-member estimate of the model state at time t

k
 

(blue asterisks) is advanced to time t
k+1 by a forecast 

model (green vectors). A forward observation opera-
tor, h, is applied to each state vector to obtain three 
estimates of an observation (green ticks on upper 
axes). The observed value (red tick) and the observa-
tion likelihood (red curve) are combined with the prior 
ensemble estimate to obtain an updated ensemble 
estimate (blue ticks) and increments (blue vector be-
low top right axis). The increments to the observation 
ensemble are regressed onto each state vector com-
ponent independently to generate increments (blue 
vectors on end of green vectors). The model is then 
used to advance the updated state estimates to time 
t
k+2 when the next observation becomes available.
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is assumed to be normal; the mean of the likelihood, 
1.0 in this case, is the observed value from the instru-
ment. The Bayes theorem, the foundation of all data 
assimilation algorithms, indicates that the posterior 
distribution is the product of the prior distribution and 
the likelihood. The product of the prior normal and 
the normal likelihood is itself normal (after having its 
amplitude modified so that it is a probability distribu-
tion), with a standard deviation smaller than that of 
either the prior or the likelihood. The EAKF creates 
an updated ensemble by shifting the prior ensemble to 
have the same mean as the continuous posterior and 
then linearly contracting around the posterior mean 
so that the ensemble standard deviation is the same 
as that of the continuous posterior (Fig. 10b). For a 
simple problem with the linear forecast model, linear 

observation operators, normal observational errors, 
and an ensemble bigger than the model state vector, 
the EAKF is simply an algorithm for computing the 
Kalman filter (Kalman and Bucy 1961). Nevertheless, 
the EAKF does retain some nonnormal characteristics 
of the prior ensemble sample in the posterior sample. 
This can affect assimilations for applications like the 
LOR example shown in Fig. 1, where the apparent 
bimodality in the prior ensemble is maintained in the 
posterior ensemble.

Finally, increments for each component of the 
prior state vector are computed from the observation 
increments by linear regression. Figure 11 illustrates 
the joint prior distribution of an observed quantity 
and a state vector component (they have a positive 
correlation of about 0.6), the corresponding marginal 
distribution for the observation prior ensemble, and 
the updated ensemble computed as described in the 
previous paragraph. For the regression, the observa-
tion increments are projected onto the least squares 
line in the joint distribution. The increments from the 
joint distribution are projected onto the marginal dis-
tribution for the state vector component. The updated 
mean of the state component is larger than the prior, 
as one would intuitively expect given the positive 
correlation with the observed quantity.

Fig. 10 (top). A five-member ensemble of prior esti-
mates of an observed variable (green asterisks) has 
been obtained by applying a forward operator, h, to 
each ensemble state vector. It is illustrated (a) how the 
ensemble adjustment Kalman filter takes the product 
of a normal with the sample mean and variance of the 
ensemble (green curve) and a normal observation 
likelihood (red curve), resulting in a normal continuous 
posterior distribution (blue curve) and (b) how the pos-
terior ensemble is generated by first shifting the prior 
ensemble to have the same mean as the continuous 
posterior (blue curve) and then linearly contracting 
the ensemble so that it has the same variance as the 
continuous posterior.

Fig. 11 (bottom). The large plot is the joint prior dis-
tribution of a five-member ensemble for an observed 
quantity and a state vector component (green aster-
isks) with a least-square fit shown in red. The lower 
plot shows the marginal distributions for the observed 
variable; the ensemble prior (green asterisks), the en-
semble posterior obtained by an ensemble adjustment 
Kalman filter (blue asterisks), and the increments 
(blue segments). These increments are projected 
onto the joint distribution using the least-squares line 
(blue segments in central panel) and these are in turn 
projected onto the marginal distribution for the state 
variable to give the state increments (left panel, blue 
segments).
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ADVANCED ASSIMILATION TOOLS. The 
simplicity of the basic ensemble filter algorithm has 
encouraged geophysicists to code their own imple-
mentations, but challenges to using ensemble data 
assimilation for geophysical applications remain. 
Figure 9 identifies potential error sources in each step 
of the assimilation process.

The computational expense of large geophysical 
prediction models compels the use of small ensembles 
that lead to large sampling error. DART provides tools 
to reduce sampling error in the regression step (step 
5, Fig. 9) using localization of observation impact 
(Houtekamer and Mitchell 2001; Hamill et al. 2001). 
The expected error in the regression is larger when 
the absolute value of the correlation between an 
observed quantity and a state variable component is 
small. When the two are uncorrelated, the observa-
tion should not impact the state variable, but a small 
ensemble can have spurious large correlations due to 
sampling error. This leads to an erroneous increase 
in ensemble confidence and random errors in the 
mean. Regression sampling error can be limited by 
reducing the impact of an observation on weakly 
correlated state vector components. The regression 
coefficient is multiplied by a localization factor that 
decreases from 1 to 0 as the physical distance be-
tween an observation and a state vector component 
increases. Defining effective localization factors for 
a given ensemble size, forecast model, and observa-
tional network requires extensive expert knowledge. 
To circumvent this requirement, DART includes a 
group filter that computes appropriate localizations 
automatically (Anderson 2007a). This tool uses a 
small “group” of ensembles during a training period 
to estimate localization factors that minimize ex-
pected sampling error.

Model error (unavoidable and often dominant in 
geophysics applications) and the other error sources 
noted in Fig. 9 also lead to ensemble estimates that are 
too confident (Baek et al. 2006). In the worst case, the 
prior estimates become so confident that observations 
are mostly ignored, resulting in filter divergence. 
Inflation (Anderson and Anderson 1999) increases 
uncertainty in the ensemble estimate by linearly ex-
panding the distance between each ensemble member 
and the ensemble mean. Whereas localization tries to 
eliminate the loss of variance due to sampling error, 
inflation treats the insufficient variance symptom 
caused by all error sources.

For some applications, a single value of inf la-
tion for each state vector component is effective 
in reducing the ensemble mean RMS error and 
increasing ensemble variance to appropriate values. 

However, a single inflation value can be problem-
atic for large geophysical applications (Hamill and 
Whitaker 2005). For instance, a fixed inflation of 1.5 
in an 80-member CAM assimilation with the obser-
vations used in earlier sections leads to significantly 
better ensemble-mean fits to observations over North 
America during the first week of an assimilation than 
a case with no inflation. However, ensemble variance 
in the Southern Hemisphere gradually increases 
until some model forecasts fail in the second week 
due to unrealistically strong winds. In the Southern 
Hemisphere, observations are sparse, and the fixed 
inflation required to ameliorate sampling error over 
densely observed North America leads to uncon-
strained growth of ensemble variance.

Inflation values must vary spatially to produce 
improved analyses and forecasts globally. Inflation 
that varies temporally as weather patterns or ob-
servation density vary in time is also useful. DART 
includes tools that allow ensemble data assimilation 
to automatically compute a temporally and spatially 
varying inflation (Anderson 2007b, 2009) as part of 
the assimilation. For each observation, the expected 
difference between the observed value and the prior 
ensemble mean estimate is computed from the prior 
ensemble, the observation, and the observation likeli-
hood. If the observation is farther from the ensemble 
mean than expected, more inflation is indicated; if it 
is closer, less is needed. Bayes’s theorem is used as in 
the basic ensemble assimilation to update the value of 
inflation for each component of the state vector.

We performed CAM assimilations for August 
2006 with no inflation and with DART’s most ad-
vanced damped adaptive inflation algorithm. The 
assimilations start from identical climatological 
ensembles. In 6-h forecasts of 500-hPa radiosonde 
temperature observations for these two assimilations, 
the spread (standard deviation) of the inflation case 
is larger and the RMS error is smaller. Monthly-mean 
RMS error is 0.99 for no inflation and 0.75 with infla-
tion (Fig. 12, bottom). Like operational assimilation 
systems, DART includes quality control algorithms to 
automatically detect and discard observations that are 
too far away from the prior ensemble. Observations 
that are many standard deviations farther away from 
the prior ensemble mean than would be expected 
given the prior variance and the observational error 
are discarded.

As the assimilation without inflation proceeds, the 
reduced ensemble variance and increased error leads 
to a gradual increase in the number of observations 
that are discarded, further degrading the assimilation 
(Fig. 12, top).
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The adaptive inflation fields that result in high-
quality assimilations can have complex structures 
in space and time. Figure 13 shows the inf lation 
pattern for 266-hPa zonal winds at the end of August. 
Inflation values vary from 1.0 (no inflation) to nearly 
14. The largest values are associated with areas with 
the highest density of Aircraft Communication 
Addressing and Reporting System (ACARS) obser-
vations from commercial aircraft. Large inflation is 
needed to account for model error in regions where 
dense observations reduce ensemble spread the most. 
Adaptive inflation facilitates the use 
of ensemble data assimilation in the 
presence of errors without the need 
for extensive tuning and assimila-
tion expertise.

DART includes a parallel version 
of the sequential ensemble filter 
using the message passing interface 
(MPI) programming model. The 
scaling characteristics of the algo-
rithm are designed to be indepen-
dent of the model and observations 
being assimilated (Anderson and 
Collins 2007). For sufficiently large 
models, the algorithm scales to an 
arbitrary number of processors. 

DART algorithms developed using 
low-order models can be applied to 
the largest geophysical models on 
large scalable computers.

The low-order model examples 
provided with DART can be run 
in seconds on a modern laptop. 
However, data assimilation with 
large models requires significant 
computational resources. For ex-
ample, a 20-member assimilation 
for a 1-month period uses a total 
of 20 months of model forecasts. 
At least 20 ensemble members are 
needed for good results in atmo-
spheric applications.

The chemical assimilation shown 
in Figure 6 uses 20 members, the 
typhoon results shown in Fig. 5 use 
32 members, and the global NWP in 
Fig. 2 uses 80 members. In all three 
cases, the cost of assimilating the 
available observations is approxi-
mately equal to the cost of advancing 
the model. Details of the cost depend 
on the density of observations and 

the localization used, but a rough estimate of cost is 
twice that of advancing the ensemble forecasts over 
the assimilation period. Large model runs are typi-
cally configured on a supercomputer or Linux cluster 
with one MPI task for each ensemble member. As 
an example, the CAM NWP case requires approxi-
mately one wall-clock day on 80 processors of an IBM 
POWER6 system to assimilate a month of data with 
roughly half a million observations per model day. 
More details of the expected computational costs can 
be found in Anderson and Collins (2007).

Fig. 13. The inflation field at 1800 UTC 31 Aug 2006 from the 
80-member ensemble Kalman filter using CAM and the DART 
damped adaptive inflation. Large values of inflation are needed to 
compensate for model error in areas where dense ACARS observa-
tions from aircraft lead to small ensemble spread.

Fig. 12. (bottom) The RMSE of the ensemble mean (solid) and the 
ensemble spread (dashed) for 6-h forecasts of observed 500-hPa ra-
diosonde temperatures for Aug 2006 over the Northern Hemisphere. 
The forecasts are generated by 80-member ensemble filters using the 
CAM model without any inflation (blue) and using the DART damped 
adaptive inflation (red). (top) The number of observations used by 
the two assimilations at each assimilation time; the lower points are 
for 0600 and 1800 UTC assimilations while the upper points are for 
0000 and 1200 UTC when radiosondes are more plentiful.
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The basic DART algorithms are coded in Fortran 
90 and controlled by namelist interfaces. Diagnostic 
output files describing model variables are in Network 
Common Data Form (NetCDF) whereas observa-
tion input and diagnostic files are in a special DART 
format. DART includes tools to convert common 
observational datasets, for instance NCEP PREPBUFR 
files, into this format. A suite of MATLAB scripts is 
included to produce plots from the diagnostic files. All 
figures shown here were produced by these scripts.

The Data Assimilation Research Section (DAReS) 
at NCAR provides limited support to users of DART. 
Comprehensive support is provided for the incorpo-
ration of new models, observations, or assimilation 
algorithms that are of broad community interest. For 
instance, DAReS has actively supported the incorpo-
ration of new models like the Community Multiscale 
Air Quality (CMAQ) model, the Massachusetts 
Institute of Technology (MIT) Ocean Model, and the 
Coupled Ocean–Atmosphere Mesoscale Prediction 
System (COAMPS). Scientists with interesting new 
data assimilation challenges are encouraged to seek 
collaborations with the DAReS staff.

SUMMARY. The DART community ensemble data 
assimilation facility provides students, educators, 
and scientists with unprecedented access to free, 
state-of-the-art assimilation tools. DART’s compre-
hensive tutorial, low-order models, and examples can 
introduce students to ensemble data assimilation on 
their laptops. The same tools can produce analyses 
using 10-million-variable climate system models, 
novel remote sensing observations, and the newest 
supercomputers. This enables students to advance 
quickly from basic understanding to meaningful 
research projects. DART can also accelerate scientific 
progress by modelers and observational research-
ers who do not have resources to develop their own 
assimilation systems.

Future DART releases will include enhanced par-
allel methods that scale for thousands of processors, 
novel algorithms to deal with nonlinearity and 
non-Gaussianity in ensembles, and carefully docu-
mented MATLAB versions of the core DART algo-
rithms for students. DART users are also contributing 
new models, observation types, and algorithms. By 
providing a nexus for a growing community of data 
assimilation users and experts, DART can provide 
an increasingly powerful and flexible set of tools for 
ensemble data assimilation.
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