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ABSTRACT

This paper evaluates the performance of the NCARCommunity AtmosphereModel, version 4 (CAM4), in

simulating observed annual extremes of near-surface temperature and provides the first assessment of the

impact of stochastic parameterizations of subgrid-scale processes on such performance. Two stochastic pa-

rameterizations are examined: the stochastic kinetic energy backscatter scheme and the stochastically per-

turbed parameterization tendency scheme. Temperature extremes are described in terms of 20-yr return

levels and compared to those estimated from ERA-Interim and the Hadley Centre Global Climate Extremes

Index 2 (HadEX2) observational dataset. CAM4 overestimates warm and cold extremes over land regions,

particularly over the Northern Hemisphere, when compared against reanalysis. Similar spatial patterns,

though less spatially coherent, emerge relative to HadEX2. The addition of a stochastic parameterization

generally produces a warming of both warm and cold extremes relative to the unperturbed configuration;

however, neither of the proposed parameterizations meaningfully reduces the biases in the simulated tem-

perature extremes of CAM4. Adjusting warm and cold extremes by mean conditions in the respective annual

extremes leads to good agreement between themodels and reanalysis; however, adjusting for the bias inmean

temperature does not help to reduce the observed discrepancies. Based on the behavior of the annual ex-

tremes, this study concludes that the distribution of temperature in CAM4 exhibits too much variability

relative to that of reanalysis, while the stochastic parameterizations introduce a systematic bias in its mean

rather than alter its variability.

1. Introduction

In recent decades, there has been increasing interest

in the analysis of extreme climate events given their

significant impact on human and natural systems

(Kunkel et al. 1999; Easterling et al. 2000). Such events

typically account for thousands of deaths and billions of

dollars in damages globally each year, as population and

infrastructure continue to expand in areas that are vul-

nerable to extremes such as flooding, storm damage, and

extreme heat or cold (Easterling et al. 2000). The In-

tergovernmental Panel for Climate Change (IPCC) in

their Fifth Assessment Report (AR5; Hartmann et al.

2013) concluded that most global land areas have ex-

perienced significant warming of both maximum and

minimum temperature extremes since about 1950.

Simulations from global coupled climate models are the

primary tools for forecasting potential future changes in

extreme climate statistics (Kharin et al. 2007). Because

an important aspect of the evaluation of the reliability of

these forecasts is an assessment of the models’ ability to

simulate observed climate extremes, the release of a new

* Supplemental information related to this paper is available at the

Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0314.s1.

Corresponding author address: Felipe Tagle, Rhodes Hall 291,

Cornell University, Ithaca, NY 14850.

E-mail: fit4@cornell.edu

1 JANUARY 2016 TAGLE ET AL . 241

DOI: 10.1175/JCLI-D-15-0314.1

� 2016 American Meteorological Society

http://dx.doi.org/10.1175/JCLI-D-15-0314.s1
mailto:fit4@cornell.edu


generation of climate models is usually accompanied by

studies focusing on this topic (e.g., Kharin et al. 2007,

2013; Sillmann et al. 2013). Evaluations of the models

participating in phases 3 and 5 of the Coupled Model

Intercomparison Project (CMIP3 and CMIP5) have

shown that temperature extremes are reasonably rep-

resented, as compared to reanalysis and observations

(Flato et al. 2013), with greater uncertainties in the

simulation of cold extremes (Kharin et al. 2007, 2013).

However, performance in representing temperature

extremes is strongly dependent on the choice of verifi-

cation dataset, particularly reanalyses, as discrepancies

between these can be as large as the intermodel spread

between the CMIP ensemble (Sillmann et al. 2013).

Owing to themultitude of extreme events in the climate

system and how the extreme nature of a climate phe-

nomenon is usually dependent on the affected region

(Stephenson et al. 2008), most studies of climate extremes

rely on the use of extreme indices (e.g., Tebaldi et al. 2006;

Alexander and Arblaster 2009; for further references, see

Seneviratne et al. 2012; Hartmann et al. 2013). Other

studies focus on more extreme climate statistics, typically

relying on results from extreme value theory to approxi-

mate the distribution of annual extremes (e.g., Kharin

et al. 2007, 2013; Brown et al. 2008;Wehner 2004;Wehner

et al. 2010). In this studywe follow the latter approach and

evaluate the performance of the NCAR Community At-

mosphereModel, version 4 (CAM4) (Neale et al. 2010), in

simulating observed temperature extremes, as measured

by 20-yr return levels, against reanalysis and observational

datasets and, furthermore, investigate whether the ob-

served discrepancies are climatological in nature. Indeed,

it is not unusual for climate models to exhibit systematic

errors in mean temperatures; for instance, a longstanding

error that is present in the NCAR Community Earth

System Model (CESM) is the so-called warm bias over

land, which refers to temperatures over land being too

warm in summer (Neale et al. 2010). Here, we will ex-

amine to what extent differences in mean temperature

between the model and the verification datasets explain

the observed discrepancies in temperature extremes.

Despite the continuing increase of computing power,

which allows climate models to be run with ever-higher

resolution, many important physical processes (e.g.,

tropical convection, gravity wave drag, microphysical

processes) are still not resolved (e.g., Shutts 2005;

Franzke et al. 2015). Some subgrid-scale processes are

altogether unrepresented or represented very crudely;

for example, flow over mountains is a source of turbu-

lent kinetic energy at small scales, but in the model it is

represented by a drag coefficient (e.g., Palmer 2001;

Shutts 2005). Since finescale climate processes have

been shown to regulate not only the mean but also the

tails of the daily temperature and precipitation distribu-

tions (Diffenbaugh et al. 2005), numerous studies have

highlighted the importance of horizontal grid resolution

on the simulation of climate extremes (e.g., Wehner et al.

2010; Rauscher et al. 2010; Jung et al. 2012; Kopparla

et al. 2013). Stochastic-dynamics prediction is an alter-

native way to represent the effect of fluctuating subgrid-

scale processes (Palmer 2001). The omission of variability

of unresolved subgrid-scale processes has been proposed

as one reason for persistent biases across differentmodels

(Jung et al. 2010; Palmer and Weisheimer 2011; Berner

et al. 2012). For instance, Berner et al. (2012) showed that

including a stochastic representation leads to improve-

ments in the Northern Hemispheric circulation compa-

rable to increasing horizontal resolution.

One such stochastic parameterization is the stochastic

kinetic energy backscatter scheme (SKEBS), whose origin

lies in large-eddy simulation modeling (Mason and

Thomson 1992). It is based on the rationale that a small

fraction of the model dissipated energy interacts with the

resolved-scale flow and acts as a systematic forcing. Re-

cently, it was adapted by Shutts (2005) to numerical

weather prediction. Its impact on weather and seasonal

forecasts is reported, for example, in Berner et al. (2008,

2009, 2011, 2015), Palmer et al. (2009), and Doblas-Reyes

et al. (2009). On seasonal scales, in integrations with the

European Centre for Medium-Range Weather Forecasts

(ECMWF) model, SKEBS has been shown to reduce the

bias in the circulation over the North American continent

and improve the occurrence of Northern Hemispheric

blocking (Jung et al. 2005; Berner et al. 2008). In the

tropics, SKEBSpositively influences the representation of

convectively coupled waves (Berner et al. 2012). Another

stochastic parameterization is the stochastically perturbed

parameterization tendency scheme (SPPT) (Buizza et al.

1999; Palmer et al. 2009), which samples the physical

tendencies from an assumed subgrid-scale probability

density function. The present study will provide the first

assessment of the impact of stochastic parameterizations

on climate extremes.

The paper is organized as follows. The datasets and a

brief review of the stochastic parameterizations are

presented in section 2. Section 3 describes the method-

ology, while section 4 compares the model-simulated

extremes with the observational evidence. Section 5

provides a discussion and conclusions.

2. Data and experimental design

CAM is the atmospheric component of the Community

Climate System Model (CCSM) and the new CESM, de-

veloped at the National Center for Atmospheric Research

(NCAR), under the support of the National Science
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Foundation and the U.S. Department of Energy. In this

study we consider a simulation of CAM with prescribed

SSTs and sea ice according to the Atmospheric Model

Intercomparison Project (AMIP) protocol (Gates 1992).

Specifically, we use a so-called 18 IPCC-AMIP simulation,

spanning the years 1979–2010, at a horizontal resolution of

0.98 3 1.258. Simulated temperature extremes are evalu-

ated against ERA-Interim (hereafter ERA) (Dee et al.

2011), the latest global atmospheric reanalysis produced

by ECMWF, covering the years from 1979 to present on a

1.58 3 1.58 regular grid. Maximum and minimum 2-m

temperature since previous postprocessing at a 12-h time

step from 1979 to 2010 were downloaded from the

ECMWF archive (http://apps.ecmwf.int/datasets/data/

interim-full-daily/), from which daily temperature ex-

tremeswere constructed as themaximumandminimumof

the two respective 12-h daily values. For each dataset,

annual extremes of daily maximum and minimum 2-m

temperature are computed at each grid point over land.

Although reanalyses offer the advantages of gridded

output with global spatial coverage, they are nonethe-

less observationally constrained model output. Their

output may be classified into four categories depending

on the relative influence of the observational data and

the numerical model (Kalnay et al. 1996). Near-surface

temperature belongs to the type B category, indicating

that observational data exists that directly affects its

value; however, the model component still exercises

considerable influence. Significant discrepancies in ex-

treme temperature statistics between reanalyses have

been documented in Kharin et al. (2007, 2013) and

Sillmann et al. (2013), particularly for cold extremes.

However, ERA has been shown to adequately capture

recent temperature extreme trends over Europe

(Cornes and Jones 2013). Moreover, in a comparison of

several reanalysis products, Donat et al. (2014) reported

that temperature extremes in ERA exhibit the highest

temporal and spatial correlations with those of gridded

observations over the past 30 years.

As an additional verification dataset, we consider

the gridded land-based Hadley Centre Global Climate

Extremes Index 2 (HadEX2) observational dataset.

HadEX2 consists of the comprehensive set of indices of

temperature and precipitation extremes defined by the

Expert Team on Climate Change Detection and Indices

(ETCCDI), which are calculated directly from station

data and interpolated onto a regular grid using a modi-

fied version of Shepard’s angular distance weighting

interpolation algorithm (for details, see Donat et al.

2013). Inmany countries, these provide the only publicly

available information about temperature and pre-

cipitation extremes. Because the HadEX2 indices are

derived solely from station data, they are free from

biases originating from model specification error, as is

potentially the case for reanalysis products; however,

direct comparison with model output becomes encum-

bered by the fact that the latter corresponds to area av-

erages, not point values. Systematic biases introduced by

this spatial-scale mismatch, however, should be minor

given the smoothness of temperature fields. The dataset is

available on a 2:583 3:758 grid, with a temporal coverage

of 1901–2010. We use the TXx and TNn indices, corre-

sponding to the annual extremes of daily maximum and

minimum 2-m temperature, respectively, but restrict the

domain of analysis to those grid points with complete

temporal coverage of the 1979–2010 period.

To investigate the impact of stochastic parameteri-

zations on temperature extremes, two experiments

were performed.

a. SKEBS

SKEBS aims to represent model uncertainty arising

from unresolved subgrid-scale processes by introducing

random perturbations to streamfunction and potential

temperature tendencies. SKEBS is based on the rationale

that a small fraction of the model dissipated energy in-

teracts with the resolved-scale flow and acts as a system-

atic forcing.

The scheme introduces at each time step and grid point

additive perturbations to the streamfunction tendency:

_c
p
(f,l, t)5 _c

dyn
(f,l, t)1 f (f,l, t) ,

where _cdyn and _cp(f, l, t) are the streamfunction ten-

dency before and after perturbation and f (f, l, t) the

perturbation tendency. Here, l and f denote longitude

and latitude in physical space and time t. Furthermore, we

let the perturbation tendency forcing be expressed in a

triangularly truncated spherical harmonics expansion:

f (f,l, t)5 �
N

m52N
�
N

n5jmj
f mn (t)Pjmj

n (cosf)eiml .

Here, m and n denote the zonal and total wavenumbers,

N is the truncation wavenumber of the numerical

model, and Pn is the associated Legendre function of

degree n and order m. The spherical harmonics

Ym
n 5Pm

n e
iml form an orthogonal set of basis functions

on the sphere. If they are nonvanishing for at least one

n#N and do not follow a white-noise spectrum, the

pattern perturbations will be spatially correlated in

physical space.

Since the physical processes mimicked by this forcing

have finite correlation times, temporal correlations are

introduced by evolving each spectral coefficient as a

first-order autoregressive (AR1) process:
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f mn (t1Dt)5af mn (t)1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12a)

p
g
n
«(t) ,

wherea is the linear autoregressive parameter determining

the temporal decorrelation time, gn the wavenumber-

dependent noise amplitude, and « a Gaussian white-noise

process with mean zero and variance h. The noise am-

plitude gn is chosen to have power-law behavior, given

by gn 5 bnp, and determine the variance spectrum of the

forcing.

The pattern f (f, l, t) is interpreted as a streamfunction

tendency forcing. In the case of perturbing potential

temperature, a second perturbation pattern is created

analogously but with a different power-law behavior and

potentially a different temporal correlation. The behavior

of this scheme is determined by the following parameters:

the exponent of the power law p, the wavenumber per-

turbation range n1 2 n2, and the amplitude of forcing en-

ergy, which determines the normalization constant b.

In the original implementation, the streamfunction

pattern is subsequently weighted with the normalized

total instantaneous dissipation rate from numerical

dissipation, deep convection, and gravity and mountain

wave drags (Shutts 2005; Berner et al. 2009) so that the

perturbations are largest in regions with large dissipa-

tion and have little effect in regions where and when

the dissipation is small. A simplified version of SKEBS

assumes the dissipation rate to be spatially and tem-

porally constant, resulting in a state-independent (ad-

ditive) stochastic forcing. This simplification relies on

underlying model dynamics to determine which per-

turbations will grow and which ones will be damped

(Berner et al. 2011). Here, we use the simplified version

with constant dissipation rate.

b. SPPT

SPPT is a revision of the original stochastic diabatic

tendency scheme of (Buizza et al. 1999) and perturbs the

parameterized tendency of physical processes with

multiplicative noise. It is based on the notion that,

especially with increasing numerical resolution, the equi-

librium assumption no longer holds and the subgrid-scale

state should be sampled rather than represented by the

equilibrium mean. Consequently, SPPT multiplies the

accumulated physical tendencies _x of temperature,

zonal and meridional winds, and humidity (T, u, y, q) at

each grid point and time step with a multiplicative ran-

dom coefficient r(f, l, t):

X
p
5 (11 r) _x, with x5 u, y,T, q .

Here, Xp is the perturbed parameterized tendency

for the variables x5 u, y, T, q and r(f, l, t) a random

pattern with spatial and temporal correlations. By

design, the perturbations are large where the physical

tendencies, and presumably their uncertainty, is

large and has very little effect where and when the

tendencies are small. SPPT uses the same pattern

generator as SKEBS (see above) but a different

normalization.

The stochastic pattern evolves in spectral space as

rmn (t1Dt)5armn (t)1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12a)

p
g
n
«(t) ,

where all variables are as defined above. The temporal

correlations are given by the decorrelation time t defining

a5 exp(2Dt/t).The noise amplitudes are given as follows:

g
n
5F

0
exp2L

n(n1 1)

2
, with

F
0
5

8>>><
>>>:

s2(12a)2

2 �
N

n51

(2n1 1) exp[2Ln(n1 1)]

9>>>=
>>>;

1/2

,

where L is a horizontal length scale defining the spatial

correlations and s2 the perturbation variance at each

grid point. The normalization constant F0 is chosen so

that the variance at any grid point s2 is given by the total

variance in spectral space (Weaver and Courtier 2001).

The resulting stochastic pattern follows at each grid

point a Gaussian with mean zero and variance s2.

3. Methodology

In this studywe characterize the extremebehavior of the

annual extremes of daily maximum Tmax and minimum

Tmin temperature in terms of 20-yr return values. A T-yr

return value can be informally interpreted as the value that

is exceeded by an annual extreme on average once everyT

years. More precisely, it is defined as the quantity that is

exceeded in any given yearwith probability p5 1/T, which

corresponds to the (12 p) quantile of the distribution of

annual extremes. We assume that the distribution of an-

nual extremes can be approximated by a generalized ex-

treme value (GEV) distribution, given by

F(x;m,s, j)5

8>><
>>:

exp
h
2
�
11 j

x2m

s

�21/ji
for j 6¼ 0, 11 j(x2m)/s. 0

exp
h
2exp

�
2
x2m

s

�i
for j5 0

,
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with m the location parameter, s. 0 the scale parame-

ter, and j the shape parameter. The shape parameter

controls the tail behavior of the distribution. If j, 0, the

probability density function (PDF) is bounded above,

with the upper endpoint given by m2s/j. If j. 0, the

GEV distribution is heavy tailed and its PDF decays

‘‘slowly’’ (polynomially) as x/‘; when j5 0, the tails

of the PDF decay relatively faster. These cases give rise

to three distinct families of extreme value distributions:

theWeibull, Fréchet, andGumbel families, respectively.

We fit a GEV distribution at each grid point over land to

the sample of annual extremes and derive the 20-yr re-

turn value from the quantile function:

z
T
5

(
m2s/jf12 [2log(12 1/T)]2jg for j 6¼ 0,

m2slog[2log(12 1/T)] for j5 0,

(1)

evaluated at T5 20. For cold extremes, we fit the GEV

distribution to the negative of the sample of annual Tmin

extremes and reverse the sign of the estimated return

value. To compare model parameters and return level

estimates with estimates from the verification datasets,

the former estimates were regridded to match the

coarser grids of the latter datasets.

The justification of the GEV distribution as an appro-

priate representation of the behavior of annual extremes

follows from an important result in extreme value theory,

which states that the limiting distribution of the maximum

of a sufficiently large random sample belongs to only one

of the three extreme value distributions (Leadbetter et al.

1983). However, the daily observations of maximum and

minimum temperature, from which the samples of annual

extremes are computed, exhibit features typical of envi-

ronmental datasets, such as an annual cycle and serial

correlation that violate the assumptions defining a random

sample. Indeed, the annual cycle negates the condition

that the observations are identically distributed, while the

presence of serial correlation implies dependence among

consecutive observations. Despite this, empirical studies

have shown the GEV distribution to be a good candidate

to describe environmental extremes (e.g., Kharin and

Zwiers 2005; Kharin et al. 2007, 2013;Wehner et al. 2010).

Since the model simulations are forced with observed

boundary conditions that exhibit trends over the simu-

lations period, we use the nonparametricMann–Kendall

test (Chandler and Scott 2011) to investigate whether

such trends are captured in the annual extremes of daily

temperature. Unsurprisingly, the test confirms the ex-

istence of trends at many grid points, in agreement with

the large number of observational studies that have

identified trends in such temperature statistics at both

global (e.g., Donat et al. 2013) and regional scales (e.g.,

Zhai and Pan 2003; Klein Tank and Können 2003;

Bukovsky 2012).

A common approach to address this form of non-

stationarity is to assume that the parameters of the GEV

distribution are time dependent (Coles 2001). Kharin

and Zwiers (2005) examined the time dependence of

GEV parameters in a transient climate setting and

found that a model that allowed for time variation in the

location and scale parameters (in the form of a linear

and log-linear trend, respectively) best represented the

transient behavior of temperature extremes. In a similar

manner, we fit several models with and without time-

varying parameters, and as in Kharin and Zwiers (2005)

likelihood ratio tests rejected models that assumed time

variation in the shape parameter; however, unlike their

work, the datasets did not provide evidence in support

of a time-varying scale parameter. Consequently, we

performed the analyses described below assuming a

GEV distribution with and without a linear trend in the

location parameter and found that the differences were

generally minor and did not alter qualitatively the con-

clusions. Therefore, in what follows we present the re-

sults pertaining only to the stationary GEV model.

Hosking et al. (1985) compared the short-sample

performance of maximum likelihood and the method

ofLmoments in the estimation of the upper quantiles of

the GEV distribution and demonstrated that for a broad

range of shape parameter values, the estimates by the

latter method showed lower root-mean-square error

relative to those of the former. Since then, themethod of

L moments has been widely used in observational and

simulation studies requiring the estimation of return

values from short samples (e.g., Kharin et al. 2007;

Wehner et al. 2010). However, this method does not

permit the estimation of time-varying GEV parameters

since the computation of L moments requires that the

random sample be identically distributed. The above

nonstationary GEV distribution was therefore fit by

maximum likelihood, and for consistency, it was also used

in the estimation of the stationary GEV parameters. One

of the benefits of maximum likelihood is that approxi-

mate standard errors of the estimated parameters can be

obtained by using the inverse of the observed information

matrix, but these approximations tend to be unreliable

for small sample sizes (Kharin and Zwiers 2005).

An alternative approach to quantify the uncertainty in

parameter estimates is through resampling (Efron and

Tibshirani 1994). In this study, we use a bootstrapping

technique to generate 500 resampled replicates from the

original sample of annual extremes and to each replicate

fit a GEV distribution and derive return levels, from

which standard errors may be computed. Assuming that

the original dataset is represented by an m3 n3N
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array, withm, n, andN denoting longitude, latitude, and

time, respectively, each new sample corresponds to one

of N m3 n matrices, in order to preserve the spatial

dependence structure.

Several of the analyses rely on hypothesis tests per-

formed at each grid point, as is the case, for example, of

likelihood ratio tests where the validity of one model is

measured relative to another or in the evaluation of the

statistical significance of observed trends as in the

Mann–Kendall tests above. However, the interpretation

of these results in a spatial context, where there is spatial

dependence, is often misleading (Livezey and Chen 1983).

A field significance test is a popular statistical technique

designed for the simultaneous evaluation of multiple

hypothesis tests, usually specified over geographic areas.

Such a test may be interpreted as a type of metatest, as

the data being tested are the results of individual or local

tests, and the null hypothesis is that all of the individual

null hypotheses are true (Wilks 2011). Because of the

complex dependence structures found in environmental

datasets, the sampling distribution of test statistics, such

as the number of tests that are significant, is difficult to

derive analytically. Fortunately, good approximations

may be obtained by means of resampling. We first com-

pute the desired test statistic based on the results of the

original collection of annual extremes and subsequently

generate 500 replicates of annual extremes in the manner

described above; then, on each replicate we perform the

individual hypothesis tests and compute the test statistic.

The procedure yields 500 values of the test statistic, from

which the significance under the null hypothesis of the

original value may be determined.

4. Results

a. Demonstration on a simple example

We begin the analysis with a simple example that helps

illustrate how differences in the mean and variance of an

idealized distribution of temperature affect the distribu-

tion of the associated extremes (Fig. 1). Similar schematics

have been developed since the IPCC Third Assessment

Report to characterize the effect of a changing climate

on the daily temperature distribution (e.g., Fig. 2.32 in

Folland et al. 2001). We assume that the distribution of

temperature is well described by a Gaussian distribution

and consider a scenario with two distributions having the

same variance but with the mean of one slightly larger

than the other, as would be the case, for instance, for a

warm bias of CAM relative to ERA or where the means

are the samebut the distribution ofCAMexhibits a higher

variance. Analytically or through Monte Carlo simula-

tion, we can derive theGEV distribution of themaximum

and minimum of a large sample from each of these

distributions, representing the distributions of the annual

maximum and minimum of Tmax and Tmin, respectively.

The GEV PDFs of warm and cold extremes for the first

scenario are shown in Figs. 1c and 1e, respectively. In each

plot, the distributions of CAM and ERA are identical

except that of CAM is shifted to the right by a quantity

equal to the difference of the means of T. Thus a shift in

the distribution of T induces an identical shift in the dis-

tributions of both warm and cold extremes. In the second

scenario, despite the means of T being the same, the PDF

of CAM for warm extremes exhibits both a shift toward

warmer temperatures and an increase in variability rela-

tive to that of ERA, while that of cold extremes is shifted

toward colder temperatures with an identical increase in

variability (Figs. 1d,f). An aspect that we will examine

repeatedly in this study is the role of differences in the

Tmax and Tmin climatologies on the respective PDFs of

extremes. Because we have implicitly neglected any form

of nonstationarity, such as the presence of an annual cycle,

these climatologies correspond here to the means of the

respective GEV distributions. Adjusting for these mean

differences in the first scenario (Figs. 1g,i) removes the

shift observed above and renders the PDFs identical,

while in the second, themean differences are canceled but

the discrepancies in variability persist (Figs. 1h,j).

We apply these ideas to the GEV PDFs of Tmax annual

extremes of CAM4 and ERA over land regions, with

parameters set to area averages of gridpoint estimates

(Fig. 2). Parameter values are denoted in the panel. At

this spatial scale, shape parameter estimates are re-

markably similar across the two datasets—namely,20.27

and20.28 for CAM4 andERA, respectively—suggesting

that the tail behavior is well captured by the model. The

negative values indicate that the distributions of Tmax

annual extremes can be approximated by those from the

Weibull family, which is characterized by a bounded

upper tail.We note that the quantile function of theGEV

distribution, as depicted in Eq. (1), for the case of j 6¼ 0,

is a function of all three GEV parameters, but by holding

j constant, quantile differences may be conveniently de-

composed in terms of differences in location and scale

parameter estimates. Furthermore, given the functional

dependence of the variance of the GEV distribution (not

shown) on only the shape and scale parameters, a con-

stant shape parameter implies that differences in scale

parameter estimates may be interpreted as differences in

interannual variability. Therefore, differences in 20-yr

return levels may be analyzed in terms of differences in

the location parameter, which is a measure of central

tendency, and interannual variability of temperature ex-

tremes. Here we observe that the return level estimate of

CAM4 exceeds that of ERA by 2.258C (Fig. 2a), which is

largely explained by the difference of 1.888 in the location
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FIG. 1. Idealized Gaussian distributions of (a),(b) temperature T for CAM (blue) and ERA

(red) and (c)2(f) the corresponding GEV probability density functions obtained by drawing

5000 samples of length 10 000 from the distributions above and fitting GEV distributions to the

resulting 5000 extreme observations. A standard Gaussian distribution is assumed for ERA T.

(left) T distributions with the same standard deviation but the climatological mean of CAM is

shifted by 1. (right) T distributions with the same mean but the climatological standard de-

viation of CAM is 1.3. Vertical lines denote the mean of the GEV distribution. GEV distri-

butions adjusted by their (g),(h) Tmax and (i),( j) Tmin climatologies.

1 JANUARY 2016 TAGLE ET AL . 247



parameter estimates, while the contribution from the

scale parameter difference is only 0.368C. Note how this

value does not correspond to the actual difference in

scale parameters; rather, it is the difference scaled by a

factor that depends on the value of the shape parameter,

which we assume to be the same for both datasets. How-

ever, owing to the slight difference of 0.01 in the shape

parameter estimates, the decomposition is not exact, as

seen by the 0.018C discrepancy between the actual 20-yr

return level difference and the sum of the two contribu-

tions. Comparing the two distributions, the GEV distri-

bution of CAM4 appears shifted to the right and slightly

wider than that of ERA, reflecting the larger magnitude of

the location and scale parameter estimates in the CAM4

simulation.

Adding a constant to a sample of annual extremes will

result in an identical change in the value of the location

parameter, as in the mean, while leaving the shape and

scale parameters unchanged. Therefore, given the form

of the quantile function [Eq. (1)], return levels will reflect

any systematic differences in the extreme temperatures

betweenmodel and reanalysis.We consider two potential

sources of systematic biases: Tmax and Tmean climatologi-

cal differences. The Tmax (Tmean) annual cycle is defined

as the 1979–2010 average for each calendar month of

monthly Tmax (Tmean). Because annual warm extremes

tend to coincide with the maximum of the warm extreme

climatology andmean temperature climatology, adjusting

for these climatologies can be done by subtracting from

these maxTac
max and maxTac

mean, respectively. After adjust-

ing for the Tmax climatology (Fig. 2b) the distributions are

quite similar, as the difference in location parameter es-

timates of Fig. 2a becomes negligible and the difference of

2.258C in the return values is reduced to 0.328C, which
coincides almost exactly with the discrepancy in scale

parameters.Adjusting for theTmean climatology, however,

does little to improve the correspondence in return

values between the two datasets; on the contrary, the

difference is increased to 2.38C, as the discrepancy in

location parameters increases from 1.888 to 1.928C. The
similarity in the distributional pattern depicted in Fig. 2a

with that of Fig. 1d, together with the relative invariance

of the location parameter difference to the adjustment

in mean biases, provides the first indications that the

distributions of T from CAM4 and ERA are related

qualitatively as in Fig. 1b.

b. Temperature extremes in CAM4, ERA, and
observations

Warm and cold extremes of CAM4 and differences

with the corresponding temperature extremes of ERA

and HadEX2 are displayed in Fig. 3. Significant posi-

tive differences are seen over land regions in compar-

ison to ERA, in particular over the midlatitudes in the

Northern Hemisphere and in the subtropics of South

America, with the exception of central Africa and the

Arabian Peninsula where slight negative differences

emerge (Fig. 3c). Over the midwestern United States

return levels exceed 408C in CAM4, while the values in

ERA are roughly 10–158C smaller. The limited spatial

coverage of the HadEX2 TXx index restricts the scope

of the comparison primarily to theNorthernHemisphere.

Positive differences of similar magnitude can be seen

over central North America and western Eurasia, where

return value differences betweenmodel and observations

also differ by up to 108C (Fig. 3e). However, coherent

regions of colder warm extremes emerge over the Hi-

malayas and North America extending into the Green-

land ice sheet.

Cold extremes are well simulated over Australia and

most of South America but are significantly colder over

most of the Northern Hemisphere (Fig. 3d). Area-

averaged discrepancies over North America and Asia

exceed 58C. Similar differences appear in the compari-

son with HadEX2, with the exception of Greenland

(Fig. 3f). Indeed, simulated cold extremes are generally

FIG. 2. (a) GEVPDFs of CAM4 (blue) and ERA (red) with parameter values (left legend) set to the area-averaged estimates over land

regions, with gridpoint estimates corresponding to averages of parameter values obtained from 500 resampled replicates of the annual

extremes of daily maximum temperature. Location and 20-yr return level differences are indicated in the right legend, along with dif-

ferences in a modified scale parameter, defined as D~ss 52(ss 2sERA)f (jERA), with f obtained from Eq. (1) and s representing the CAM

dataset. Probability density functions adjusted by the area-averagedmaximumof the annual cycle (b) maxTac
max and (c)maxTac

mean. Vertical

lines denote 20-yr return levels.
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in good agreement over ice-covered land regions rela-

tive to reanalysis, in contrast withHadEX2where severe

negative differences extend into the Greenland ice

sheet. We note that the spatial coverage is better for the

HadEX2 TNn index.

We investigate the degree to which the differences in

warm and cold extremes betweenCAM4 andERAcan be

explained byTmax/Tmin climatological differences. Figure 4

displays CAM4 warm and cold extremes (adjusted by

maxTac
max and minTac

min, respectively) and the differences

with the corresponding adjusted ERA extremes. Warm

extremes are in good agreement after the adjustment, al-

though over the midwestern United States, Australia, and

China the climate model indicates return values up to 68C
higher than ERA; however, these values are not always

statistically significant. In contrast, large coherent regions

where CAM4 overestimates cold extremes remain after

the adjustment, particularly over western Eurasia and

North America. However, area-averaged differences of

0.88, 1.28, and 2.18C, over North America, Europe, and

Asia, respectively, highlight the notable reductions in

cold extreme return level discrepancies between the two

datasets.

In summary, we note that over large areas, particularly

in the Northern Hemisphere, excluding the Greenland ice

sheet and the Himalayas, the climate model generally

overestimates both warm and cold extremes. This is con-

sistent with our hypothesis that CAM4 exhibits greater

variability in T relative to ERA, as this overestimation is

qualitatively depicted in Figs. 1d and 1f. Adjusting by the

respective extreme climatologies leads to substantial re-

ductions in the noted discrepancies, although slight dif-

ferences remain, especially for cold extremes.

c. Impact of stochastic parameterizations on extreme
events

Next, we analyze the impact of adding a stochastic

parameterization on the model issues discussed above.

FIG. 3. (a),(b) CAM4 20-yr return level estimates of 1979–2010 annual extremes of daily (left) maximum and (right) minimum tem-

perature and the corresponding differences with estimates from (c),(d) ERA-Interim and the (e),(f) HadEX2 observational dataset.

Stippling indicates return level differences are significant at a 5% level.
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Overall, warm and cold extremes are quite similar to

those of unperturbed CAM4 (Fig. S1; see supplemental

material). The signature of SPPT and SKEBS on extreme

events is remarkably similar, especially when considering

that SKEBS is most active in the extratropics while SPPT

has the largest impact on the near-surface fields in the

tropics (Berner et al. 2009, 2015). This suggests that the

stochastic parameterizations may excite modes of vari-

ability already present in CAM4 rather than impose their

specific characteristics on the distribution of extreme

events, which is further substantiated in a forthcoming

study. Discrepancies are apparent only by direct com-

parison with CAM4 (Fig. 5). Warm extremes simulated

by SKEBS are considerably warmer over parts of the

NorthernHemisphere, particularly over Asia (Fig. 5a), in

some parts in excess of 88C.Replacing SKEBSwith SPPT

results in a nearly identical spatial pattern, except that the

positive differences are less pronounced (Fig. 5c). Cold

extremes for both SKEBS and SPPT relative to CAM4

present a less coherent spatial pattern, but statistically

significant positive differences are found over most con-

tinents, which help reduce the overestimation of cold

extremes mentioned above and thus lead to a better

agreement with reanalysis.

To assess if these differences between CAM4 and the

stochastic parameterizations are collectively statistically

significant or could be the result of sampling variability

perhaps as a result of the limited sample sizes, we test the

null hypotheses that the CAM4 and SKEBS as well as the

CAM4 and SPPT simulations are realizations from a sin-

gle data-generating process with the same extreme value

distribution. This analysis is carried out at each grid point

by performing a likelihood-ratio test involving the likeli-

hood of a GEV distribution fit separately to each time

series of annual extremes and the likelihood of a GEV

distribution fit to the concatenated time series. A field

significance test, as described in section 3, is then per-

formed to assess whether the results of the individual tests

are significant at a regional level. We note that under the

null hypothesis the concatenated time series represents a

sample drawn from the sameGEVdistribution; therefore,

in the resampling stage, replicates are generated by se-

lecting at random 2N m3n matrices from the concate-

nated m3 n3 2N array. We use seven continental

regions: North America, South America, Europe, Africa,

Asia, Australasia, andAntarctica; displayed in Fig. 6, each

of these is a combination of subcontinental-scale regions

defined in Seneviratne et al. (2012). The null hypotheses

that warm extremes simulated by the two pairs of simu-

lations belong to the same GEV distribution are strongly

rejected in all regions except Antarctica. The analogous

hypotheses for cold extremes are strongly rejected in all

regions.

We further assess, as was done earlier for the return

level discrepancies between CAM4 and ERA, to what

degree the observed warm and cold extreme differences

between reanalysis and the stochastic parameterizations

can be attributed to the respective climatologies (Fig. S2

FIG. 4. (a),(b) CAM4 20-yr return level estimates of 1979–2010 annual extremes of daily (left) maximum and (right) minimum tem-

perature and the corresponding differences with estimates of (c),(d) ERA-Interim. Return level estimates are adjusted by the corre-

sponding extremes of the annual cycle, maxTac
max and minTac

min. Stippling in (c) and (d) indicates statistical significance at a 5% level.
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in the supplemental material). The spatial patterns after

adjusting for the respective extreme climatologies closely

resemble those of CAM4 relative to reanalysis. A com-

parison with CAM4 is displayed in Fig. 7. Warm extremes

of both parameterizations show very close agreement with

those of CAM4, as do cold extremes in the Southern

Hemisphere. However, a heterogeneous spatial pattern of

areas of warm and cold differences, though mostly not

statistically significant, emerges for cold extremes over the

Northern Hemisphere, with the exception of a large area

ofwarmer extremes over northwesternAsia, which ismost

clearly depicted in the SPPT and CAM4 comparison.

Overall, the effect of introducing a stochastic parame-

terization, with its tendency to enhance the overestimation

of warm extremes in CAM4, while mildly reducing that of

cold extremes is conceptually consistent with Figs. 1c and

1e, as the first effect may be represented by a distribution

of warm extremes shifted toward warmer temperatures

while the second by a similar though more moderate shift

of the distribution of cold extremes. This would suggest

that SKEBS introduces awarmbias in the distribution ofT

of CAM4 rather than augmenting its variability.

d. Regional analysis of GEV PDFs

In this section we aim to characterize the discrep-

ancies of temperature extremes observed above in terms

of distributional differences in global and regional-scale

GEV PDFs, as was done in section 4a. Figures 8a and 8b

display the PDFs of CAM4, SKEBS, and ERA for Tmax

andTmin annual extremes, respectively, over land regions.

The GEV parameters at each grid point correspond to

averages over the 500 resampled estimates. We present

results only for SKEBS as those of SPPT are compara-

ble. Differences in parameter estimates are highly sig-

nificant as indicated by two-sample t tests (Wilks 2011)

except for most of the shape parameter estimates.

Henceforth all parameter differences should be in-

terpreted as statistically significant at a 5% level except

where otherwise noted. As was noted in section 4a, at

these scales the shape parameter estimates for warm

extremes exhibit little variation across datasets; here

we confirm that this similarity extends to cold extremes

as well, indicating that the tail behavior is well captured

by the models in a more general sense. This close

agreement between shape parameter estimates sup-

ports the use of the decomposition of return level

FIG. 5. Differences of 20-yr return level estimates of 1979–2010 annual extremes of daily (left) maximum and (right) minimum

temperature between CAM4 and the stochastic parameterization schemes (a),(b) SKEBS and (c),(d) SPPT.

FIG. 6. Continental regions adapted from the subcontinental

definitions of Seneviratne et al. (2012) (as in Fig. 10.7 of Bindoff

et al. 2013).
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differences in terms of location and scale discrepancies,

as discussed above.

Figure 8a adds to Fig. 2a the SKEBSGEVPDF curve,

which appears displaced to the right of that of CAM4,

with only a minor increase in the scale parameter. Thus

the overestimation of warm extremes relative to CAM4

reported in Fig. 5a can be interpreted as the result of a

shift in the distribution of CAM4 toward higher temper-

atures rather than an increase in interannual variability.

The displacement gives rise to a return level difference of

3.38C against ERA compared to the 2.38C difference of

CAM4. Disagreements of similar magnitude apply to

cold extremes, with differences in return levels of 23.48
and 23.28C for CAM4 and SKEBS, respectively, relative

FIG. 7. As in Fig. 5, but simulations have been adjusted by the respective extremes of the Tmax and Tmin annual cycles.

FIG. 8. As in Fig. 2a, but for GEV PDFs of CAM (solid blue), and SKEBS (dashed blue) for

(left) warm and (right) cold extremes over land, with respect to (a),(b) ERA (red) and (c),(d)

HadEX2 (red). Parameter values in the HadEX2 comparison correspond to area averages

within 158–72.58N, excluding Greenland.
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to ERA, which are related predominantly to discrep-

ancies in location parameter values. Despite the consid-

erable increase in interannual variability in the models

and reanalysis, as compared with warm extremes, the

distributional differences between CAM4 and ERA are

consistent with Fig. 1f, while the slight displacement to

the right of the SKEBS distribution is consistent with

Fig. 1e.

In Figs. 8c and 8d we repeat the analysis above using

HadEX2 as the reference dataset. To minimize potential

distortions arising from observational uncertainties, the

averages of the GEV parameters were taken over land

regions within 158–72.58N, excluding Greenland. Despite

the difference in land definition, the comparison with

HadEX2 yields qualitatively similar results. However,

because of its Northern Hemispheric focus, extremes

show significantly higher interannual variability across the

three datasets. Discrepancies in scale parameter estimates

also increase in magnitude, particularly for cold extremes,

which leads to these differences playing a more important

role in explaining differences in return level estimates.

A more detailed examination of regional differences

in warm extremes between the models and ERA is

presented in Fig. 9. The regions correspond to those

displayed in Fig. 6, but we exclude Antarctica. With the

exception of Africa, where there is a notable similarity

between the various PDFs, the distributional pattern

observed for warm extremes (Fig. 8a) is largely repro-

duced across the regions. Discrepancies in return levels

are more severe over the Northern Hemisphere but

display greater uniformity compared to those of the

Southern Hemisphere. For instance, differences be-

tween CAM and ERA range between 3.558 and 3.688C
in the former compared to a range between 20.238 and
2.948C in the latter. The hemispheric differences in the

magnitude of return level discrepancies are tied to larger

differences in both location and scale parameter esti-

mates. Note that mild discrepancies in shape parameter

estimates arise in some regions, such as in Europe and

Australasia, which diminish the accuracy of the de-

composition. However, it is of little concern because in

such cases the variation in return levels is still primarily

driven by location parameter differences.

The distributional patterns for cold extremes over the

continental regions in Fig. 10 are qualitatively similar to

that observed at the global scale (Fig. 8b), with minor

differences over South America and Australasia where

the discrepancy in return levels between CAM4 and

ERA is so small that the right shift induced by SKEBS

either cancels it or enhances it after it switches sign. The

signature of SKEBS on the distribution of annual cold

extremes is almost indistinguishable from that of CAM4

over the Northern Hemisphere, particularly over North

America where the close agreement in the location and

scale parameter estimates is such that the difference in

return levels results is largely due to the slight discrep-

ancy in the shape parameter estimates.

In general, the impact of SKEBS on the distribution of

annual extremes of CAM4 is largely limited to changes

in the location of the distribution, with minor effects on

the tail behavior and interannual variability. As noted

above, this is consistent with SKEBS shifting the

FIG. 9. As in Fig. 8a, but forGEVPDFs ofTmax annual extremes with parameter values area averaged over continental regions defined in Fig. 6.
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distribution ofT of CAM4 toward warmer temperatures

(Fig. 1a). We explore this further by adjusting the re-

gional PDFs examined above of both warm and cold

extremes by their respective Tmean climatologies (i.e.,

maxTac
mean and minTac

mean, respectively). We note that

such an adjustment affects only the location of the dis-

tributions. In Fig. 11, for space reasons, we focus only on

Northern Hemisphere warm extremes and Southern

Hemisphere cold extremes. Over the Northern Hemi-

sphere, the reductions in location parameter differences

between CAM4 and ERA are at most 1.68C, but the
reductions between SKEBS and ERA are consistently

larger, with values in excess of 28C in Asia and Europe,

represented by shifts of the SKEBS distributions toward

FIG. 10. As in Fig. 9, but with Tmin annual extremes.

FIG. 11. As in Figs. 9 and 10, but GEV PDFs of (a)–(c) Tmax annual extremes over Northern Hemisphere land regions and (d)–(f) Tmin

annual extremes over Southern Hemisphere land regions, adjusted by the respective extreme of the monthly mean temperature annual

cycle Tac
mean.
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colder temperatures relative to ERA. This effect con-

siderably reduces the location parameter differences

between the SKEBS and CAM4 PDFs to within 0.58C.
Over the Southern Hemisphere, the adjustment also

leads consistently to an improved agreement in location

parameter estimates between SKEBS and CAM4. These

results provide further evidence that SKEBS introduces a

warm bias in the distribution of T of CAM4.

In Fig. 12 we extend the analysis of the previous figure

by adjusting the warm and cold extreme distributions by

their respective Tmax and Tmin climatologies. Across ex-

tremes and regions, the adjustment largely cancels the

location discrepancies between the CAM4 and reanalysis

distributions, with values less than 0.58C, and similar re-

ductions apply to the discrepancies between SKEBS and

CAM4. The resulting discrepancies in return values rel-

ative to reanalysis fall within 0.88C. Note how the ad-

justment by the annual extreme climatology has the

compound effect on the SKEBSdistribution of correcting

for both the warm bias in T relative to CAM4 and the

enhanced variability of CAM4 relative to ERA.

5. Discussion and conclusions

This work investigates the skill of the general circu-

lation model CAM4 in simulating annual extremes of

near-surface temperature. Previous studies have dem-

onstrated that the extreme statistics of temperature over

the late twentieth century in many general circulation

models and observationally constrained datasets agree

reasonably well, although there is substantial sensitivity

on the choice of the reference dataset (Kharin et al.

2007, 2013; Sillmann et al. 2013). In general, these

studies report significant improvements in the agree-

ment after correcting for systematic differences in the

mean conditions of temperature extremes.

Temperature extremes are evaluated in terms of 20-yr

return levels and compared against those estimated from

ERA-Interim and the gridded land-based HadEX2 ob-

servational dataset. Our results indicate that CAM4

overestimates both warm and cold extremes over land

regions, particularly over the Northern Hemisphere when

compared against reanalysis. These differences appear to

be more pronounced than those found by Kharin et al.

(2007) in a similar assessment using the ensemblemean of

models participating in the IPCCAR4 diagnostic exercise

and ERA-40 and more recently by Kharin et al. (2013)

using the CMIP5 multimodel ensemble median and

ERA-Interim. Similar spatial patterns, though less spa-

tially coherent, emerge relative to the HadEX2 dataset.

Colder warm extremes, however, arise in high-terrain

regions, such as Greenland and the Tibetan Plateau, but

these discrepancies are likely the result of biases in the

station data measurements, as similar biases were re-

ported in Sillmann et al. (2013) when comparing CMIP5

and HadEX2 TXx climatologies.

We interpret these return level discrepancies in terms

of differences in global and regional-scale GEV PDFs,

obtained by spatially averaging gridpoint GEV param-

eter estimates. At these scales, estimates of the shape

parameter, which controls the tail behavior of the GEV

distribution, are very similar across all datasets for both

FIG. 12. As in Fig. 11, but for GEV PDFs adjusted by the respective extreme of the Tmax and Tmin annual cycle.
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cold and warm extremes. This allows the analysis to focus

on distributional differences based on the two remaining

GEV parameters—namely, the location and scale pa-

rameters, where the first represents a measure of central

tendency while the second, in the present context, is in-

timately related to the interannual variability of annual

extremes. CAM4 GEV PDFs exhibit more extreme re-

turn values relative to those of the verification datasets in

agreement with the overestimation found at the gridpoint

level. The discrepancies originate primarily from differ-

ences in location parameter estimates, as represented by a

shift of the CAM4 PDFs toward higher (lower) temper-

atures for warm (cold) extremes. Interannual variability is

significantly higher for cold extremes in all datasets.

CAM4 consistently overestimates the magnitude of the

scale parameter, indicating that interannual variability in

annual temperature extremes in CAM4 is too large when

compared to observations and reanalysis.

The differences in location parameters are negligible if

the annual extremes of the model and reanalysis are ad-

justed by their respective climatologies of monthly ex-

tremes. When adjusted in this way, the agreement

between the global and regional GEV PDFs is very good,

although the overestimation of the scale parameter per-

sists, particularly for cold extremes over Northern Hemi-

spheric regions. We stress that the match with reanalysis

data can be achieved only when adjusting with the bias of

the Tmax/Tmin climatologies, which is an extreme statistic.

When debiasing with monthly mean temperature the

discrepancy between reanalysis and model remains, con-

firming that it is not the mean warm/cold bias over land

which explains the differences in return values. We note

that this overestimation of temperature extremes is

also reflected in the diurnal temperature range between

both datasets. Considering differences of the 1979–

2010 average of the monthly mean diurnal cycle be-

tween CAM4 and ERA at the month where the Tmax

climatology is extreme (not shown), a good corre-

spondence exists with warm extreme return level dif-

ferences over land (spatial correlation of 0.58), though

the relationship does not hold as well for cold extremes

at the Tmin climatology extreme.

To evaluate the impact of missing subgrid-scale vari-

ability, the effect of two stochastic parameterization

schemes was studied: a stochastic kinetic energy back-

scatter (SKEBS) scheme and a stochastically perturbed

parameterization tendency (SPPT) scheme. Including a

stochastic parameterization noticeably increased the

magnitude of warm extremes while reducing that of cold

extremes. This is contrary to the effect of adding a white

or red noise process to a linear system, which would

result in an increase in variability and consequently

higher return levels for both Tmax and Tmin annual

extremes (e.g., Berner 2005; Gardiner 2009). Since

CAM4 already overestimates extremes, the effect of

adding a stochastic parameterization is beneficial for cold

extremes but adverse for warm extremes. However, nei-

ther of the parameterization schemesmeaningfully reduces

the overestimation of temperature extremes in CAM4.

Unexpectedly, the impact of the two schemes was very

similar, although SKEBS is typically most active in the

midlatitudes, while SPPT tends to have the biggest impact

in the tropics, where convection leads to large tendencies,

and hence perturbations, in the physical parameterizations.

Although different in nature, both schemes seem to excite

modes of variability in CAM4 in such a way that the re-

sponse in the extremes is the same. Jung et al. (2005) and

Berner et al. (2008)provideanexampleof anotherprocess—

namely, Northern Hemispheric blocking—where adding a

stochastic parameterization does not change its structure but

rather only its relative frequency.

Our findings can be best summarized using the sche-

matics shown in Fig. 1. Comparing the model and re-

analysis, the distributional differences between annual

warm and cold extremes closely resemble Figs. 1d and 1f,

respectively, suggesting that the distribution of T in the

model exhibits too much variability relative to that of

reanalysis. In contrast, the addition of a stochastic pa-

rameterization to the model does not induce significant

changes on either the shape or scale parameter; instead,

the distributions of extremes are shifted toward warmer

temperatures, as displayed conceptually in Figs. 1c and

1e. This suggests that the stochastic schemes introduce a

systematic bias in the mean rather than enhance the

variability of T.

Adjusting for biases in the extremes leads to negligible

differences in the location parameters of both perturbed

and unperturbed simulations and results in extremes

comparing much better with reanalysis. However,

adjusting for the bias in mean temperature has a muted

effect on the discrepancies in extremes between the

models and reanalysis.We conclude that CAM4misses an

important aspect of temperature extremes—namely, the

mean statistics of temperature extremes. These can be

easily adjusted for in historical data but not necessarily for

projections in a changing climate; thus, more attention

should be given to this aspect when using climate models

for predicting extremes.
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