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Abstract: Kriging is a nonparametric regression method used in geostatistics for estimating
curves and surfaces for spatial data. It may come as a surprise that the Kriging estimator, normally
derived as the best linear unbiased estimator, is also the solution of a particular variational prob-
lem. Thus, Kriging estimators can also be interpreted as generalized smoothing splines where the
roughness penalty is determined by the covariance function of a spatial process. We build off the
early work by Silverman (1982, 1984) and the analysis by Cox (1983, 1984), Messer (1991), Messer
and Goldstein (1993) and others and develop an equivalent kernel interpretation of geostatistical
estimators. Given this connection we show how a given covariance function influences the bias
and variance of the Kriging estimate as well as the mean squared prediction error. Some specific
asymptotic results are given for one dimensional corresponding Matérn covariances that have as
their limit cubic smoothing splines.

Key words: Kriging, spline, equivalent kernel, asymptotic mean squared error

1 Introduction

A common method in the analysis of spatial data is a geostatistical estimator known as Kriging.
Although Kriging is typically derived as a best linear unbiased estimator it can also be viewed
as a nonparametric curve and surface estimator. Given this later perspective, it is of interest to
understand Kriging in terms of the large sample properties such as the asymptotic variance and
bias that are well established for kernel estimators. The key idea developed in this work is that
Kriging estimators can be interpreted as generalized splines and the asymptotic techniques similar
to those described in Nychka (1995) can be brought to bear on the Kriging estimators.

The problem one is faced with in nonparametric regression is to estimate an unknown function, g,
on [0, 1], for which the observations yi are supposed to depend on the “locations” xi following the
model:

yi = g(xi) + εi, i = 1, . . . , n,

where the εi are iid random errors with common variance σ2. Note that we use the interval [0, 1]
without loss of generality. The solution to this problem by either spline or kernel methods can be
written as

ĝ(x) =
1
n

n∑
i=1

ω(x, xi)yi, (1)
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for a weight function ω and is therefore a linear function of the data. In contrast to kernel methods
the weight function of the smoothing spline estimator is not known in closed form but the techniques
presented in Nychka (1995) can be used to approximate it. In the same spirit we want to represent
the Kriging estimator of a Gaussian process g at an unobserved location x as a weighted average
of the observations at the locations xi using a weight function ω(x,xi), which we call the Kriging
weight function.

The main contribution of this paper is the identification of a functional form approximating ω
for Kriging estimators that is derived from the spatial process covariance function and is a repro-
ducing kernel. We term this approximation the equivalent kernel because in the case of stationary
covariances and uniformly distributed locations, it is similar to a kernel estimator. This paper does
not give a rigorous development of specific results but rather lays out a general framework for the
asymptotic theory. To this end we conjecture the large sample behavior for the mean squared error
of Kriging estimators and also point to verifying a key condition that will allow the rigorous theory
that has been applied to one dimensional splines to be extended to these more general estimators.

As an introduction and to fix ideas, we start by discussing the structure of the classic smoothing
spline problem, focusing on the details which will be important for further developments. Also, we
will outline the equivalence between a Kriging estimator and a spline estimator.

1.1 Classic cubic smoothing splines and reproducing kernels

For normal errors the maximum penalized likelihood estimate is given as the minimizer of

n∑
i=1

(
yi − ϕ(xi)

)2 + λ

∫ 1

0
ϕ′′(x)2dx, (2)

over all twice differentiable functions on [0, 1]. The parameter λ controls the degree of smoothness
via the penalty term, which in this case penalizes roughness of the estimated function using its total
curvature. The solution to this minimization is the standard cubic smoothing spline although the
actual form as a piecewise cubic polynomial is not important to a general discussion. The form of
the roughness penalty using second derivatives implies that linear functions will result in a penalty
of zero. In order to simplify the discussion, we will decompose ϕ into the sum ϕ(x) = β1+β2x+f(x)
with f(0) = f ′(0) = 0, then (2) is given by

minf∈H,β1,β2

[ n∑
i=1

(
(yi − β1 − β2xi)− f(xi)

)2
+ λ

∫ 1

0
f ′′(x)2dx

]
, (3)

where H is a space containing all functions that have square integrable second derivatives on
[0, 1] with f(0) = f ′(0) = 0. Since only the sum of squares is affected by this complication, we
can continue our discussion, which is mainly concerned with the penalty term, without further
consideration of the nullspace. The full estimator can be derived by first minimizing over H and
then over β, this results in a generalized least squares estimate for the null space parameters. We
now identify the penalty term above with an inner product on H given as

〈f, h〉 =
∫ 1

0
f ′′(x)h′′(x)dx, (4)
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and we can express the minimization criterion over f in (3) as

n∑
i=1

(
y∗i − f(xi)

)2
+ λ〈f, f〉, (5)

where y∗i = (yi − β1 − β2xi).
How does one characterize this seemingly difficult minimization over a function space? The

concept of a reproducing kernel provides an explicit and elegant solution to this problem. The set
of functions H together with the inner product (4) is a Hilbert space with reproducing kernel k(·, ·)
given by

k(u, v) =

1
2u

2v − 1
6u

3, u < v,

1
2v

2u− 1
6v

3, u ≥ v.

The function k(·, ·) is defined as a reproducing kernel if it satisfies

〈k(x, ·), f〉 = f(x), and as a special case 〈k(u, ·), k(v, ·)〉 = k(u, v)

i.e. k evaluates a function using the inner product of the Hilbert space. It will also “reproduce”
itself under the inner product. In the case of the kernel given above this can be verified simply
using integration by parts.

Lemma 1.1 (Generalized smoothing spline). If H is a Hilbert space with reproducing kernel k then
the solution ĝ of the minimization problem (5) is of the form

ĝ(x) =
n∑

i=1

θiψi,

with ψi = k(·, xi), for i = 1, . . . , n and coefficients θi obtained by minimizing

minθ

[
||y∗ −Wθ||2 + λθTWθ

]
, (6)

with y∗ = (y∗1, . . . , y
∗
n)T , W = {Wi,k} = {k(xi, xk)} and θ = (θ1, . . . , θn)T .

Proof. The proof is by contradiction. Suppose gother is the minimizer but is not equal to ĝ. Let g∗

be a function of the same form as ĝ but agreeing with gother at the observation points. The residual
sums of squares are the same for these two estimates. Let h = gother − g∗, then h(xi) = yi− yi = 0
and using the reproducing property of k we have:

〈gother, gother 〉 = 〈g∗ + h, g∗ + h〉 = 〈g∗, g∗〉+ 2〈g∗, h〉+ 〈h, h〉 = 〈g∗, g∗〉+
n∑

i=1

θi〈k(·, xi), h〉+ 〈h, h〉

= 〈g∗, g∗〉+
n∑

i=1

θih(xi) + 〈h, h〉 = 〈g∗, g∗〉+ 〈h, h〉

≥ 〈g∗, g∗〉

Thus the minimization criterion evaluated at gother is greater than or equal to the value at g∗.
But we assumed that gother was the minimizer and so one obtains a contradiction. Therefore,
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the solution ĝ of the minimization problem (5) is a linear combination of the values ψk(xi) =
k(xi, xk), i.e. ĝ(xi) = [Wθ]i. Then restating the minimization problem in matrix notation (6) is
straightforward using the reproducing property of k to simplify the penalty term, since λ〈g, g〉 =
λ
∑

i,j θiθj〈k(·, xi), k(·, xj)〉 = λ
∑

i,j θiθjk(xj , xi).

Taking derivatives with respect to θ in (6), setting them equal to zero and solving for θ, results
in

θ̂ = (W + λI)−1y∗.

The estimated function values at the observed points x1, . . . , xn are given by

ĝ = (ĝ(x1), . . . , ĝ(xn))T = Wθ̂ = W(W + λI)−1y∗ = A(λ)y∗,

i.e. the smoothing spline approach leads to a linear smoothing procedure.
For completeness we now add back in the linear term that was absorbed into y∗ and so derive

the full cubic spline estimator. Substituting the minimizer over f back in (3) one obtains, after
some algebra,

β̂ =
(
XT (W + λI)−1X

)−1XT (W + λI)−1y,

where X contains the value one in its first column and x1, . . . , xn in the second column, and
y = (y1, . . . , yn)T . The reader can interpret this estimate as a generalized least squares regression
estimate where the errors have a covariance proportional to (W+λI). In particular the matrix W,
derived from the reproducing kernel is formally being manipulated as a covariance function for
a random process. This observation provides a link into understanding the connection of splines
with Kriging. In the next section we will see that the covariance function plays the same role as a
reproducing kernel.

1.2 The classical Kriging problem

For the Kriging problem our initial context is very different, we have a spatial field

yi = g(xi) + εi, i = 1, . . . , n,

where g is a zero mean Gaussian process on a domain D ⊂ Rd, d typically 1 or 2, and εi are iid
normal errors, independent of g and distributed according to a zero mean normal distribution with
variance σ2. Without loss of generality we assume that the volume of D is 1. The covariance of
the Gaussian process g is assumed to be

Cov
(
g(x), g(x′)

)
= k(x,x′),

for an appropriate covariance function k. Much of the statistical craft in geostatistics is in finding
good representations and estimators for k, but we will not address this aspect here. Given k,
the Kriging problem is to find a prediction of the spatial field g at the location x based on the
observations y1, . . . , yn. This can easily be achieved by using the properties of the multivariate
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normal distribution. A generalization of the following to more than one prediction location is
straightforward . For y = (y1, . . . , yn)T we have that(

y
g(x)

)
∼ N

(
0,

(
Cov(y,y) Cov

(
y, g(x)

)
Cov

(
g(x),y

)
Cov

(
g(x), g(x)

))) .
Then the prediction of g(x) can, for example, be defined as the conditional expectation of g(x)
given the observations. For g =

(
g(x1), . . . , g(xn)

)T , the conditional density is given by:

[g(x) |y] = N
(
Cov

(
g(x),g

)
Cov(y,y)−1y,Cov

(
g(x), g(x)

)
−Cov

(
g(x),g

)
Cov(y,y)−1Cov

(
g, g(x)

))
.

(7)
Now examine the conditional mean in more detail:

Cov
(
g(x),g

)
Cov(y,y)−1y = Cov

(
g(x),g

)
θ̂ =

∑
i

k(x,xi)θ̂i,

where as before θ̂ = (W + λI)−1y with [W]i,j = k(xi,xj) and λ = σ2. This is exactly the form of
the spline type estimator discussed in the previous section. We have now shown algebraically that
if one solves a spline minimization problem where the inner product has the reproducing kernel k
then the solution is the Kriging estimator.

If one considers the estimates of g at the observation points then the vector of predictions is Sy,
where the matrix S = Cov(g,g)Cov(y,y)−1 is usually known as the smoothing matrix associated
with Kriging and contains in its rows the so-called Kriging weights.

In summary, we have shown that the Kriging estimator is actually a smoothing spline estimator
on a Hilbert space with reproducing kernel corresponding to the covariance function of the underly-
ing Gaussian process (since the matrix W is determined by k). This statement will be made more
rigorous in Section 2 providing the appropriate variational problem and inner product.

1.3 Outline

The previous two subsections served two purposes. On the one hand, the smoothing spline approach
to function estimation has been introduced together with the use of reproducing kernel Hilbert
spaces. On the other hand, it has been made intuitive why the Kriging estimator is another special
case of this general approach. Section 2 will rigorously show how the Kriging problem can be stated
as an analogous variational problem and how the results of Nychka (1995) can be transferred to
Kriging. Section 3 gives details for some special cases of stationary covariance functions.

2 An equivalent kernel for Kriging

2.1 Variational problem and reproducing kernel of the Kriging problem

Based on the preceding discussion from Section 1.1 let

L(f) =
n∑

i=1

(
yi − f(xi)

)2 + λ〈f, f〉, (8)
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where the penalty inner product 〈·, ·〉 is such that the correlation function k is the corresponding
reproducing kernel. Then the estimator is the minimizer of L(f) over all f so that 〈f, f〉 < ∞.
Based on the previous discussion this has the solution ĝ =

∑n
i=1 θiψi, where ψi = k(·,xi), for

i = 1, . . . , n. Analogously to the developments of Section 1.1, this solution can then be represented
in matrix notation and by construction coincides with the Kriging estimator as given in Section 1.2.

Our first objective is to define an inner product on a Hilbert space of functions having the
correlation function k as reproducing kernel. If one has a positive definite kernel then one can
always formally define an inner product such that the kernel is the reproducing kernel and also
extend this to a Hilbert space (Aubin, 2000, Theorem 5.9.2). However, in our case we would like
to work with an inner product that is also interpretable with respect to integrals. Accordingly, we
define the relevant inner product via the integral operator Kf(x) =

∫
D k(x,x

′)f(x′) dx′ as

〈f1, f2〉 =
∫
D

(K−1/2f1)(x)(K−1/2f2)(x) dx,

for all functions f1 and f2 in the space H of functions for which (K−1/2f) exists and is square
integrable over D ⊂ Rd. To derive K−1/2 we use a decomposition of k based on eigenvalues and
eigenfunctions:

k(x,x′) =
∞∑

ν=1

λνϕν(x)ϕν(x′), with λ1 > λ2 > . . . , ϕν⊥ϕν′ in L2(D) and
∫
D
ϕ2

ν = 1.

This decomposition is usually known as Mercer’s theorem, which uses the eigenfunctions of the
integral operator associated to k. Theorem 11.3.1 of Aubin (2000) is an analogous result on compact
operators, Mercer’s theorem then follows since the integral operator associated to k is compact
(Aubin, 2000, Proposition 12.1.3). Using this decomposition we have that

Kf(x) =
∞∑

ν=1

λνϕν(x)
∫
D
ϕν(x′)f(x′) dx′

and by orthogonality of the ϕν

K−1/2f =
∞∑

ν=1

λ−1/2
ν ϕν(x)

∫
D
ϕν(x′)f(x′) dx′.

Therefore, k is the reproducing kernel since

〈k(t, ·), k(s, ·)〉 =
∫
D

(
K−1/2k(t, ·)

)
(x)
(
K−1/2k(s, ·)

)
(x) dx

=
∞∑

ν=1

∞∑
µ=1

λ−1/2
ν λ−1/2

µ

(∫
D
ϕν(x′)k(t,x′) dx′

)(∫
D
ϕµ(x′)k(s,x′) dx′

)(∫
D
ϕν(x)ϕµ(x) dx

)
=

∞∑
ν=1

λνϕν(t)ϕν(s) = k(t, s),

where we used the orthogonality of the functions ϕν and the decomposition of k. We have now
constructed an inner product such that k is its reproducing kernel. This means that minimizing
(8) is in fact equivalent to the Kriging problem.
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In closing one might ask: What exactly is the Hilbert space implied by this inner product?
We know that H will contain finite linear combinations of the form f =

∑
k akk(·, xk) and in fact

H is just the completion of this class of functions. A more precise description can be inferred by
considering the Fourier transform of k when the covariance is stationary and this allows one to
identify the differentiability of members of H.

2.2 The Kriging weight function

This is the main insight of this paper: we represent the minimizer of (8) as a weighted local
average of the observations, i.e. ĝ(x) = n−1

∑n
i=1 ω(x,xi)yi, similar to the spline weight function

representation of the smoothing spline estimate in Nychka (1995). The weight can be characterized
by the first order conditions for the minimizer of L. This idea was originated by Cox (1983) and
was also the basis for Nychka (1995). For any function h in some dense subset of H, the minimizer
of (8) (with smoothing parameter λ · n) satisfies the equation

d
dε
L(ĝ + εh)

∣∣∣
ε=0

= − 2
n

n∑
i=1

(
yi − ĝ(xi)

)
h(xi) + 2λ〈ĝ, h〉 = 0. (9)

Examining (1) (its version for the Kriging estimator) it is trivial to see that ω(·,xj) is the
“estimate” for the data yk = n for k = j and yk = 0 otherwise. Substituting these synthetic data
into (9) the exact weight function must satisfy the following identity

1
n

n∑
i=1

ω(xi,xj)h(xi) + λ〈ω(·,xj), h〉 = h(xj).

Furthermore ω must be a reproducing kernel for the inner product, 1
n

∑n
i=1 f1(xi)f2(xi)+λ〈f1, f2〉,

and so is a symmetric function. We assume that the empirical distribution of the xi tends to a
uniform distribution on D for n→∞. Now add and subtract the continuous integral approximation
to the discrete sum and group the terms(

1
n

n∑
i=1

ω(xi,xj)h(xi)−
∫
D
ω(t,xj)h(t) dt

)
+
∫
D
ω(t,xj)h(t) dt + λ〈ω(·,xj), h〉 = h(xj). (10)

The final step in this derivation is to substitute a particular set of functions for h. Let G be the
reproducing kernel with respect to the inner product defined by

〈f1, f2〉λ =
∫
D
f1(t)f2(t) dt + λ〈f1, f2〉.

Substituting G(·, u) into (10) and using its reproducing property now gives

ω(u,xj) = G(xj ,u) +

(∫
D
ω(t,xj)G(t,u) dt− 1

n

n∑
i=1

ω(xi,xj)G(xi,u)

)
.

Thus provided that the difference between the integral and sum is negligible G will be a good
approximation to ω. Moreover G has a simpler form as it is defined through a continuous integral
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rather than a sum depending on the exact distribution of the observation locations. The analysis in
Nychka (1995) gives conditions under which the approximation will be accurate. Even though the
final application in that work was for a specific linear spline, the basic theorem establishing bounds
on the error is more general. Our opinion is that the main hurdle in applying this approximation
to Kriging type estimators is to establish an assumption termed the exponential envelope condition
(EEC). This condition is on G and facilitates an inductive argument to infer that the bounds on
the difference are asymptotically negligible relative to G. For example, in the case of mth order
smoothing splines the EEC requires, that there exist positive constants α, ε, K <∞ such that for
all t, τ ∈ [0, 1],

∣∣G(t, τ)
∣∣ ≤ K

λ1/2m
exp

(
− (α− ε)

|t− τ |
λ1/2m

)
,

∣∣∣ ∂
∂t
G(t, τ)

∣∣∣ ≤ K

λ2/2m
exp

(
− (α+ ε)

|t− τ |
λ1/2m

)
,

∣∣∣ ∂2

∂t∂τ
G(t, τ)

∣∣∣ ≤ K

λ3/2m
exp

(
− (α+ ε)

|t− τ |
λ1/2m

)
,

if the partial derivatives exist for all t, τ ∈ [0, 1]. Otherwise, if (∂/∂t)G is not continuous when
t = τ , then

∂

∂t
G(t, τ)

∣∣∣
τ=t−

− ∂

∂t
G(t, τ)

∣∣∣
τ=t+

=
1
λ
.

In the following we will be using Fourier transform techniques, which require that integrals are
taken over Rd. Our main interest is in observations taken on a bounded domain and so we briefly
sketch the link between those two. First, we observe that the penalty inner product 〈·, ·〉 can be
taken over Rd without changing the resulting estimator since it does not depend on the observa-
tion points. Secondly, denote by G the reproducing kernel of the inner product

∫
D f1(x)f2(x)dx+

λ〈f1, f2〉 and by G∗ the reproducing kernel of the inner product
∫

Rd f1(x)f2(x)dx+ λ〈f1, f2〉. Sup-
pose that q is the uniform density over the domain D, which we assumed to have volume 1, then
by the properties of both G and G∗ it is easy to show that

G∗(u, v) = G(u, v) +
(∫

Rd

G∗(x, u)G(x, v)
(
q(x)− 1

)
dx
)
.

This gives an approximation for one kernel with another and the error is an integral with respect
to G∗. Therefore, we can conclude that showing an EEC for G∗ implies that it holds for G as well.
One disadvantage of this approximation is that it will only be valid for the estimator in the interior
of the domain and will not take into account edge effects in the estimator.

In summary we have identified an approximation, G∗ to ω that facilitates an asymptotic analysis
of the variance and bias of a Kriging estimator. This approximation is a reproducing kernel and
the main challenge is to be able to verify an EEC for G∗. The next section tackles some simple
covariances to illustrate how to apply these ideas. Before doing so we give a summary of how to
use G to infer asymptotic properties for the estimator.
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2.3 Mean squared error of a Kriging estimator

Given the approximation described in the preceding section it is of interest to derive properties of
these estimators. It should be emphasized that these are still conjectured relationships but we also
believe that a rigorous justification is accessible given the results for splines and also the examples
in the following section.

Under the approximation

ĝ(x) ≈ 1
n

n∑
i=1

G∗(x,xi)yi

we approximate the variance

Var
(
ĝ(x) | g

)
≈ σ2

n

∫
Rd

G∗(x,u)2du

and the bias as
E
(
ĝ(x) | g

)
− g(x) ≈

∫
Rd

G∗(x,u)g(u)du− g(x).

Here we have approximated the discrete sum with an integral and a rigorous justification is possible.
This type of analysis is supported by the same methods used to justify the equivalent kernel
approximation and follows the same arguments as in the proof of Theorem 2.2 in Nychka (1995).

In the usual case of kernel estimators the variance and squared bias can be combined to give
a mean squared error (MSE). However, for Kriging estimates it is the convention to also take the
expectation over g. Using the representation of ĝ(x) in terms of the kriging weight function ω and
the orthogonality of the errors εi, we have that

E
((
ĝ(x)− g(x)

)2 ∣∣ g) =
( 1
n

n∑
i=1

ω(x,xi)g(xi)− g(x)
)2

+
σ2

n2

n∑
i=1

ω(x,xi)2.

Approximating ω as above by G∗ and substituting integrals for the discrete sums, we obtain
the sum of the squared bias and variance above for this conditional mean squared error. On
the other hand, taking expectation over g, expanding the square and using the notation w =
n−1

(
ω(x,x1), . . . , ω(x,xn)

)T , we obtain

E
((
ĝ(x)− g(x)

)2) = wT Cov(g,g)w− 2Cov
(
g, g(x)

)Tw + Cov
(
g(x), g(x)

)
+ σ2wTw

= wT
(
Cov(g,g) + σ2I

)
w− 2Cov

(
g, g(x)

)Tw + Cov
(
g(x), g(x)

)
.

Since ĝ(x) = wTy and on the other hand from Section 1.2 ĝ(x) = Cov
(
g(x),g

)
Cov(y,y)−1y, we

have that w = Cov(y,y)−1Cov
(
g, g(x)

)
. Plugging this into the last equation and rearranging leads

to
E
((
ĝ(x)− g(x)

)2) = Cov(g(x), g(x))− Cov(g(x),g)Cov(y,y)−1Cov(g, g(x))

and this is the same as the conditional variance in (7).
With the identification w = Cov(y,y)−1Cov

(
g, g(x)

)
, approximating ω in w by G∗ and again

substituting an integral for the discrete sum we are led to the approximation:

MSE
(
ĝ(x)

)
≈ k(x,x)− 1

n

n∑
i=1

G∗(x,xi)k(x,xi) ≈ k(x,x)−
∫

Rd

G∗(x,u)k(x,u)du. (11)

9



The actual error terms in this expression are identified in Section 3.3 when our theory is applied
to a one dimensional example with the Matern covariance.

3 Stationary covariances

We start by assuming a stationary and isotropic covariance function, i.e. k(x,y) = k
(
|x− y|

)
. By

construction we have then as well that the equivalent kernel is a function of the radial component
only, G(x,y) = G

(
|x−y|

)
. For the special cases considered in this chapter, we obtain this result by

straightforward calculation. We will be applying Fourier transform techniques in order to obtain
results on G, therefore we assume the domain to be all of Rd.

3.1 Equivalent kernel

For stationary covariances the operator Kf(x) =
∫

Rd k(x− y)f(y) dy is a convolution of the func-
tions k and f . Therefore, denoting by F the Fourier transform, we have that F(Kf) = F(k)F(f).
We define the operators K−1/2 and K1/2 by

K−1/2f = F−1
( F(f)
F(k)1/2

)
and K1/2g = F−1

(
F(g)F(k)1/2

)
,

for all f , g, functions on Rd, for which F(f), F(g) exist and (F(f)/F(k)1/2), (F(g)F(k)1/2) are
square-integrable. Since we are essentially concerned with covariance functions satisfying F(k) ∝
|ω|−ν , |ω±ν/2F(f)(ω)| tends sufficiently quickly to zero for rapidly decreasing f ∈ C∞(Rd) such
that the inverse transform exists for those f . The generalization to square integrable functions is
by density of C∞(Rd), see, for example, Dym and McKean (1972), Chapter 2.2. These operators
can actually be interpreted as the square root of K and its inverse, since

F
(
K1/2(K−1/2f)

)
= F(f) and F

(
K1/2(K1/2f)

)
= F(Kf).

Using Parseval’s theorem, this implies that the inner product for the penalty satisfies

〈f1, f2〉 =
∫

Rd

(K−1/2f1)(x)(K−1/2f2)(x) dx =
∫

Rd

(
F(K−1/2f1)

)
(ω)
(
F(K−1/2f2)

)
(ω) dω

=
∫

Rd

F(f1)(ω)F(f2)(ω)
F(k)(ω)

dω,

for all functions f1 and f2 in C∞(Rd). Furthermore, again using Parseval’s theorem, the inner
product for which we aim to determine the reproducing kernel satisfies

〈f1, f2〉λ =
∫

Rd

f1(t)f2(t) dt + λ〈f1, f2〉

=
∫

Rd

F(f1)(ω)F(f2)(ω) dω + λ

∫
F(f1)(ω)F(f2)(ω)

F(k)(ω)
dω

=
∫

Rd

F(f1)(ω)F(f2)(ω)
(
1 + λ

1
F(k)(ω)

)
dω.
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Hence, the reproducing kernel G is characterized by〈
h,G

(
| · −xj |

)〉
λ

=
∫

Rd

F(h)(ω)F
(
G
(
| · −xj |

))
(ω)
(
1 + λ

1
F(k)(ω)

)
dω = h(xj)

for arbitrary h ∈ C∞(Rd). On the other hand, we have by the Fourier inversion theorem that for
all h ∈ C∞(Rd) ∫

Rd

F(h)(ω)eiωxj dω = h(xj).

Therefore, we conclude that

F(G
(
| · −xj |

)
)(ω)

(
1 +

1
λF(k)(ω)

)
= eiωxj ⇐⇒ F(G)(ω) =

(
1 + λ

1
F(k)(ω)

)−1
, (12)

i.e. the Fourier transform of the reproducing kernel we want to determine is essentially determined
by the Fourier transform of the underlying covariance function and we will look at it in more detail
in the next section under specific covariance models.

3.2 Exponential envelope condition for the Matérn class of covariances

The Matérn class of covariances is given by

k(r) =
φ

Γ(ν)2ν−1
(αr)νKν(αr), for φ > 0, α > 0, ν > 0 and r ∈ R,

and the corresponding Fourier transform, i.e. the spectral density, is

F(k)(ω) =
φΓ(ν + d/2)α2ν

Γ(ν)πd/2(α2 + ω2)ν+d/2
. (13)

This parameterization is valid for any dimension d, where the arguments r and ω correspond to
radial components in state and frequency space respectively. Without loss of generality, we assume
φ = 1. Plugging (13) into (12)

F(G)(ω) =
1

1 + (λ/c)(α2 + ω2)ν+d/2
, (14)

where c = Γ(ν + d/2)α2νπ−d/2/Γ(ν) depends on ν, α and d.

One dimensional smoothers with the Matérn and cubic splines

First we consider d = 1 and ν = 1.5, therefore the exponent in (14) is 2 and we see below that
we have a correspondence to splines of order m = 2, i.e. roughness penalties based on second
derivatives. In this case it is possible to calculate the inverse transform G by using 3.731.1 of
Gradshteyn and Ryzhik (1965):

G(t) =
√
cπ√

λα2 + c
exp(−At)

(
B cos(Bt) +A sin(Bt)

)
, (15)

where A =
√(√

α4 + c/λ+ α2
)
/2 and B =

√(√
α4 + c/λ− α2

)
/2. The order of λ in this function

is λ−1/4 and an EEC for G follows straightforwardly.
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It is interesting to compare this result with thin plate splines. Using F(4f)(ω) = ω4F(f), the
same type of grouping of the penalty and the second term in the variational inner product as for
Kriging and 3.727.1 of Gradshteyn and Ryzhik (1965), we obtain

F(G)(ω) =
1

1 + λω4
and

G(t) =
π√

2λ1/4
exp

(
− t√

2λ1/4

)(
cos
(
− t√

2λ1/4

)
+ sin

(
− t√

2λ1/4

))
. (16)

Therefore, we consider this special case of Kriging and a thin plate spline of order 2 in d = 1 to be
equivalent. The EEC is clear from inspection and to our knowledge this is the first analysis that
draws a clear connection between the Matérn covariance estimator and a cubic spline as a limiting
case.

Two dimensional thin plate spline

Naturally, the second special case should be d = 2 and ν = 1 and this is aligned with early results by
Stein (1991). Again we attempt to calculate the inverse transform in two dimensions. By switching
to polar coordinates we find that the inverse transform of

(
1 + λc(α2 + ω2)2

)−1, where ω refers to
the radial component in the frequency space, depends on the radial component in the state space
only. Then, the inverse transform is given by

G(r) =
2πc
λ

∫ ∞

0

J0(rω)ω
c/λ+ (α2 + ω2)2

dω,

where J0 is the Bessel function of first kind of order 0. Unfortunately, we are unable to further
simplify this expression and it will be necessary to prove the EEC using the Fourier integral or to
use additional theory for Bessel functions.

In this second case, it is equally interesting to look at the thin plate spline case. Similar to
d = 1 and using the same polar coordinates substitution as for Kriging, we obtain

G(r) =
2π
λ

∫ ∞

0

J0(rω)ω
1/λ+ ω4

dω = − 1
λ
λ−1/2kei(λ−1/4r),

where kei is a Kelvin function, see Abramowitz and Stegun (1965), page 379. This result is identical
to the kernel approximation for the Kriging predictor under a generalized covariance function model
of Stein (1991).

3.3 Mean squared error for the Matérn class of covariances

For the Matérn covariance function in d = 1 with ν = 1.5 we have calculated the equivalent kernel
G and from its functional form it is clear that it satisfies the EEC for some λ1/γ , γ > 0.

Let Fn denote the empirical distribution function of the observation points xi, F the uniform
distribution function on D and Dn = supD |Fn−F |. For discrete sums to be properly approximated
by integrals we need Dn → 0 at an appropriate rate but we do not require that the locations be
drawn from a probability distribution. In the case of near regular grids one can expect that Dn

converges to zero a rate of 1/n.
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Theorem 3.1 (MSE for the one dimensional Matérn estimator). Assume that Dn → 0 as n→∞
with κDn/λ

1/γ < 1 for some constant κ and that k is the Matérn covariance function in d = 1 with
ν = 1.5. Without loss of generality assume that k(0) = 1. Then we have

MSE
(
ĝ(x)

)
≈ 1−

∫
R
G
(
|x− u|

)
k
(
|x− u|

)
du,

for x in the interior of D and λ in a range depending on Dn.

The proof of this theorem is along the lines of the proof of Theorem 2.2 of Nychka (1995). We
sketch an argument why it holds below. First start with an exact expansion of MSE(ĝ(x)) obtained
by adding and subtracting two additional terms.

MSE
(
ĝ(x)

)
= 1− 1

n

n∑
i=1

ω
(
|x− xi|

)
k
(
|x− xi|

)
+

1
n

n∑
i=1

G
(
|x− xi|

)
k
(
|x− xi|

)
− 1
n

n∑
i=1

G
(
|x− xi|

)
k
(
|x− xi|

)
+
∫

R
G
(
|x− u|

)
k
(
|x− u|

)
du

−
∫

R
G
(
|x− u|

)
k
(
|x− u|

)
du

=
∫

R

(
ω
(
|x− u|

)
−G

(
|x− u|

))
k
(
|x− u|

)
dFn(u) (17)

+
∫

R
G
(
|x− u|

)
k
(
|x− u|

)
d(Fn − F )(u) (18)

+ 1−
∫

R
G
(
|x− u|

)
k
(
|x− u|

)
du. (19)

The last term, (19) is the dominating one and is the same approximation that was identified at (11).
Thus a rigorous proof consistent with our conjectures depends on bounding (17) and (18). The
analysis of these individual terms follows very closely the arguments on page 1191 of Nychka (1995)
for bounding integrals and bounding the difference between sums and integrals. The integral (17)
can be shown to be negligible using the EEC and (18) is negligible because of the assumptions on
Dn.

The last term can be simplified by switching to Fourier transforms in the integrand. Assuming
that 0 is in D, we use basic properties of the Fourier transform concerning convolutions and the
value of the original function at 0 to show that

MSE
(
ĝ(0)

)
≈ 1−

∫
R

1(
1 + (λ/c)(α2 + ω2)2

) c

(α2 + ω2)2
dω.

By stationarity the MSE approximation is the same for all x in the interior of D. This integral
now is the basis for obtaining the asymptotic behavior of the mean squared error as a function of
the parameters α and λ. As an example of the convergence rates, hold α fixed and consider the
integral just as a function of λ. Using the fact that the spectral density of the Matérn covariance
function integrates to 1, one can verify

1−
∫

R

1(
1 + (λ/c)(α2 + ω2)2

) c

(α2 + ω2)2
dω =

∫
R

λ(
1 + (λ/c)(α2 + ω2)2

)dω.
13



Now make the substitution u = λ1/4ω in this integral and we obtain

λ3/4

∫
R

1(
1 + (1/c)((αλ1/4)2 + u2)2

)du.
Noting that we made an abuse of notation where λ in the equivalent kernel section is actually σ2/n

(redefined as λ/n from the introductory section), we can conclude that the pointwise MSE for this
case is of order n−3/4 based on the equivalent kernel.

One of the advantages of the use of Fourier transforms is that we can evaluate the mean squared
error without actually calculating the inverse transform in order to obtain a closed form for the
reproducing kernel G. For the case d = 1 and ν = 1.5 the closed form of G only allowed us to
verify the EEC for G. Assuming that the EEC holds for arbitrary dimension and parameter ν,
then the mean squared error can be evaluated using the same techniques as above and spherical
polar coordinates:

MSE
(
ĝ(0)

)
≈
∫ ∞

0

λωd−12πd/2/Γ(d/2)(
1 + (λ/c)(α2 + ω2)ν+d/2

)dω
= λ2ν/(2ν+d)

∫ ∞

0

ud−12πd/2/Γ(d/2)(
1 + (1/c)(λ1/(ν+d/2)α2 + u2)ν+d/2

)du,
i.e. the conjectured rate of convergence for the pointwise MSE is (1/n)2ν/(2ν+d).

4 Discussion

We have sketched a framework to understand the asymptotic properties of spatial statistics estima-
tors based on a connection to existing theory for splines. For stationary covariances the equivalent
kernel approximation has a simple form in terms of its Fourier transform and we have obtained
closed form expressions in some key cases. We believe that the equivalent kernel will lead to the
correct convergence rates for the Kriging estimators both under the correct covariance and also
under covariance misspecification. To this end it will provide some theoretical insight in a field
that is not completely developed. However, these forms are conjectured relations and we only offer
a rigorous result for the one dimensional case of the Matérn covariance that is related to cubic
splines. Even in this case, we have deferred including a complete proof. For future work we plan to
provide a rigorous adaptation of Nychka (1995) that is streamlined for clarity and handles the more
general estimators considered here. It is our opinion that this work will identify the exponential
envelope condition as the key assumption and so we are comfortable emphasizing this aspect in
this introduction and overview. An important detail is to understand how to verify this condition
directly with the Fourier transform of the equivalent kernel and a possible avenue is through a
Tauberian Theorem.

One motivation for this work is to understand the behavior of the estimator when the covariance
is non-stationary. In this case the covariance is often difficult to estimate. Indeed, it can look like
another function estimation problem! It is an open issue as to whether the benefits in using
a more flexible estimate of a non-stationary covariance function are countered by the increased
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variability in using a complex estimate of the covariance. This estimated covariance may be subject
to substantial sampling error and for limited sample sizes may not be an improvement over a more
stable stationary model. As a first step in understanding this tradeoff, this asymptotic analysis has
the potential in quantifying the improved MSE when the correct, non-stationary covariance is used
versus an approximate stationary version. If the improvements are modest then this may suggest
that modeling the non-stationary covariance is not important for spatial prediction. However, it
may be important for inference.

Another area of work is modifying these techniques to account for distributions of locations
that are not well approximated by a uniform distribution. A possible strategy is to modify the
equivalent kernel for uniform distributions with a variable smoothing parameter that adjusts for
the location density. This technique is analogous to a variable bandwidth kernel estimator and has
worked for the one dimensional spline case when the densities are smooth.

In closing we note that smoothing is just one aspect of geostatistics and there are many problems
where the function or surface is observed almost without error. The Kriging estimators are still
very practical methods but they no longer have the property of a smoother because they may match
the observations closely and provide smooth interpolations between observations. In this case of
small measurement error the asymptotics discussed here break down and locations where g is not
observed will have different MSE than estimates at the observed locations. In short, there are still
many challenges posed in understanding these penalized estimators and advances will be useful
because of the widespread use of these methods in the geosciences.
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