
Solution to PDEs using Radial Basis Function Finite-Differences

(RBF-FD) on Multiple GPUs

Evan F. Bollig
bollig@scs.fsu.edu

Florida State University

Natasha Flyer
flyer@ucar.edu

NCAR

Gordon Erlebacher
gerlebacher@fsu.edu

Florida State University

July 3, 2012

Abstract

This paper presents parallelization strategies for the Radial Basis Function-Finite Difference (RBF-
FD) method. As a generalized finite differencing scheme, the RBF-FD method functions without the
need for underlying meshes to structure nodes. It offers high-order accuracy approximation but scales
as O(N) per time step, with N being with the total number of nodes. To our knowledge, this is the
first implementation of the RBF-FD method to leverage GPU accelerators for the solution of PDEs.
Additionally, this implementation is the first to span both multiple CPUs and multiple GPUs. OpenCL
kernels target the GPUs and inter-processor communication and synchronization is managed by the Mes-
sage Passing Interface (MPI). We verify our implementation of the RBF-FD method with two hyperbolic
PDEs on the sphere, and demonstrate up to 9x speedup on a commodity GPU with unoptimized kernel
implementations. On a high performance cluster, the method achieves up to 7x speedup for the maximum
problem size of 27, 556 nodes.

1 Introduction

Numerical methods based on radial basis functions (RBFs) are rapidly gaining popularity for the solution
of partial differential equations (PDEs). With a history extending back four decades for RBF interpolation
schemes [30], and two decades for RBFs applied to solving PDEs [33], many avenues of research remain
untouched within their realm. Being a meshless method, RBF methods excel at solving problems that
require geometric flexibility with scattered node layouts in n-dimensional space. They naturally extend
into higher dimensions without significant increase in programming complexity [18, 57]. In addition to
competitive accuracy and convergence compared with other state-of-the-art methods [15, 16, 18, 19, 57],
they also boast stability for large time steps.

Examples of infinitely smooth RBFs in 2D space are shown in Figure 1 (good references on non-smooth
and compactly supported RBFs, which are not considered in this paper due to lower order of convergence,
are [6, 55]). RBF methods are based on a superposition of translates of these radially symmetric functions,
providing a linearly independent but non-orthogonal basis used to interpolate between nodes in n-dimensional
space. An example of RBF interpolation in 2D using 15 Gaussians is shown in Figure 2, where φj(r(x)) is

an RBF centered at {xj}nj=1. The radial coordinate is r =
√

(x− xj)2 + (y − yj)2.
Infinitely smooth RBFs depend on a shape or support parameter ε that controls the width of the function.

The functional form of the shape function becomes φ(εr). Decreasing ε increases the support of the RBF
and in most cases, the accuracy of the interpolation, but worsens the conditioning of the RBF interpolation
problem [44]. Fortunately, recent algorithms such as Contour-Padé [26] and RBF-QR [22, 24] allow for
numerically stable computation of interpolants in the nearly flat RBF regime (i.e., ε → 0) where high
accuracy has been observed [25, 37].

Historically, the most common way to implement RBFs is in a global sense. That is, the value of a
function value or any of its derivatives at a node location is a linear combination of all the function values
over the entire domain, just as in a pseudospectral method. If using infinitely smooth RBFs, this leads to
exponential convergence of the RBF interpolant for smooth data [21]. As discussed in [19], global RBF

1

−2

−1

0

1

2

−2

0

2

0

0.2

0.4

0.6

0.8

1

xy

φ
(r

(x
))

(a) Gaussian

−2

−1

0

1

2

−2

0

2

0.4

0.6

0.8

1

xy

φ
(r

(x
))

(b) Inverse Multiquadric

−2

0

2

−2

0

2
1

1.5

2

2.5

3

xy

φ
(r

(x
))

(c) Multiquadric

Figure 1: Commonly used RBFs.

differentiation matrices (DM) are full, requiring O(N3) floating point operations (FLOPs) to assemble for a
given node layout and O(N2) to time-step.

Alternatively, one can use RBF-generated finite differences (RBF-FD) to introduce sparse DMs (Note:
for pure interpolation, compactly supported RBFs can also introduce sparse matrices [54]). RBF-FD was
first introduced by Tolstykh in 2000 [49], but it was the simultaneous, yet independent, efforts in [46], [50],
[56] and [8] that gave the method its real start. The RBF-FD method is similar in concept to classical finite-
differences (FD) but differs in that the underlying differentiation weights are exact for RBFs rather than
polynomials. RBF-FD share advantages with global RBF methods, like the ability to function without an
underlying mesh, easily extend to higher dimensions and afford large time steps; however spectral accuracy is
lost. Some of the advantages of RBF-FD include high computational speed together with high-order accuracy
(6th to 10th order accuracy is common) and the opportunity for parallelization. As in FD, increasing the
stencil size n increases the accuracy of the approximation. Given N total nodes in the domain (such as on the
surface of a sphere), N linear systems, each of size n× n, are solved to calculate the differentiation weights.
Since n� N , the RBF-FD preprocessing complexity is dominated by O(N), much lower than for the global
RBF method of O(N3), with the cost per time step also being O(N). RBF-FD have been successfully
employed for a variety of problems including Hamilton-Jacobi equations [8], convection-diffusion problems
[9, 48], incompressible Navier-Stokes equations [10, 46], transport on the sphere [23], and the shallow water
equations [17].

As N grows larger, it behooves us to work on parallel architectures, be it CPUs or GPUs. With regard
to the latter, there is some research on leveraging RBFs on GPUs in the fields of visualization [13, 53],
surface reconstruction [7, 12], and neural networks [5]. However, research on the parallelization of RBF
algorithms to solve PDEs on multiple CPU/GPU architectures is essentially non-existent. We have found
three studies that have addressed this topic, none of which implement RBF-FD but rather take the avenue
of domain decomposition for global RBFs (similar to a spectral element approach). In [14], Divo and Kassab
introduce subdomains with artificial boundaries that are processed independently. Their implementation
was designed for a 36 node cluster, but benchmarks and scalability tests are not provided. Kosec and Šarler
[36] parallelize coupled heat transfer and fluid flow models using OpenMP on a single workstation with one
dual-core processor. They achieved a speedup factor of 1.85x over serial execution, although there were
no results from scaling tests. Yokota, Barba and Knepley [59] apply a restrictive additive Schwarz domain
decomposition to parallelize global RBF interpolation of more then 50 million nodes on 1024 CPU processors.
Only Schmidt et al. [45] have accelerated a global RBF method for PDEs on the GPU. Their MATLAB
implementation applies global RBFs to solve the linearized shallow water equations utilizing the AccelerEyes
Jacket [2] library to target a single GPU.

To our knowledge, this paper presents the first implementation of RBF-FD to span multiple CPUs. Each
CPU has a corresponding GPU attached to it in a one-to-one correspondence. We thus also present the first
known implementation of accelerated RBF-FD on the GPU. Within the scope of this paper we detail our
method for spanning RBF-FD across multiple CPU/GPU processors and emphasize numerical validation
of the implementation rather than optimization strategies. We will consider optimization in future work.
The calculations are performed on Keeneland, a high performance computing installation supported by the
National Science Foundation and located at Oak Ridge National Lab. Keeneland currently has 240 CPUs
accompanied by 360 NVidia Fermi class GPUs with at least double that number expected by the end of 2012
[51].

2

Figure 2: RBF interpolation using 15 translates of the Gaussian RBF with ε = 2. One RBF is
centered at each node in the domain. Linear combinations of these produce an interpolant over
the domain passing through known function values.

The remainder of this paper is organized as follows: Section 2 introduces RBF-FD via interpolation.
Section 3 details our parallelization strategies for the Keeneland system, including data partitions that are
handled concurrently by different CPU processes and the data-parallel explicit time stepping scheme for
the GPU. In Section 4, our implementation is verified against well-known hyperbolic PDE test cases on the
sphere, advection of a cosine bell and vortex wrap-up. Finally, performance benchmarks and results are
presented in Section 5, followed by conclusions and proposals for future optimization strategies in Section 6.

2 Calculating RBF-FD weights

Given a set of function values, {u(xj)}Nj=1, on a set of N nodes {xj}Nj=1, the operator L acting on u(x)
evaluated at xj , is approximated by a weighted combination of function values, {u(xi)}ni=1, in a small
neighborhood of xj , where n� N defines the size of the stencil.

Lu(x) |x=xj
≈

n∑

i=1

wiu(xi) + wn+1p0 (1)

The RBF-FD weights, wi, are found by enforcing that they are exact within the space spanned by the RBFs
φi(εr) = φ(ε ||x− xi||), centered at the nodes {xi}ni=1, with r = ||x− xi|| being the distance between where
the RBF is centered and where it is evaluated as measured in the standard Euclidean 2-norm. Various
studies show [17, 20, 23, 58] that better accuracy is achieved when the interpolant can exactly reproduce a
constant, p0. Assuming p0 = 1, the constraint

∑n
i=1 wi = L1|x=xj = 0 completes the system:

φ(ε ||x1 − x1||) φ(ε ||x1 − x2|| · · · φ(ε ||x1 − xn||) 1
φ(ε ||x2 − x1||) φ(ε ||x2 − x2|| · · · φ(ε ||x2 − xn||) 1

...
. . .

. . .
...

...
φ(ε ||xn − x1||) φ(ε ||xn − x2|| · · · φ(ε ||xn − xn||) 1

1 1 · · · 1 0

w1

w2

...
wn
wn+1

=

Lφ(ε ||x− x1||)|x=xj

Lφ(ε ||x− x2||)|x=xj

...
Lφ(ε ||x− xn||)|x=xj

0

, (2)

where wn+1 is ignored after the matrix in (2) is inverted. This n × n system solve is repeated for each
stencil center xj , j = 1...N , to form the N rows of the DM with n non-zeros (n � N) per row. As
an example, if L is the identity operator, then the above procedure leads to RBF-FD interpolation. If
L = ∂

∂x , one obtains the DM that approximates the first derivative in x. In the context of time-dependent
PDEs, the stencil weights remain constant for all time-steps when the nodes are stationary. Therefore, the
calculation of the differentiation weights is performed once in a single preprocessing step of O(n3N) FLOPs.
Improved efficiency is achieved by processing multiple right hand sides in one pass, calculating the weights
corresponding to all required derivative quantities (i.e., ∂

∂x , ∂
∂y , ∇2, etc.).

For each of the N small system solves of Equation (2), the n nearest neighbors to xj need to be located.
This can be done efficiently using neighbor query algorithms or spatial partitioning data-structures such as

3

Locality Sensitive Hashing (LSH) and kD-Tree. Different query algorithms often have a profound impact on
the DM structure and memory access patterns. We choose a Raster (ijk) ordering LSH algorithm [4] leading
to the matrix structure in Figures 6 and 7. While querying neighbors for each stencil is an embarrassingly
parallel operation, the node sets used here are stationary and require stencil generation only once. Efficiency
and parallelism for this task has little impact on the overall run-time of tests, which is dominated by the
time-stepping. We preprocess node sets and generate stencils serially, then load stencils and nodes from disk
at run-time. In contrast to the RBF-FD view of a static grid, Lagrangian/particle based PDE algorithms
promote efficient parallel variants of LSH in order to accelerate querying neighbors at each time-step [28, 41].

2.1 Hyperviscosity

For RBF-FD, differentiation matrices encode convective operators of the form

D = α
∂

∂λ
+ β

∂

∂θ
(3)

where α and β are a function of the fluid velocity. The convective operator, discretized through RBF-FD, has
eigenvalues in the right half-plane causing the method to be unstable [17, 23]. Stabilization of the RBF-FD
method is achieved through the application of a hyperviscosity filter to Equation (3) [23]. By using Gaussian

RBFs, φ(r) = e−(εr)
2

, the hyperviscosity (a high order Laplacian operator) simplifies to

∆kφ(r) = ε2kpk(r)φ(r) (4)

where k is the order of the Laplacian and pk(r) are multiples of generalized Laguerre polynomials that are
generated recursively (see Section 3.2 [23]). We assume a 2D Laplacian operator when working on the surface
of the sphere since a local stencil can be viewed as lying on a plane. Although it is clear that when the
diameter of the stencil is not sufficiently small compared to the radius of the sphere, that the hyperviscosity
might not work as advertised, numerical evidence suggests that if the RBFs adequately resolve the convective
operator, the 2D hyperviscosity operator does its job. We base our work on the work of Fornberg and Lehto
[23], which was performed on a sphere, and tune our parameters following their guidelines.

In the case of parabolic and hyperbolic PDEs, hyperviscosity is added as a filter to the right hand side
of the evaluation. For example, at the continuous level, the equation solved takes the form

∂u

∂t
= −Du+Hu, (5)

where D is the PDE operator, and H is the hyperviscosity filter operator. Applying hyperviscosity shifts
all the eigenvalues of D to the left half of the complex plane. This shift is controlled by k, the order of the
Laplacian, and a scaling parameter γc, defined by

H = γ∆k = γcN
−k∆k.

Given a choice of ε (see Section 4.1), it was found experimentally that γ = γcN
−k provides stability and

good accuracy for all values of N considered here. It also ensures that the viscosity vanishes as N → ∞
[17]. In general, the larger the stencil size, the higher the order of the Laplacian. This is attributed to
the fact that, for convective operators, larger stencils treat a wider range of modes accurately. As a result,
the hyperviscosity operator should preserve as much of that range as possible. The parameter γc must also
be chosen with care and its sign depends on k (for k even, γc will be negative and for k odd, it will be
positive). If γc is too large, the eigenvalues move outside the stability domain of our time-stepping scheme
and/or eigenvalues corresponding to lower physical modes are not left intact, reducing the accuracy of our
approximation. If γc is too small, eigenvalues remain in the right half-plane [17, 23].

3 Targeting Multi-CPU/GPU

Parallelization of the RBF-FD method is achieved at two levels. First, the physical domain of the problem—
in this case, the unit sphere—is partitioned into overlapping subdomains, each handled by a different CPU

4

process. All CPUs operate independently to compute/load RBF-FD stencil weights, run diagnostic tests and
perform other initialization tasks. A CPU computes only weights corresponding to stencils centered in the
interior of its partition. After initialization, CPUs continue concurrently to solve the problem with explicit
time-stepping. Communication barriers ensure that the CPUs execute in lockstep to maintain consistent
solution values in regions where partitions overlap. The second level of parallelization offloads time-stepping
of the PDE to the GPU. Evaluation of the right hand side of Equation (5) is data-parallel: the solution
derivative at each stencil center is evaluated independently of the other stencils. This maps well to the
GPU, offering decent speedup even in unoptimized kernels. Although the stencil weight calculation is also
data-parallel, we assume that in this context that the weights are precomputed and loaded once from disk
during the initialization phase.

Our current implementation assumes that we are computing on a cluster of CPUs, with one GPU attached
to each CPU. The CPU maintains control of execution and launches kernels on the GPU that execute in
parallel. Under the OpenCL standard [35], a tiered memory hierarchy is available on the GPU with global
device memory as the primary and most abundant memory space. The memory space for GPU kernels
is separate from the memory available to a CPU, so data must be explicitly copied to/from global device
memory on the GPU.

3.1 Memory Layout

After partitioning, each CPU/GPU is responsible for its own subset of nodes. To simplify accounting, we
track nodes in two ways. Each node is assigned a global index, that uniquely identifies it. This index follows
the node and its associated data as it is shuffled between processors. In addition, it is important to treat
the nodes on each CPU/GPU in an identical manner. Implementations on the GPU are more efficient when
node indices are sequential. Therefore, we also assign a local index for the nodes on a given CPU, which run
from 1 to the maximum number of nodes on that CPU.

It is convenient to break up the nodes on a given CPU into various sets according to whether they are sent
to other processors, are retrieved from other processors, are permanently on the processor, etc. Note as well,
that each node has a home processor since the RBF nodes are partitioned into multiple domains without
overlap. Table 1, defines the collection of index lists that each CPU must maintain for both multi-CPU and
multi-GPU implementations.

Figure 3 illustrates a configuration with two CPUs and two GPUs, and 9 stencils, four on CPU1, and
five on CPU2, separated by a vertical line in the figure. Each stencil has size n = 5. In the top part of
the figures, the stencils are laid out with blue arrows pointing to stencil neighbors and creating the edges of
a directed adjacency graph. Note that the connection between two nodes is not always bidirectional. For
example, node 6 is in the stencil of node 3, but node 3 is not a member of the stencil of node 6. Gray
arrows point to stencil neighbors outside the small window and are not relevant to the following discussion,
which focuses only on data flow between CPU1 and CPU2. Since each CPU is responsible for the derivative
evaluation and solution updates for any stencil center, it is clear that some nodes have a stencil with nodes
that are on a different CPU. For example, node 8 on CPU1 has a stencil comprised of nodes 4,5,6,9, and
itself. The data associated with node 6 must be retrieved from CPU2. Similarly, the data from node 5 must
be sent to CPU2 to complete calculations at the center of node 6.

The set of all nodes that a CPU interacts with is denoted by G, which includes not only the nodes stored
on the CPU, but the nodes required from other CPUs to complete the calculations. The set Q ∈ G contains
the nodes at which the CPU will compute derivatives and apply solution updates. The set R = G\Q is
formed from the set of nodes whose values must be retrieved from another CPU. For each CPU, the set
O ∈ Q is sent to other CPUs. The set B ∈ Q consists of nodes that depend on values from R in order to
evaluate derivatives. Note that O and B can overlap, but differ in size, since the directed adjacency graph
produced by stencil edges is not necessarily symmetric. The set B\O represents nodes that depend on R
but are not sent to other CPUs, while Q\B are nodes that have no dependency on information from other
CPUs. The middle section Figure 3 lists global node indices contained in G for each CPU. Global indices
are paired with local indices to indicate the node ordering internal to each CPU. The structure of set G,

G = {Q\B B\O O R}, (6)

is designed to simplify both CPU-CPU and CPU-GPU memory transfers by grouping nodes of similar type.

5

G : all nodes received and contained on the CPU/GPU g
Q : stencil centers managed by g (equivalently, stencils computed by g)
B : stencil centers managed by g that require nodes from another CPU/GPU
O : nodes managed by g that are sent to other CPUs/GPUs
R : nodes required by g that are managed by another CPU/GPU

Table 1: Sets defined for stencil distribution to multiple CPUs

The color of the global and local indices in the figure indicate the sets to which they belong. They are as
follows: white represents Q\B, yellow represents B\O, green indices represent O, and red represent R.

96

76

CPU2

85
65

43 54

GPU1 GPU2

CPU1

1 5
1
2 64

85 9
3

4 6
7
8

1
9

6
2 5

2 3 4 5
673

CPU2
Global Index

Local Index

CPU1

To simplify memory transfers to and from the GPU, the set G is ordered with additional structure. We
let B represent indices of nodes that are in O or have stencils that depend on values from R. In Figure 3
the stencil center y ∈ B, y ∈ O, x ∈ Q\B, and z ∈ R. The set difference B\O represents a subset of G that
is not sent to other CPUs via MPI, but which depends on values in R to be received.

Our implementation stores nodes and solution values following the ordering of G given by

G = {Q\B B\O O R} (5)

where nodes and values involved in send or receive MPI communication appear last. This ordering offers
two benefits: first, solution values in R and O are contiguous and can be copied to or from the GPU without
the filtering and/or re-ordering normally required in preparation for efficient MPI data transfers. Second,
asynchronous communication via MPI allows for the overlap of communication and computation. This will
be considered as part of a future research on algorithm optimization. Distinguishing the set B\O allows the
computation of Q\B while waiting on R.

When targeting the GPU, communication of solution or intermediate values is a four step process:

1. Transfer O from GPU to CPU

2. Distribute O to other CPUs, receive R from other CPUs

3. Transfer R to the GPU

4. Launch GPU kernel to operate on Q

Each GPU operates on a locally numbered set of nodes ordered according to Equation 5. The CPU, however,
must know the mapping between the local numbering system on its attached GPU and the global indexing
accessible to all CPUs. The CPU converts indices from global to local when nodes are received from other
CPUs and from local to global indices when sending to other CPUs. Currently, the grid is static, so that
only the two-way mapping relevant to the GPU attached to the CPU is stored locally. This approach is
scalable to a very large number of processors, since the individual processors do not require the full mapping
between RBF nodes and CPUs.

Figure 4 illustrates a partitioning of N = 10, 201 nodes on the unit sphere onto four CPUs. Each partition,
illustrated as a unique color, represents set G for a single CPU. Alternating representations between node
points and interpolated surfaces illustrates the overlap regions where nodes in sets O and R (i.e., nodes
requiring MPI communication) reside. As stencil size increases, the width of the overlap regions relative to
total number of nodes on the sphere also increases.

*** Gordon: Address the choice of partioning method on the sphere, section 3.1 ***(1.16) *** Evan:
It would be nice to see some discussion here especially since there are many other sphere partitioning meth-
ods used. For example, the cubed sphere or icosahedron could be used to partition the sphere. What makes
the authors’ choice optimal? While the linear partitioning in Figure 4 limits connections from any CPU
to at most two neighboring CPUs and prevents function values from broadcasting to more than one CPU,
it does not guarantee properly balanced computational work-loads. Other partitionings of the sphere exist
and are not studied here because this paper’s focus is not on efficiency. For example, a circumscribed cube
(cubed-sphere) or icosahedral grid are known to evenly balance the computational load across partitions.
Other interesting partitionings can be generated with software libraries such as the METIS [31] family of
algorithms, capable of partitioning and reordering directed graphs produced by RBF-FD stencils. ***(1.16)

3.2 Targeting the GPU

*** Gordon: Simplify or remove 1st paragraph. Let us discuss. Only discuss what is relevant. Is SIMT
important? ***(2.11)

*** Evan: In the OpenCL language, source code that executes on the GPU is a kernel. The kernel
runs in many parallel contexts named work-items. On the Fermi class GPUs from NVidia tested below,
work-items are grouped into warps of 32 work-items that all execute concurrently on the same instruction
but operate on different data. ***() Author’s Note: Need to discuss: shared memory. memory transfer
between CPU and GPU. global memory.

7

To simplify memory transfers to and from the GPU, the set G is ordered with additional structure. We
let B represent indices of nodes that are in O or have stencils that depend on values from R. In Figure 3
the stencil center y ∈ B, y ∈ O, x ∈ Q\B, and z ∈ R. The set difference B\O represents a subset of G that
is not sent to other CPUs via MPI, but which depends on values in R to be received.

Our implementation stores nodes and solution values following the ordering of G given by

G = {Q\B B\O O R} (5)

where nodes and values involved in send or receive MPI communication appear last. This ordering offers
two benefits: first, solution values in R and O are contiguous and can be copied to or from the GPU without
the filtering and/or re-ordering normally required in preparation for efficient MPI data transfers. Second,
asynchronous communication via MPI allows for the overlap of communication and computation. This will
be considered as part of a future research on algorithm optimization. Distinguishing the set B\O allows the
computation of Q\B while waiting on R.

When targeting the GPU, communication of solution or intermediate values is a four step process:

1. Transfer O from GPU to CPU

2. Distribute O to other CPUs, receive R from other CPUs

3. Transfer R to the GPU

4. Launch GPU kernel to operate on Q

Each GPU operates on a locally numbered set of nodes ordered according to Equation 5. The CPU, however,
must know the mapping between the local numbering system on its attached GPU and the global indexing
accessible to all CPUs. The CPU converts indices from global to local when nodes are received from other
CPUs and from local to global indices when sending to other CPUs. Currently, the grid is static, so that
only the two-way mapping relevant to the GPU attached to the CPU is stored locally. This approach is
scalable to a very large number of processors, since the individual processors do not require the full mapping
between RBF nodes and CPUs.

Figure 4 illustrates a partitioning of N = 10, 201 nodes on the unit sphere onto four CPUs. Each partition,
illustrated as a unique color, represents set G for a single CPU. Alternating representations between node
points and interpolated surfaces illustrates the overlap regions where nodes in sets O and R (i.e., nodes
requiring MPI communication) reside. As stencil size increases, the width of the overlap regions relative to
total number of nodes on the sphere also increases.

*** Gordon: Address the choice of partioning method on the sphere, section 3.1 ***(1.16) *** Evan:
It would be nice to see some discussion here especially since there are many other sphere partitioning meth-
ods used. For example, the cubed sphere or icosahedron could be used to partition the sphere. What makes
the authors’ choice optimal? While the linear partitioning in Figure 4 limits connections from any CPU
to at most two neighboring CPUs and prevents function values from broadcasting to more than one CPU,
it does not guarantee properly balanced computational work-loads. Other partitionings of the sphere exist
and are not studied here because this paper’s focus is not on efficiency. For example, a circumscribed cube
(cubed-sphere) or icosahedral grid are known to evenly balance the computational load across partitions.
Other interesting partitionings can be generated with software libraries such as the METIS [31] family of
algorithms, capable of partitioning and reordering directed graphs produced by RBF-FD stencils. ***(1.16)

3.2 Targeting the GPU

*** Gordon: Simplify or remove 1st paragraph. Let us discuss. Only discuss what is relevant. Is SIMT
important? ***(2.11)

*** Evan: In the OpenCL language, source code that executes on the GPU is a kernel. The kernel
runs in many parallel contexts named work-items. On the Fermi class GPUs from NVidia tested below,
work-items are grouped into warps of 32 work-items that all execute concurrently on the same instruction
but operate on different data. ***() Author’s Note: Need to discuss: shared memory. memory transfer
between CPU and GPU. global memory.

7

To simplify memory transfers to and from the GPU, the set G is ordered with additional structure. We
let B represent indices of nodes that are in O or have stencils that depend on values from R. In Figure 3
the stencil center y ∈ B, y ∈ O, x ∈ Q\B, and z ∈ R. The set difference B\O represents a subset of G that
is not sent to other CPUs via MPI, but which depends on values in R to be received.

Our implementation stores nodes and solution values following the ordering of G given by

G = {Q\B B\O O R} (5)

where nodes and values involved in send or receive MPI communication appear last. This ordering offers
two benefits: first, solution values in R and O are contiguous and can be copied to or from the GPU without
the filtering and/or re-ordering normally required in preparation for efficient MPI data transfers. Second,
asynchronous communication via MPI allows for the overlap of communication and computation. This will
be considered as part of a future research on algorithm optimization. Distinguishing the set B\O allows the
computation of Q\B while waiting on R.

When targeting the GPU, communication of solution or intermediate values is a four step process:

1. Transfer O from GPU to CPU

2. Distribute O to other CPUs, receive R from other CPUs

3. Transfer R to the GPU

4. Launch GPU kernel to operate on Q

Each GPU operates on a locally numbered set of nodes ordered according to Equation 5. The CPU, however,
must know the mapping between the local numbering system on its attached GPU and the global indexing
accessible to all CPUs. The CPU converts indices from global to local when nodes are received from other
CPUs and from local to global indices when sending to other CPUs. Currently, the grid is static, so that
only the two-way mapping relevant to the GPU attached to the CPU is stored locally. This approach is
scalable to a very large number of processors, since the individual processors do not require the full mapping
between RBF nodes and CPUs.

Figure 4 illustrates a partitioning of N = 10, 201 nodes on the unit sphere onto four CPUs. Each partition,
illustrated as a unique color, represents set G for a single CPU. Alternating representations between node
points and interpolated surfaces illustrates the overlap regions where nodes in sets O and R (i.e., nodes
requiring MPI communication) reside. As stencil size increases, the width of the overlap regions relative to
total number of nodes on the sphere also increases.

*** Gordon: Address the choice of partioning method on the sphere, section 3.1 ***(1.16) *** Evan:
It would be nice to see some discussion here especially since there are many other sphere partitioning meth-
ods used. For example, the cubed sphere or icosahedron could be used to partition the sphere. What makes
the authors’ choice optimal? While the linear partitioning in Figure 4 limits connections from any CPU
to at most two neighboring CPUs and prevents function values from broadcasting to more than one CPU,
it does not guarantee properly balanced computational work-loads. Other partitionings of the sphere exist
and are not studied here because this paper’s focus is not on efficiency. For example, a circumscribed cube
(cubed-sphere) or icosahedral grid are known to evenly balance the computational load across partitions.
Other interesting partitionings can be generated with software libraries such as the METIS [31] family of
algorithms, capable of partitioning and reordering directed graphs produced by RBF-FD stencils. ***(1.16)

3.2 Targeting the GPU

*** Gordon: Simplify or remove 1st paragraph. Let us discuss. Only discuss what is relevant. Is SIMT
important? ***(2.11)

*** Evan: In the OpenCL language, source code that executes on the GPU is a kernel. The kernel
runs in many parallel contexts named work-items. On the Fermi class GPUs from NVidia tested below,
work-items are grouped into warps of 32 work-items that all execute concurrently on the same instruction
but operate on different data. ***() Author’s Note: Need to discuss: shared memory. memory transfer
between CPU and GPU. global memory.

7

To simplify memory transfers to and from the GPU, the set G is ordered with additional structure. We
let B represent indices of nodes that are in O or have stencils that depend on values from R. In Figure 3
the stencil center y ∈ B, y ∈ O, x ∈ Q\B, and z ∈ R. The set difference B\O represents a subset of G that
is not sent to other CPUs via MPI, but which depends on values in R to be received.

Our implementation stores nodes and solution values following the ordering of G given by

G = {Q\B B\O O R} (5)

where nodes and values involved in send or receive MPI communication appear last. This ordering offers
two benefits: first, solution values in R and O are contiguous and can be copied to or from the GPU without
the filtering and/or re-ordering normally required in preparation for efficient MPI data transfers. Second,
asynchronous communication via MPI allows for the overlap of communication and computation. This will
be considered as part of a future research on algorithm optimization. Distinguishing the set B\O allows the
computation of Q\B while waiting on R.

When targeting the GPU, communication of solution or intermediate values is a four step process:

1. Transfer O from GPU to CPU

2. Distribute O to other CPUs, receive R from other CPUs

3. Transfer R to the GPU

4. Launch GPU kernel to operate on Q

Each GPU operates on a locally numbered set of nodes ordered according to Equation 5. The CPU, however,
must know the mapping between the local numbering system on its attached GPU and the global indexing
accessible to all CPUs. The CPU converts indices from global to local when nodes are received from other
CPUs and from local to global indices when sending to other CPUs. Currently, the grid is static, so that
only the two-way mapping relevant to the GPU attached to the CPU is stored locally. This approach is
scalable to a very large number of processors, since the individual processors do not require the full mapping
between RBF nodes and CPUs.

Figure 4 illustrates a partitioning of N = 10, 201 nodes on the unit sphere onto four CPUs. Each partition,
illustrated as a unique color, represents set G for a single CPU. Alternating representations between node
points and interpolated surfaces illustrates the overlap regions where nodes in sets O and R (i.e., nodes
requiring MPI communication) reside. As stencil size increases, the width of the overlap regions relative to
total number of nodes on the sphere also increases.

*** Gordon: Address the choice of partioning method on the sphere, section 3.1 ***(1.16) *** Evan:
It would be nice to see some discussion here especially since there are many other sphere partitioning meth-
ods used. For example, the cubed sphere or icosahedron could be used to partition the sphere. What makes
the authors’ choice optimal? While the linear partitioning in Figure 4 limits connections from any CPU
to at most two neighboring CPUs and prevents function values from broadcasting to more than one CPU,
it does not guarantee properly balanced computational work-loads. Other partitionings of the sphere exist
and are not studied here because this paper’s focus is not on efficiency. For example, a circumscribed cube
(cubed-sphere) or icosahedral grid are known to evenly balance the computational load across partitions.
Other interesting partitionings can be generated with software libraries such as the METIS [31] family of
algorithms, capable of partitioning and reordering directed graphs produced by RBF-FD stencils. ***(1.16)

3.2 Targeting the GPU

*** Gordon: Simplify or remove 1st paragraph. Let us discuss. Only discuss what is relevant. Is SIMT
important? ***(2.11)

*** Evan: In the OpenCL language, source code that executes on the GPU is a kernel. The kernel
runs in many parallel contexts named work-items. On the Fermi class GPUs from NVidia tested below,
work-items are grouped into warps of 32 work-items that all execute concurrently on the same instruction
but operate on different data. ***() Author’s Note: Need to discuss: shared memory. memory transfer
between CPU and GPU. global memory.

7

To simplify memory transfers to and from the GPU, the set G is ordered with additional structure. We
let B represent indices of nodes that are in O or have stencils that depend on values from R. In Figure 3
the stencil center y ∈ B, y ∈ O, x ∈ Q\B, and z ∈ R. The set difference B\O represents a subset of G that
is not sent to other CPUs via MPI, but which depends on values in R to be received.

Our implementation stores nodes and solution values following the ordering of G given by

G = {Q\B B\O O R} (5)

where nodes and values involved in send or receive MPI communication appear last. This ordering offers
two benefits: first, solution values in R and O are contiguous and can be copied to or from the GPU without
the filtering and/or re-ordering normally required in preparation for efficient MPI data transfers. Second,
asynchronous communication via MPI allows for the overlap of communication and computation. This will
be considered as part of a future research on algorithm optimization. Distinguishing the set B\O allows the
computation of Q\B while waiting on R.

When targeting the GPU, communication of solution or intermediate values is a four step process:

1. Transfer O from GPU to CPU

2. Distribute O to other CPUs, receive R from other CPUs

3. Transfer R to the GPU

4. Launch GPU kernel to operate on Q

Each GPU operates on a locally numbered set of nodes ordered according to Equation 5. The CPU, however,
must know the mapping between the local numbering system on its attached GPU and the global indexing
accessible to all CPUs. The CPU converts indices from global to local when nodes are received from other
CPUs and from local to global indices when sending to other CPUs. Currently, the grid is static, so that
only the two-way mapping relevant to the GPU attached to the CPU is stored locally. This approach is
scalable to a very large number of processors, since the individual processors do not require the full mapping
between RBF nodes and CPUs.

Figure 4 illustrates a partitioning of N = 10, 201 nodes on the unit sphere onto four CPUs. Each partition,
illustrated as a unique color, represents set G for a single CPU. Alternating representations between node
points and interpolated surfaces illustrates the overlap regions where nodes in sets O and R (i.e., nodes
requiring MPI communication) reside. As stencil size increases, the width of the overlap regions relative to
total number of nodes on the sphere also increases.

*** Gordon: Address the choice of partioning method on the sphere, section 3.1 ***(1.16) *** Evan:
It would be nice to see some discussion here especially since there are many other sphere partitioning meth-
ods used. For example, the cubed sphere or icosahedron could be used to partition the sphere. What makes
the authors’ choice optimal? While the linear partitioning in Figure 4 limits connections from any CPU
to at most two neighboring CPUs and prevents function values from broadcasting to more than one CPU,
it does not guarantee properly balanced computational work-loads. Other partitionings of the sphere exist
and are not studied here because this paper’s focus is not on efficiency. For example, a circumscribed cube
(cubed-sphere) or icosahedral grid are known to evenly balance the computational load across partitions.
Other interesting partitionings can be generated with software libraries such as the METIS [31] family of
algorithms, capable of partitioning and reordering directed graphs produced by RBF-FD stencils. ***(1.16)

3.2 Targeting the GPU

*** Gordon: Simplify or remove 1st paragraph. Let us discuss. Only discuss what is relevant. Is SIMT
important? ***(2.11)

*** Evan: In the OpenCL language, source code that executes on the GPU is a kernel. The kernel
runs in many parallel contexts named work-items. On the Fermi class GPUs from NVidia tested below,
work-items are grouped into warps of 32 work-items that all execute concurrently on the same instruction
but operate on different data. ***() Author’s Note: Need to discuss: shared memory. memory transfer
between CPU and GPU. global memory.

7

To simplify memory transfers to and from the GPU, the set G is ordered with additional structure. We
let B represent indices of nodes that are in O or have stencils that depend on values from R. In Figure 3
the stencil center y ∈ B, y ∈ O, x ∈ Q\B, and z ∈ R. The set difference B\O represents a subset of G that
is not sent to other CPUs via MPI, but which depends on values in R to be received.

Our implementation stores nodes and solution values following the ordering of G given by

G = {Q\B B\O O R} (5)

where nodes and values involved in send or receive MPI communication appear last. This ordering offers
two benefits: first, solution values in R and O are contiguous and can be copied to or from the GPU without
the filtering and/or re-ordering normally required in preparation for efficient MPI data transfers. Second,
asynchronous communication via MPI allows for the overlap of communication and computation. This will
be considered as part of a future research on algorithm optimization. Distinguishing the set B\O allows the
computation of Q\B while waiting on R.

When targeting the GPU, communication of solution or intermediate values is a four step process:

1. Transfer O from GPU to CPU

2. Distribute O to other CPUs, receive R from other CPUs

3. Transfer R to the GPU

4. Launch GPU kernel to operate on Q

Each GPU operates on a locally numbered set of nodes ordered according to Equation 5. The CPU, however,
must know the mapping between the local numbering system on its attached GPU and the global indexing
accessible to all CPUs. The CPU converts indices from global to local when nodes are received from other
CPUs and from local to global indices when sending to other CPUs. Currently, the grid is static, so that
only the two-way mapping relevant to the GPU attached to the CPU is stored locally. This approach is
scalable to a very large number of processors, since the individual processors do not require the full mapping
between RBF nodes and CPUs.

Figure 4 illustrates a partitioning of N = 10, 201 nodes on the unit sphere onto four CPUs. Each partition,
illustrated as a unique color, represents set G for a single CPU. Alternating representations between node
points and interpolated surfaces illustrates the overlap regions where nodes in sets O and R (i.e., nodes
requiring MPI communication) reside. As stencil size increases, the width of the overlap regions relative to
total number of nodes on the sphere also increases.

*** Gordon: Address the choice of partioning method on the sphere, section 3.1 ***(1.16) *** Evan:
It would be nice to see some discussion here especially since there are many other sphere partitioning meth-
ods used. For example, the cubed sphere or icosahedron could be used to partition the sphere. What makes
the authors’ choice optimal? While the linear partitioning in Figure 4 limits connections from any CPU
to at most two neighboring CPUs and prevents function values from broadcasting to more than one CPU,
it does not guarantee properly balanced computational work-loads. Other partitionings of the sphere exist
and are not studied here because this paper’s focus is not on efficiency. For example, a circumscribed cube
(cubed-sphere) or icosahedral grid are known to evenly balance the computational load across partitions.
Other interesting partitionings can be generated with software libraries such as the METIS [31] family of
algorithms, capable of partitioning and reordering directed graphs produced by RBF-FD stencils. ***(1.16)

3.2 Targeting the GPU

*** Gordon: Simplify or remove 1st paragraph. Let us discuss. Only discuss what is relevant. Is SIMT
important? ***(2.11)

*** Evan: In the OpenCL language, source code that executes on the GPU is a kernel. The kernel
runs in many parallel contexts named work-items. On the Fermi class GPUs from NVidia tested below,
work-items are grouped into warps of 32 work-items that all execute concurrently on the same instruction
but operate on different data. ***() Author’s Note: Need to discuss: shared memory. memory transfer
between CPU and GPU. global memory.

7

To simplify memory transfers to and from the GPU, the set G is ordered with additional structure. We
let B represent indices of nodes that are in O or have stencils that depend on values from R. In Figure 3
the stencil center y ∈ B, y ∈ O, x ∈ Q\B, and z ∈ R. The set difference B\O represents a subset of G that
is not sent to other CPUs via MPI, but which depends on values in R to be received.

Our implementation stores nodes and solution values following the ordering of G given by

G = {Q\B B\O O R} (5)

where nodes and values involved in send or receive MPI communication appear last. This ordering offers
two benefits: first, solution values in R and O are contiguous and can be copied to or from the GPU without
the filtering and/or re-ordering normally required in preparation for efficient MPI data transfers. Second,
asynchronous communication via MPI allows for the overlap of communication and computation. This will
be considered as part of a future research on algorithm optimization. Distinguishing the set B\O allows the
computation of Q\B while waiting on R.

When targeting the GPU, communication of solution or intermediate values is a four step process:

1. Transfer O from GPU to CPU

2. Distribute O to other CPUs, receive R from other CPUs

3. Transfer R to the GPU

4. Launch GPU kernel to operate on Q

Each GPU operates on a locally numbered set of nodes ordered according to Equation 5. The CPU, however,
must know the mapping between the local numbering system on its attached GPU and the global indexing
accessible to all CPUs. The CPU converts indices from global to local when nodes are received from other
CPUs and from local to global indices when sending to other CPUs. Currently, the grid is static, so that
only the two-way mapping relevant to the GPU attached to the CPU is stored locally. This approach is
scalable to a very large number of processors, since the individual processors do not require the full mapping
between RBF nodes and CPUs.

Figure 4 illustrates a partitioning of N = 10, 201 nodes on the unit sphere onto four CPUs. Each partition,
illustrated as a unique color, represents set G for a single CPU. Alternating representations between node
points and interpolated surfaces illustrates the overlap regions where nodes in sets O and R (i.e., nodes
requiring MPI communication) reside. As stencil size increases, the width of the overlap regions relative to
total number of nodes on the sphere also increases.

*** Gordon: Address the choice of partioning method on the sphere, section 3.1 ***(1.16) *** Evan:
It would be nice to see some discussion here especially since there are many other sphere partitioning meth-
ods used. For example, the cubed sphere or icosahedron could be used to partition the sphere. What makes
the authors’ choice optimal? While the linear partitioning in Figure 4 limits connections from any CPU
to at most two neighboring CPUs and prevents function values from broadcasting to more than one CPU,
it does not guarantee properly balanced computational work-loads. Other partitionings of the sphere exist
and are not studied here because this paper’s focus is not on efficiency. For example, a circumscribed cube
(cubed-sphere) or icosahedral grid are known to evenly balance the computational load across partitions.
Other interesting partitionings can be generated with software libraries such as the METIS [31] family of
algorithms, capable of partitioning and reordering directed graphs produced by RBF-FD stencils. ***(1.16)

3.2 Targeting the GPU

*** Gordon: Simplify or remove 1st paragraph. Let us discuss. Only discuss what is relevant. Is SIMT
important? ***(2.11)

*** Evan: In the OpenCL language, source code that executes on the GPU is a kernel. The kernel
runs in many parallel contexts named work-items. On the Fermi class GPUs from NVidia tested below,
work-items are grouped into warps of 32 work-items that all execute concurrently on the same instruction
but operate on different data. ***() Author’s Note: Need to discuss: shared memory. memory transfer
between CPU and GPU. global memory.

7

To simplify memory transfers to and from the GPU, the set G is ordered with additional structure. We
let B represent indices of nodes that are in O or have stencils that depend on values from R. In Figure 3
the stencil center y ∈ B, y ∈ O, x ∈ Q\B, and z ∈ R. The set difference B\O represents a subset of G that
is not sent to other CPUs via MPI, but which depends on values in R to be received.

Our implementation stores nodes and solution values following the ordering of G given by

G = {Q\B B\O O R} (5)

where nodes and values involved in send or receive MPI communication appear last. This ordering offers
two benefits: first, solution values in R and O are contiguous and can be copied to or from the GPU without
the filtering and/or re-ordering normally required in preparation for efficient MPI data transfers. Second,
asynchronous communication via MPI allows for the overlap of communication and computation. This will
be considered as part of a future research on algorithm optimization. Distinguishing the set B\O allows the
computation of Q\B while waiting on R.

When targeting the GPU, communication of solution or intermediate values is a four step process:

1. Transfer O from GPU to CPU

2. Distribute O to other CPUs, receive R from other CPUs

3. Transfer R to the GPU

4. Launch GPU kernel to operate on Q

Each GPU operates on a locally numbered set of nodes ordered according to Equation 5. The CPU, however,
must know the mapping between the local numbering system on its attached GPU and the global indexing
accessible to all CPUs. The CPU converts indices from global to local when nodes are received from other
CPUs and from local to global indices when sending to other CPUs. Currently, the grid is static, so that
only the two-way mapping relevant to the GPU attached to the CPU is stored locally. This approach is
scalable to a very large number of processors, since the individual processors do not require the full mapping
between RBF nodes and CPUs.

Figure 4 illustrates a partitioning of N = 10, 201 nodes on the unit sphere onto four CPUs. Each partition,
illustrated as a unique color, represents set G for a single CPU. Alternating representations between node
points and interpolated surfaces illustrates the overlap regions where nodes in sets O and R (i.e., nodes
requiring MPI communication) reside. As stencil size increases, the width of the overlap regions relative to
total number of nodes on the sphere also increases.

*** Gordon: Address the choice of partioning method on the sphere, section 3.1 ***(1.16) *** Evan:
It would be nice to see some discussion here especially since there are many other sphere partitioning meth-
ods used. For example, the cubed sphere or icosahedron could be used to partition the sphere. What makes
the authors’ choice optimal? While the linear partitioning in Figure 4 limits connections from any CPU
to at most two neighboring CPUs and prevents function values from broadcasting to more than one CPU,
it does not guarantee properly balanced computational work-loads. Other partitionings of the sphere exist
and are not studied here because this paper’s focus is not on efficiency. For example, a circumscribed cube
(cubed-sphere) or icosahedral grid are known to evenly balance the computational load across partitions.
Other interesting partitionings can be generated with software libraries such as the METIS [31] family of
algorithms, capable of partitioning and reordering directed graphs produced by RBF-FD stencils. ***(1.16)

3.2 Targeting the GPU

*** Gordon: Simplify or remove 1st paragraph. Let us discuss. Only discuss what is relevant. Is SIMT
important? ***(2.11)

*** Evan: In the OpenCL language, source code that executes on the GPU is a kernel. The kernel
runs in many parallel contexts named work-items. On the Fermi class GPUs from NVidia tested below,
work-items are grouped into warps of 32 work-items that all execute concurrently on the same instruction
but operate on different data. ***() Author’s Note: Need to discuss: shared memory. memory transfer
between CPU and GPU. global memory.

7

CPU1

CPU2

8 9

4

2

6 7

1

5

3

CPU1 CPU2

Figure 3: Partitioning, index mappings and memory transfers for nine stencils (n = 5) spanning
two CPUs and two GPUs. Top: the directed graph created by stencil edges is partitioned for two
CPUs. Middle: the partitioned stencil centers are reordered locally by each CPU to keep values
sent to/received from other CPUs contiguous in memory. Bottom: to synchronize GPUs, CPUs
must act as intermediaries for communication and global to local index translation. Middle and
Bottom: color coding on indices indicates membership in sets from Table 1: Q\B is white, B\O
is yellow, O is green and R is red.

The structure of G offers two benefits: first, solution values in R and O are contiguous in memory and can
be copied to or from the GPU without the filtering and/or re-ordering normally required in preparation for
efficient data transfers. Second, asynchronous communication allows for the overlap of communication and
computation. This will be considered as part of future research on algorithm optimization. Distinguishing
the set B\O allows the computation of Q\B while waiting on R.

When targeting the GPU, communication of solution or intermediate values is a four step process:

1. Transfer O from GPU to CPU

2. Distribute O to other CPUs, receive R from other CPUs

6

3. Transfer R to the GPU

4. Launch a GPU kernel to operate on Q

The data transfers involved in this process are illustrated at the bottom of Figure 3. Each GPU operates on
the local indices ordered according to Equation (6). The set O is copied off the GPU and into CPU memory
as one contiguous memory block. The CPU then maps local to global indices and transfers O to other CPUs.
CPUs send only the subset of node values from O that is required by the destination processors, but it is
important to note that node information might be sent to several destinations. As the set R is received, the
CPU converts back from global to local indices before copying a contiguous block of memory to the GPU.
This approach is scalable to a very large number of processors, since the individual processors do not require
the full mapping between RBF nodes and CPUs.

Figure 4 illustrates a partitioning of N = 10, 201 nodes on the unit sphere onto four CPUs. Each partition,
illustrated as a unique color, represents set G for a single CPU. Alternating representations between node
points and interpolated surfaces illustrates the overlap regions where nodes in sets O and R (i.e., nodes
requiring MPI communication) reside. As stencil size increases, the width of the overlap regions relative to
total number of nodes on the sphere also increases.

The linear partitioning in Figure 4 was chosen for ease of implementation. Communication is limited
for each processor to left and right neighbors only, which simplifies parallel debugging. This partitioning,
however, does not guarantee properly balanced computational work-loads. Other partitionings of the sphere
exist but are not studied here because this paper’s focus is neither on efficiency nor on selecting a partitioning
strategy for maximum accuracy. Examples of alternative approaches include a cubed-sphere [31] or icosahe-
dral geodesic grid [42], which can evenly balance the computational load across partitions. Other interesting
partitionings can be generated with software libraries such as the METIS [34] family of algorithms, capable
of partitioning and reordering directed graphs produced by RBF-FD stencils.

Figure 4: Partitioning of N = 10, 201 nodes to span four processors with stencil size n = 31.

3.2 Targeting the GPU

Our implementation leverages the GPU for acceleration of the standard fourth order Runge-Kutta (RK4)
scheme. Nodes are stationary, so stencil weights are calculated once at the beginning of the simulation, and
reused in every iteration. To avoid the cost of calculating stencil weights each time a test case is run, they
are written to disk and loaded from file on subsequent runs. There is one set of weights computed for each
new grid. Ignoring code initialization, the cost of the algorithm is simply the explicit time advancement of
the solution.

Figure 5 summarizes the time advancement steps for the multi-CPU/GPU implementation. The RK4

7

Start

Compute Stencil
Weights

Load Grid,
Weights

Initial Conditions

Advance Solution

Check Error?

Check Error,
Solution Norms

Evaluate RK4
substepEvaluate RK4

substepEvaluate RK4
substepEvaluate RK4

substep

RK4 Evaluate Substep Kernel

PDE Solver Apply
Weights

RK4 Advance Kernel

Copy
solution
to GPU

Copy
solution
to CPU

End Condition? Stop

Yes
No

No Yes

Copy
Set O to

CPU

Copy
Set R to

GPU

MPI
Send/
Recv

Figure 5: Workflow for RK4 on multiple GPUs.

steps are:

k1 = ∆tf(tn,un)

k2 = ∆tf(tn +
1

2
∆t,un +

1

2
k1)

k3 = ∆tf(tn +
1

2
∆t,un +

1

2
k2)

k4 = ∆tf(tn + ∆t,un + k3)

un+1 = un +
1

6
(k1 + 2k2 + 2k3 + k4),

where each equation has a corresponding kernel launch. To handle a variety of Runga-Kutta implementations,
steps k1→4 correspond to calls to the same kernel with different arguments. The evaluation kernel returns
two output vectors:

1. ki = ∆tf(tn + αi∆t,un + αiki−1), for steps i = 1, 2, 3, 4, and

8

2. un + αi+1ki

We choose αi = 0, 12 ,
1
2 , 1, 0 and k0 = un. The second output for each ki=1,2,3 serves as input to the

next evaluation, ki+1. In an effort to avoid an extra kernel launch—and corresponding memory loads—
the SAXPY that produces the second output uses the same evaluation kernel. Both outputs are stored in
global device memory. When the computation spans multiple GPUs, steps k1→3 are each followed by a
communication barrier to synchronize the subsets O and R of the second output (this includes copying the
subsets between GPU and CPU). An additional synchronization occurs on the updated solution, un+1, to
ensure that all GPUs share a consistent view of the solution going into the next time-step.

To evaluate k1→4, the discretized operators from Equation (5) are applied using sparse matrix-vector
multiplication. If the operator D is composed of multiple derivatives, a differentiation matrix for each
derivative is applied independently, including an additional multiplication for the discretized H operator.
On the GPU, the kernel parallelizes across rows of the DMs, so all derivatives for stencils are computed in
one kernel call.

For the GPU, the OpenCL language [35] assumes a lowest common denominator of hardware capabilities
to provide functional portability. For example, all target architectures are assumed to support some level
of SIMD (Single Instruction Multiple Data) execution for kernels. Multiple work-items execute a kernel in
parallel. A collection of work-items performing the same task is called a work-group. While a user might
think of work-groups as executing all work-items simultaneously, the work-items are divided at the hardware
level into one or more SIMD warps, which are executed by a single multiprocessor. On the family of Fermi
GPUs, a warp is 32 work-items [40]. OpenCL assumes a tiered memory hierarchy that provides fast but
small local memory space that is shared within a work-group [35]. Local memory on Fermi GPUs is 48 KB
per multiprocessor [40]. The global device memory allows sharing between work-groups and is the slowest
but most abundant memory. In the GPU computing literature, the terms thread and shared memory are
synonymous to work-item and local memory respectively, and are preferred below.

Although the primary focus of this paper is the implementation and verification of the RBF-FD method
across multiple CPUs and GPUs, we have nonetheless tested two approaches to the computation of derivatives
on the GPU to assess the potential for further improvements in performance. In both cases, the stencil weights
are stored in CSR format [3], a packed one-dimensional array in global memory with all the weights of a
single stencil in consecutive memory addresses. Each operator is stored as an independent CSR matrix. The
consecutive ordering on the weights implies that the solution vector, structured according to the ordering of
set G is treated as random access.

All the computation on the GPU is performed in 8-byte double precision.

3.2.1 Naive Approach: One thread per stencil

In this first implementation, each thread computes the derivative at one stencil center (Figure 6). The
advantage of this approach is trivial concurrency. Since each stencil has the same number of neighbors, each
derivative has an identical number of computations. As long as the number of stencils is a multiple of the
warp size, there are no idle threads. Should the total number of stencils be less than a multiple of the warp
size, the final warp would contain idle threads, but the impact on efficiency would be minimal assuming the
stencil size is sufficiently large.

Perfect concurrency from a logical point of view does not imply perfect efficiency in practice. Unfortu-
nately, the naive approach is memory bound. When threads access weights in global memory, a full warp
accesses a 128-byte segment in a single memory operation [40]. Since each thread handles a single stencil,
the various threads in a warp access data in very disparate areas of global memory, rather than the same
segment. This leads to very large slowdowns as extra memory operations are added for each 128-byte seg-
ment that the threads of a warp must access. However, with stencils sharing many common nodes, and the
Fermi hardware providing caching, some weights in the unused portions of the segments might remain in
cache long enough to hide the cost of so many additional memory loads.

3.2.2 Alternate Approach: One warp per stencil

An alternate approach, illustrated in Figure 7, dedicates a full warp of threads to a single stencil. Here,
32 threads load the weights of a stencil and the corresponding elements of the solution vector. As the 32

9

Shared Memory
du

dx
=

�
wiui

2

=wi ui

du

dx1

Figure 6: Naive approach to sparse matrix-vector multiply. Each thread is responsible for the
sparse vector dot product of weights and solution values for derivatives at a single stencil.

Shared Memory
du

dx
=

�
wiui

1

=

3

Reduce+2

wi

ui

du

dx

Figure 7: Alternative approach. A full warp (32 threads) collaborate to apply weights and compute
the derivative at a stencil center.

threads each perform a subset of the dot product, their intermediate sums are accumulated in 32 elements
of shared memory (one per thread). Should a stencil be larger than the warp size, the warp iterates over the
stencil in increments of the warp size until the full dot product is complete. Finally, the first thread of the
warp performs a sum reduction across the 32 (warp size) intermediate sums stored in shared memory and
writes the derivative value to global memory.

By operating on a warp by warp basis, weights for a single stencil are loaded with a reduced number of
memory accesses. Memory loads for the solution vector remain random access but see some benefit when
solution values for a stencil are in a small neighborhood in the memory space. Proximity in memory can be
controlled by node indexing (see e.g., [4] and [11]).

For stencil sizes smaller than 32, some threads in the warp always remain idle. Idle threads do not slow
down the computation within a warp, but under-utilization of the GPU is not desirable. For small stencil
sizes, caching on the Fermi can hide some of the cost of memory loads for the naive approach, with no idle
threads, making it more efficient. The real strength of one warp per stencil is seen for large stencil sizes.
As part of future work on optimization, we will consider a parallel reduction in shared memory, as well as
assigning multiple stencils to a single warp for small n.

10

4 Numerical Validation

Here, we present the first results in the literature for parallelizing RBF-FDs on multi-CPU and multi-GPU
architectures for solving PDEs. To verify our multi-CPU, single GPU and multi-GPU implementations,
two hyperbolic PDEs on the surface of the sphere are tested: 1) vortex roll-up [38, 39] and 2) solid body
rotation [32]. These tests were chosen since they are not only standard in the numerical literature, but also
for the development of RBFs in solving PDEs on the sphere [16, 18, 22, 25]. Although any ‘approximately
evenly’ distributed nodes on the sphere would suffice for our purposes, maximum determinant (MD) node
distributions on the sphere are used (see [47] for details) in order to be consistent with previously published
results (see e.g., [18] and [23]). Node sets from 1024 to 27,556 are considered with stencil sizes ranging from
17 to 101.

All results in this section are produced by the single-GPU implementation. Multi-CPU and multi-GPU
implementations are verified to produce these same results. Synchronization of the solution at each time-step
and the use of double precision on both the CPU and GPU ensure consistent results regardless of the number
and/or choice of CPU vs GPU. Eigenvalues are computed on the CPU by the Armadillo library [43].

4.1 Vortex Rollup

The first test case demonstrates vortex roll-up of a fluid on the surface of a unit sphere. An angular velocity
field causes the initial condition to spin into two diametrically opposed but stationary vortices.

The governing PDE in latitude-longitude coordinates, (θ, λ), is

∂h

∂t
+

u

cos θ

∂h

∂λ
= 0 (7)

where the velocity field, u, only depends on latitude and is given by

u = ω(θ) cos θ.

Note that the cos θ in u and 1/ cos θ in (7) cancel in the analytic formulation, so the discrete operator
approximates ω(θ) ∂

∂λ .
Here, ω(θ) is the angular velocity component given by

ω(θ) =

{
3
√
3

2ρ(θ) sech2(ρ(θ))tanh(ρ(θ)) ρ(θ) 6= 0

0 ρ(θ) = 0

where ρ(θ) = ρ0 cos θ is the radial distance of the vortex with ρ0 = 3. The exact solution to (7) at non-
dimensional time t is

h(λ, θ, t) = 1− tanh

(
ρ(θ)

γ
sin(λ− ω(θ)t)

)
,

where γ defines the width of the frontal zone.
From a method of lines approach, the discretized version of (7) is

dh

dt
= −diag(ω(θ))Dλh. (8)

where Dλ is the DM containing the RBF-FD weights that approximate ∂
∂λ at each node on the sphere.

For stability, hyperviscosity is added to the right hand side of (8) in the form given in (5). The scaling
parameter γc and the order of hyperviscosity k are given in Table 2. The goal when choosing k is to damp
the higher spurious eigenmodes of diag(ω(θ))Dλ while leaving the lower physical modes that can be resolved
by the stencil intact. In this process, the eigenvalues will be pushed into the left half of the complex plane.
Then, γc is used to condense the eigenvalues as near to the imaginary axis as possible. Figure 8(b) shows
the effect of hyperviscosity on the eigenvalues of the DM, −diag(ω(θ))Dλ, in (8).

In order to scale to large node sets, the RBF shape parameter, ε, is chosen such that the mean condition
number of the local RBF interpolation matrices κ̄A = 1

N

∑N
j=1(κA)j is kept constant as N increases ((κA)j

is the condition number of the interpolation matrix in (2), representing the jth stencil). For a constant mean

11

Table 2: Values for hyperviscosity and the RBF shape parameter ε for vortex roll-up test.

ε = c1
√
N − c2 H = −γcN−k∆k

Stencil Size (n) c1 c2 k γc
17 0.026 0.08 2 8
31 0.035 0.1 4 800
50 0.044 0.14 4 145
101 0.058 0.16 4 40

0.5 0 0.5

10

5

0

5

10

Im
λ

Re λ

(a) No Hyperviscosity

2 1.5 1 0.5 0

10

5

0

5

10

Im
λ

Re λ

(b) With Hyperviscosity

Figure 8: Eigenvalues of diag(ω(θ))Dλ for the vortex roll-up test case for N = 4096 nodes, stencil
size n = 101 and ε = 3.5. Left: no hyperviscosity. Right: hyperviscosity enabled with k = 4 and
γc = 40.

condition number, ε varies linearly with
√
N (see [17] Figure 4a and b). This is not surprising since the

condition number strongly depends on the quantity εr, where r ∼ 1/
√
N on the sphere. Thus, to obtain a

constant condition number, we let ε(N) = c1
√
N − c2, where c1 and c2 are constants based on [17].

Figure 9 shows the solution to Equation (7) at t = 10, on N = 10201 nodes, with stencil size n = 50.
This resolution is sufficient to properly capture the vortices at t = 10, but lower resolutions would suffer
approximation errors associated with insufficient grid resolution. For this reason, the solution at t = 3 is
considered in the normalized `2 error convergence study presented in Figure 10. The time step ∆t = 0.05
for all resolutions.

4.2 Solid body rotation

The second test case simulates the advection of a cosine bell over the surface of a unit sphere at an angle α
relative to the pole of a standard latitude-longitude grid. The governing PDE is

∂h

∂t
+

u

cos θ

∂h

∂λ
+ v

∂h

∂θ
= 0, (9)

with velocity field, {
u = u0(cos θ cosα+ sin θ cosλ sinα),

v = −u0(sinλ sinα) .

12

(a) Computed Solution (b) Relative Absolute Error

Figure 9: Vortex roll-up solution at time t = 10 using RBF-FD with N = 10, 201 and n = 50
point stencil. Normalized `2 error of solution at t = 10 is 1.25(10−2)

103 104

10 6

10 4

10 2

N

N
o
rm

a
li
ze

d
! 2

er
ro

r

n=17
n=31
n=50
n=101

Figure 10: Convergence plot for vortex roll-up at t = 3.

inclined at an angle α relative to the polar axis and velocity u0 = 2π/(1036800 seconds) to require 12 days
per revolution of the bell as in [18, 38].

The discretized form of (9) is

dh

dt
= −diag

(u

cos θ

)
Dλh− diag(v)Dθh (10)

where DMs Dλ and Dθ contain RBF-FD weights corresponding to all N stencils that approximate ∂
∂λ and ∂

∂θ
respectively. Rather than merge the differentiation matrices in (10) into one operator, our implementation
evaluates them as two sparse matrix-vector multiplies. The separate matrix-vector multiplies are motivated
by an effort to provide general and reusable GPU kernels. Additionally, they artificially increase the amount
of computation compared to the vortex roll-up test case to simulate cases when operators cannot be merged
into one DM (e.g., a non-linear PDE).

By splitting the DM, the singularities at the poles (1/ cos θ → ∞ as θ → ±π2) in (9) remain. However,
in this case, the approach functions without amplification of errors because the MD node sets have nodes
near, but not on, the poles. As noted in [18, 23], applying the entire spatial operator to the right hand side

13

of Equation 2 generates a single DM that analytically removes the singularities at poles.
We will advect a C1 cosine bell height-field given by

h =

{
h0

2 (1 + cos(πρR)) ρ ≤ R
0 ρ ≥ R

having a maximum height of h0 = 1, a radius R = 1
3 and centered at (λc, θc) = (3π/2, 0), with ρ =

arccos(sin θc sin θ + cos θc cos θ cos(λ− λc)). The angle of rotation, α = π/2, is chosen to transport the bell
over the poles of the coordinate system.

Table 3: Values for hyperviscosity and RBF shape parameter for the cosine bell test.

ε = c1
√
N − c2 H = −γcN−k∆k

Stencil Size (n) c1 c2 k γc
17 0.026 0.08 2 8 ∗ 10−4

31 0.035 0.1 4 5 ∗ 10−2

50 0.044 0.14 6 5 ∗ 10−1

101 0.058 0.16 8 5 ∗ 10−2

1 0 1
40

20

0

20

40

Im
λ

Re λ

(a) No Hyperviscosity

6 4 2 0
40

20

0

20

40

Im
λ

Re λ

(b) With Hyperviscosity

Figure 11: Eigenvalues of (10) for the cosine bell test case with N = 4096 nodes, stencil size
n = 101, and ε = 3.5. Left: no hyperviscosity. Right: hyperviscosity enabled with k = 8 and
γc = 5 ∗ 10−2. Eigenvalues are divided by u0 to remove scaling effects of velocity.

Figure 11 compares eigenvalues of the DM for N = 4096 nodes and stencil size n = 101 before and after
hyperviscosity is applied. To avoid scaling effects of velocity on the eigenvalues, they have been scaled by
1/u0. The same approach as in the vortex roll-up case is used to determine the parameters for hyperviscosity
and ε. Our tuned parameters are presented in Table 3.

Figure 12 shows the cosine bell transported ten full revolutions around the sphere. Without hyperviscos-
ity, RBF-FD cannot complete a single revolution of the bell before instability takes over. However, adding
hyperviscosity allows computation to extend to dozens or even thousands of revolutions and maintain sta-
bility (e.g., see [23]). After ten revolutions, the cosine bell is still intact. The majority of the absolute error
(Figure 12(b)) appears at the base of the C1 bell where the discontinuity appears in the derivative. At ten
revolutions, Figure 13 illustrates the convergence of the RBF-FD method. All tests in Figure 13 assume
1000 time-steps per revolution (i.e., ∆t = 1036.8 seconds).

14

(a) 10 Revolutions (b) Absolute Error at 10 revolutions

Figure 12: Cosine bell solution after 10 revolutions with N = 10201 nodes and stencil size n = 101.
Hyperviscosity parameters are k = 8, γc = 5(10−2).

10410 3

10 2

10 1

100

N

N
o
rm

a
li
ze

d
! 2

er
ro

r

n=17
n=31
n=50
n=101

Figure 13: Convergence plot for cosine bell advection. Normalized `2 error at 10 revolutions with
hyperviscosity enabled.

5 Performance Benchmarks

In this section, we present performance results under a variety of conditions: two different architectures,
varying stencil sizes, and different grid resolutions. We also present some timings that break down the
contributions from computation and communication between GPU and CPU, as well as between CPUs.

All timings correspond to the average run-time of a full RK4 time-step. Most of our results use speedup
as a measure of comparison. Here, speedup is the ratio of serial execution time on a single CPU to parallel
execution time. Benchmarks for single- and multi-GPU implementations are measured on the CPU to include
all costs involved in the time-step, including the cost of updating GPU memory (if necessary), setting kernel
parameters, and the latency in launching kernels. While we made some effort to improve the performance
on the GPU, several optimization ideas were left unimplemented because they are outside the scope of this
paper. Improved results that derive from further optimization will be presented elsewhere.

We ran the benchmarks on two architectures. The first, troi, represents a typical workstation that most

15

troi

of the RBF community would develop and test on. troi has two quad-core Intel Xeon 5570 (2.93GHz)
processors, 8MB cache shared between four cores, 12GB of system memory (RAM) and a NVidia GTX480
GPU with 1.5GB global memory and 15 multiprocessors. The second system is the Keeneland Initial Delivery
(KID) system, a supercomputing cluster with 240 twelve-core Intel Xeon 5660 (2.80GHz) CPUs, 12MB cache
per core shared between twelve cores, 24GB system memory, and 360 NVidia M2070 GPUs with 6GB of
device memory and 14 multiprocessors each [51]. A high level layout of the Keeneland system is presented
in Figure 14. The system was designed with its 240 CPUs partitioned into sets of two CPUs per compute
node, four nodes per chassis, and six chassis per rack. An InfiniBand QDR Network handles inter-node
communication. In addition to the dual CPUs, each node has three NVidia M2070 Fermi class GPUs.

Node 120

quad-corequad-core

NVidia
M2070

NVidia
Fermi

480GTX

NVidia
Fermi

480GTX

Node 2

quad-corequad-core

NVidia
M2070

NVidia
Fermi

480GTX

NVidia
Fermi

480GTX

Node 1

Quad-Core
Xeon 5660

Quad-Core
Xeon 5660

NVidia
M2070

NVidia
M2070

NVidia
M2070

. . .

. . .

Keeneland (240 CPUs, 360 GPUs)

2 Xeon CPUs,
3 NVidia GPUs

per Node
(x120 nodes)

InfiniBand QDR Network

Figure 14: The Keeneland Initial Delivery (KID) hardware layout.

The Message Passing Interface (MPI) manages process creation and communication; all tests run under
the OpenMPI implementation of the MPI standard [27]. The open source Armadillo library [43] is employed
to solve the small linear systems in Equation (1) for stencil weights and compute eigenvalues for hyperviscosity
tuning. Armadillo is a linear algebra package written in C++ that provides a templated front-end to
optimized routines from BLAS, LAPACK and/or high performance replacements such as the Intel Math
Kernel Library (MKL). Currently, Armadillo has no support sparse matrices, but the library enables high-
level coding of linear algebra reminiscent of MATLAB. In addition, optimized back-end routines run in
parallel on multiple CPU cores, which allows full utilization of available hardware.

Binaries on troi were built using the GNU gcc v4.4.3 compiler with the “-O2” optimization flag. Ar-
madillo on troi is a front-end to LAPACK and BLAS routines. Binaries on Keeneland were built with
the Intel icpc v12.0.4 compiler together with the “-O2” optimization flag. Armadillo wraps the Intel Math
Kernel Library (MKL), which includes highly optimized/threaded replacements for the BLAS and LAPACK
routines.

A nested loop performs the sparse matrix vector multiplication in our CPU implementation. In the
following tests, compiler auto-optimizations such as loop unrolling, auto-vectorization, etc., improve the
efficiency of the loops. However, alternatives will also be investigated to improve the performance of the CPU
evaluation as we continue to improve the GPU performance. For example, the OSKI project [52] provides
efficient, auto-tuned, drop-in replacements for sparse matrix-vector multiply in codes that already have
matrices in CSR format. The Eigen [29] and BOOST::uBLAS [1] projects also provide drop-in replacements
but lack auto-tuning capabilities.

All calculations on the GPU execute in double precision, which is crucial since the stencil weights must
be in double precision. To verify this assertion, we computed the weights in double precision on the CPU
and cast them to single precision prior to transfer to the GPU. In single precision, weights for many of the
stencils summed to O(10−4), a poor approximation to zero, which translates into a poor approximation of the
derivatives. Additionally, casting the weights to single precision perturbs the eigenvalues of the differentiation
matrix, which requires tuning new parameters for hyperviscosity to maintain stability.

16

troi
troi
troi

0.5 1 1.5 2 2.5 3
x 104

0

2

4

6

8

10

N

S
p
ee

d
u
p

(t
C

P
U
/

t
G

P
U
)

One Thread Per Stencil

n=17
n=31
n=50
n=101

(a) Vortex Roll-up By Thread

0.5 1 1.5 2 2.5 3
x 104

0

2

4

6

8

10

N

S
p
ee

d
u
p

(t
C

P
U
/

t
G

P
U
)

One Warp Per Stencil

n=17
n=31
n=50
n=101

(b) Vortex Roll-up By Warp

0.5 1 1.5 2 2.5 3
x 104

0

2

4

6

8

10

N

S
p
ee

d
u
p

(t
C

P
U
/

t
G

P
U
)

One Thread Per Stencil

n=17
n=31
n=50
n=101

(c) Cosine Bell Advection By Thread

0.5 1 1.5 2 2.5 3
x 104

0

2

4

6

8

10

N

S
p
ee

d
u
p

(t
C

P
U
/

t
G

P
U
)

One Warp Per Stencil

n=17
n=31
n=50
n=101

(d) Cosine Bell Advection By Warp

Figure 15: Speedup of the vortex roll-up test case achieved on a single GPU with respect to a
single CPU on troi (GTX480, GNU gcc compiler).

In the following test cases, processor affinity is enforced via the MPI command line arguments, “--mca
mpi paffinity alone 1” . This ensures that execution proceeds without migration between CPUs. Our current
implementation associates one GPU with each CPU. Tests are distributed such that each MPI process runs
on an independent compute node on Keeneland, and therefore an independent CPU. This illustrates worst
case communication costs by forcing MPI communication between CPUs/GPUs to route over the slowest
interconnect.

5.1 One GPU vs One CPU

Figure 15 considers the speedup achieved by a single GPU with respect to a single CPU core on troi. In
an un-optimized state, it is apparent that the choice of operating by thread or warp should depend on the
stencil size.

From Figures 15(a) and 15(c), we see promising results for the smallest stencil size, n = 17, and one
thread per stencil with roughly 9x speedup in both the vortex roll-up and cosine bell advection. However,
as anticipated, the naive implementation offers diminishing returns as stencil sizes increase and the kernel is
increasingly memory bound.

Figures 15(b) and 15(d) show that a warp of threads dedicated to a large stencil size (e.g., n = 101) can

17

troi
troi

0.5 1 1.5 2 2.5 3
x 104

0

2

4

6

8

10

N

S
p
ee

d
u
p

(t
C

P
U
/

t
G

P
U
)

One Thread Per Stencil

n=17
n=31
n=50
n=101

(a) Vortex Roll-up By Thread

0.5 1 1.5 2 2.5 3
x 104

0

2

4

6

8

10

N

S
p
ee

d
u
p

(t
C

P
U
/

t
G

P
U
)

One Warp Per Stencil

n=17
n=31
n=50
n=101

(b) Vortex Roll-up By Warp

0.5 1 1.5 2 2.5 3
x 104

0

2

4

6

8

10

N

S
p
ee

d
u
p

(t
C

P
U
/

t
G

P
U
)

One Thread Per Stencil

n=17
n=31
n=50
n=101

(c) Cosine Bell Advection By Thread

0.5 1 1.5 2 2.5 3
x 104

0

2

4

6

8

10

N

S
p
ee

d
u
p

(t
C

P
U
/

t
G

P
U
)

One Warp Per Stencil

n=17
n=31
n=50
n=101

(d) Cosine Bell Advection By Warp

Figure 16: Speedup achieved on a single GPU with respect to a single CPU on the Keeneland
Initial Delivery (KID) system (keeneland.nics.utk.edu). (NVidia M2070, Intel icc compiler)

achieve 2x or higher speedup over the one thread per stencil approach. We also note a higher speedup for
large stencil sizes when comparing Figure 15(b) and Figure 15(d). This is attributed to the added work of
calculating a second derivative for cosine bell advection as compared to just a single derivative in the vortex
roll-up test cases. While its true that an extra derivative requires more memory loads for the second set of
weights, some of the cost is amortized as the warp of threads load weights in 128-byte segments. Also, the
solution values that are random access for the first derivative calculation are cached for use in the second
derivative calculation.

Figures 16(a) to 16(d) display the speedup achieved by a single GPU on the Keeneland system. Due
to differences in GPU hardware and the efficiency of auto-optimizations in the CPU code, speedup factors
decrease in comparison to the promising results from Figure 15, but 3x speedup is still achieved by the
un-optimized kernels. Once again, additional speedup is gained by increasing the number of derivatives for
the one warp per stencil implementation (Figures 16(b) and 16(d)).

As a rule of thumb for n > 32 on both troi and Keeneland, our results demonstrate that one should
operate with a full warp of threads per stencil to achieve the best gains. Future optimizations, such as
merging multiple small stencils into one warp and performing reductions in parallel, will attempt to make
one warp per stencil the default kernel for all stencil sizes.

18

keeneland.nics.utk.edu
troi

5.2 Multi-CPU/GPU vs One CPU

Figure 17 demonstrates the strong scalability of our implementation across multiple CPUs and compares
this to running on multiple GPUs. Strong scalability checks the change in solution time with respect to a
fixed problem size and a variable number of processors. As the number of processors increases, the number
of floating point operations decreases relative to the amount of inter-processor communication. In each case,
a worst-case communication scenario is assumed where each process resides on an independent node. This
implies that communication between processes must traverse the slowest interconnect in Keeneland: the
InfiniBand QDR network. In each case, the N = 27, 556 MD node set is partitioned into vertical slices as
shown in Figure 4.

For a problem size of 27,556 nodes, the multi-CPU scales well up to 6 processors for all stencil sizes,
achieving speedup factors between 4x and 7x. When the problem size reduces below four or five thousand
nodes per processor, Figures 17(a) and 17(c) show diminishing returns. The break-even scaling point would
be higher for a larger problem size.

Figures 17(b) and 17(d) test scaling for multiple GPUs and the one warp per stencil GPU kernel. We
conclude that, for the chosen value of N , running on more than four GPUs produces no gain in efficiency.

2 4 6 8 101

2

3

4

5

6

7

8

9

10

p-Processors

S
p
ee

d
u
p

(t
1
/

t
p
)

Multi-CPU

n=17
n=31
n=50
n=101

(a) Vortex Roll-up with No GPUs

2 4 6 8 101

2

3

4

5

6

7

8

9

10

p-Processors (1 GPU/Proc)

S
p
ee

d
u
p

(t
1
-C

P
U /

t
p
-G

P
U

s
)

Multi-CPU+GPU

n=17
n=31
n=50
n=101

(b) Vortex Roll-up with GPUs

2 4 6 8 101

2

3

4

5

6

7

8

9

10

p-Processors

S
p
ee

d
u
p

(t
1
/

t
p
)

Multi-CPU

n=17
n=31
n=50
n=101

(c) Cosine Bell with No GPUs

2 4 6 8 101

2

3

4

5

6

7

8

9

10

p-Processors (1 GPU/Proc)

S
p
ee

d
u
p

(t
1
-C

P
U /

t
p
-G

P
U

s
)

Multi-CPU+GPU

n=17
n=31
n=50
n=101

(d) Cosine Bell with GPUs

Figure 17: Speedup (relative to time on a single CPU) of the vortex roll-up and cosine bell test
cases when spanning mutiple CPUs (a, c) and multiple GPUs (b, d). In all cases, N = 27, 556.

Figures 18(a) and 18(b) better illustrate the point at which the multi-CPU and multi-GPU implementa-

19

tions become dominated by inter-processor communication. The red bars in Figure 18(a) represent the wall
clock time spent communicating (CPU to CPU) via MPI during a single time step. Computation time is
shown in blue. We find that communication time gains dominance at six to eight CPUs.

The GPU accelerated compute times are shown in Figure 18(b). Here, the transfers of O and R (repre-
sented as green and gray bars respectively) occur every time there is MPI communication; so the true cost
of synchronization is the sum of the three components. Given the extra synchronization overhead and faster
compute times, we find that communication overtakes computation for more than four GPUs.

n=17

n=31

n=50

n=101
Multi CPU (N=27556)

Processors

Ti
m

e
(m

s)
 P

er
 S

te
p

1 2 4 6 8 100

10

20

30

40

50

60

70

80
RK4 Eval+Advance
MPI Send/Recv

(a) Multiple CPUs

Processors (1 GPU/Proc)

Ti
m

e
(m

s)
 P

er
 S

te
p

Multi CPU+GPU (N=27556)

1 2 4 6 8 100

10

20

30

40

50

60

70

80
RK4 Eval+Advance
MPI Send/Recv
Transfer R
Transfer O

(b) Multiple GPUs (One Warp Per Stencil)

Figure 18: Wall clock time (in ms) for one time-step of vortex roll-up test case for various stencil
sizes and with N = 27, 556. The time-step is summation of time spent in computation (blue),
MPI communication (red), solution transfer between CPU to GPU (gray) and back (green).

6 Conclusion

This paper presents the first known parallel implementation of the RBF-FD method for PDEs. Parallelization
is achieved at two levels:

1. The problem geometry is partitioned and distributed across multiple CPUs, with common nodes of
overlapping partitions synchronized by MPI communication.

20

2. Derivative approximations and explicit time-stepping are further parallelized on concurrent GPU hard-
ware, with one GPU supplementing each CPU involved in computation.

Our MPI-based multi-CPU and multi-GPU implementations are tested for correctness by verifying stable
and accurate convergence of two convective PDEs on the sphere.

Two GPU kernels, implemented in OpenCL, illustrate that the RBF-FD stencil size dictates the choice
of parallelization strategy that achieves the most gain on the GPU. For small stencil sizes (n < 32), dedi-
cating a single hardware thread to each stencil is sufficient; larger stencil sizes can benefit from additional
parallelization of a full warp of 32 threads collaborating on each stencil.

Even in the un-optimized GPU kernels used here, speedup factors of 2-3x are realized on Keeneland, a
production level cluster. For a typical workstation configuration, factors up to 9x are achieved for small
stencil sizes.

Our multi-CPU/GPU implementations demonstrate strong scaling with up to 7x speedup over a single
CPU for the largest problem size considered here. With access to 240 CPUs and 360 GPUs on Keeneland,
scaling is important. For the small problem sizes tested here, near linear scaling of multiple CPUs is achieved
on fewer than 6 processors. Multiple GPUs reduce this number further as the cost of communication increases
and the time to compute decreases. Much larger problems (i.e., millions or billions of nodes) are necessary
to leverage all available processors. Before optimizing GPU kernels, it is necessary to decrease/amortize the
cost of MPI communication. In anticipation for this, future implementations will overlap communication
and computation. Our local index mapping already provides the contiguous block of stencil indices that do
not depend on MPI communication and can be evaluated without waiting on other processors. Additionally,
future investigation into better node set partitioning could help balance the overlap between communication
and computation.

Certainly, additional effort is necessary to realize fully optimized GPU kernels. Details such as memory
alignment, idle threads, and additional use of shared memory will all be significant to improve efficiency
within our memory bound kernels.

7 Acknowledgements

This work is supported by NSF awards DMS-#0934331 (FSU), DMS-#0934317 (NCAR) and ATM-#0602100
(NCAR).

Many thanks to Bengt Fornberg, Grady Wright, Kiran Katta, Ian Johnson, Steve Henke and Joseph
Lohmeier for helpful discussion and insight.

References

[1] BOOST C++ Libraries. http://www.boost.org.

[2] AccelerEyes. Jacket User Guide - The GPU Engine for MATLAB, 1.2.1 ed., November 2009.

[3] Bell, N., and Garland, M. Implementing sparse matrix-vector multiplication on throughput-
oriented processors. Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis - SC ’09, 1 (2009), 1.

[4] Bollig, E. F. Fast neighbor queries and other optimization strategies for efficient radial basis function
pde methods. in preparation (2011).

[5] Brandstetter, A., and Artusi, A. Radial Basis Function Networks GPU Based Implementation.
IEEE Transaction on Neural Network 19, 12 (December 2008), 2150–2161.

[6] Buhmann, M. D. Radial Basis Functions: Theory and Implementations. Cambridge University Press,
2003.

21

[7] Carr, J. C., Beatson, R. K., McCallum, B. C., Fright, W. R., McLennan, T. J., and
Mitchell, T. J. Smooth Surface Reconstruction from Noisy Range Data. In GRAPHITE ’03: Proceed-
ings of the 1st international conference on Computer graphics and interactive techniques in Australasia
and South East Asia (New York, NY, USA, 2003), ACM, pp. 119–ff.

[8] Cecil, T., Qian, J., and Osher, S. Numerical Methods for High Dimensional Hamilton-Jacobi
Equations Using Radial Basis Functions. JOURNAL OF COMPUTATIONAL PHYSICS 196 (2004),
327–347.

[9] Chandhini, G., and Sanyasiraju, Y. Local RBF-FD Solutions for Steady Convection-Diffusion
Problems. International Journal for Numerical Methods in Engineering 72, 3 (2007).

[10] Chinchapatnam, P. P., Djidjeli, K., Nair, P. B., and Tan, M. A compact RBF-FD based
meshless method for the incompressible Navier–Stokes equations. Proceedings of the Institution of
Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 223, 3 (Mar.
2009), 275–290.

[11] Connor, M., and Kumar, P. Fast construction of k-nearest neighbor graphs for point clouds. IEEE
Transactions on Visualization and Computer Graphics 16 (2010), 599–608.

[12] Corrigan, A., and Dinh, H. Computing and Rendering Implicit Surfaces Composed of Radial Basis
Functions on the GPU. International Workshop on Volume Graphics (2005).

[13] Cuntz, N., Leidl, M., Darmstadt, T., Kolb, G., Salama, C., Böttinger, M., Klimarechen-
zentrum, D., and Hamburg, G. GPU-based Dynamic Flow Visualization for Climate Research
Applications. Proc. SimVis (2007), 371–384.

[14] Divo, E., and Kassab, A. An Efficient Localized Radial Basis Function Meshless Method for Fluid
Flow and Conjugate Heat Transfer. Journal of Heat Transfer 129 (2007), 124.

[15] Flyer, N., and Fornberg, B. Radial basis functions: Developments and applications to planetary
scale flows. Computers & Fluids 46, 1 (July 2011), 23–32.

[16] Flyer, N., and Lehto, E. Rotational transport on a sphere: Local node refinement with radial basis
functions. Journal of Computational Physics 229, 6 (Mar. 2010), 1954–1969.

[17] Flyer, N., Lehto, E., Blaise, S., Wright, G. B., and St-Cyr, A. Rbf-generated finite differences
for nonlinear transport on a sphere: shallow water simulations. Submitted to Elsevier (2011), 1–29.

[18] Flyer, N., and Wright, G. B. Transport schemes on a sphere using radial basis functions. Journal
of Computational Physics 226, 1 (2007), 1059 – 1084.

[19] Flyer, N., and Wright, G. B. A Radial Basis Function Method for the Shallow Water Equations
on a Sphere. In Proc. R. Soc. A (December 2009), vol. 465, pp. 1949–1976.

[20] Fornberg, B., Driscoll, T., Wright, G., and Charles, R. Observations on the behavior of
radial basis function approximations near boundaries. Computers & Mathematics with Applications 43,
3-5 (Feb. 2002), 473–490.

[21] Fornberg, B., and Flyer, N. Accuracy of Radial Basis Function Interpolation and Derivative
Approximations on 1-D Infinite Grids. Adv. Comput. Math 23 (2005), 5–20.

[22] Fornberg, B., Larsson, E., and Flyer, N. Stable Computations with Gaussian Radial Basis
Functions. SIAM J. on Scientific Computing 33, 2 (2011), 869—-892.

[23] Fornberg, B., and Lehto, E. Stabilization of RBF-generated finite difference methods for convective
PDEs. Journal of Computational Physics 230, 6 (Mar. 2011), 2270–2285.

[24] Fornberg, B., and Piret, C. A Stable Algorithm for Flat Radial Basis Functions on a Sphere.
SIAM Journal on Scientific Computing 30, 1 (2007), 60–80.

22

[25] Fornberg, B., and Piret, C. On Choosing a Radial Basis Function and a Shape Parameter when
Solving a Convective PDE on a Sphere. Journal of Computational Physics 227, 5 (2008), 2758 – 2780.

[26] Fornberg, B., and Wright, G. Stable computation of multiquadric interpolants for all values of
the shape parameter. Computers & Mathematics with Applications 48, 5-6 (2004), 853 – 867.

[27] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R. H., Daniel, D. J.,
Graham, R. L., and Woodall, T. S. Open MPI: Goals, concept, and design of a next generation
MPI implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting (Budapest,
Hungary, September 2004), pp. 97–104.

[28] Goswami, P., Schlegel, P., Solenthaler, B., and Pajarola, R. Interactive sph simulation and
rendering on the gpu. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (Aire-la-Ville, Switzerland, Switzerland, 2010), SCA ’10, Eurographics Association,
pp. 55–64.

[29] Guennebaud, G., Jacob, B., et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[30] Hardy, R. Multiquadratic Equations of Topography and Other Irregular Surfaces. J. Geophysical
Research, 76 (1971), 1–905.

[31] Ivan, L., Sterck, H. D., Northrup, S. A., and Groth, C. P. T. Three-Dimensional MHD on
Cubed-Sphere Grids: Parallel Solution-Adaptive Simulation Framework. In 20th AIAA CFD Conference
(2011), no. 3382, pp. 1325–1342.

[32] Jakob-Chien, R., Hack, J., and Williamson, D. Spectral transform solutions to the shallow water
test set. Journal of Computational Physics 119, 1 (1995), 164–187.

[33] Kansa, E. J. Multiquadrics–A scattered data approximation scheme with applications to computa-
tional fluid-dynamics. I. Surface approximations and partial derivative estimates. Computers Math.
Applic, 19 (1990), 127–145.

[34] Karypis, G., and Kumar, V. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing 20, 1 (1999), 359–392.

[35] Khronos OpenCL Working Group. The OpenCL Specification (Version: 1.0.48), October 2009.

[36] Kosec, G., and Šarler, B. Solution of thermo-fluid problems by collocation with local pressure
correction. International Journal of Numerical Methods for Heat & Fluid Flow 18 (2008).

[37] Larsson, E., and Fornberg, B. A Numerical Study of some Radial Basis Function based Solution
Methods for Elliptic PDEs. Comput. Math. Appl 46 (2003), 891–902.

[38] Nair, R., Thomas, S., and Loft, R. A discontinuous Galerkin transport scheme on the cubed
sphere. Monthly Weather Review 133, 4 (Apr. 2005), 814–828.

[39] Nair, R. D., and Jablonowski, C. Moving Vortices on the Sphere: A Test Case for Horizontal
Advection Problems. Monthly Weather Review 136, 2 (Feb. 2008), 699–711.

[40] NVidia. NVIDIA CUDA - NVIDIA CUDA C - Programming Guide version 4.0, March 2011.

[41] Pan, J., and Manocha, D. Fast GPU-based Locality Sensitive Hashing for K-Nearest Neighbor
Computation. Proceedings of the 19th ACM SIGSPATIAL GIS ’11 (2011).

[42] Randall, D., Ringler, T., and Heikes, R. Climate modeling with spherical geodesic grids. Com-
puting in Science & Engineering (2002), 32–41.

[43] Sanderson, C. Armadillo: An open source c++ linear algebra library for fast prototyping and com-
putationally intensive experiments. Tech. rep., NICTA, 2010.

23

[44] Schaback, R. Multivariate Interpolation and Approximation by Translates of a Basis Function. In
Approximaton Theory VIII–Vol. 1: Approximation and Interpolation, C. Chui and L. Schumaker, Eds.
World Scientific Publishing Co., Inc, 1995, pp. 491–514.

[45] Schmidt, J., Piret, C., Zhang, N., Kadlec, B., Yuen, D., Liu, Y., Wright, G., and Sevre,
E. Modeling of Tsunami Waves and Atmospheric Swirling Flows with Graphics Processing Unit (GPU)
and Radial Basis Functions (RBF). Concurrency and Computat.: Pract. Exper. (2009).

[46] Shu, C., Ding, H., and Yeo, K. S. Local radial basis function-based differential quadrature method
and its application to solve two-dimensional incompressible Navier-Stokes equations. Computer Methods
in Applied Mechanics and Engineering 192, 7-8 (2003), 941 – 954.

[47] Sloan, I. H., and Womersley, R. S. Extremal systems of points and numerical integration on the
sphere. Adv. Comput. Math 21 (2003), 107–125.

[48] Stevens, D., Power, H., Lees, M., and Morvan, H. The use of PDE centres in the local RBF
Hermitian method for 3D convective-diffusion problems. Journal of Computational Physics (2009).

[49] Tolstykh, A. On using RBF-based differencing formulas for unstructured and mixed structured-
unstructured grid calculations. In Proceedings of the 16 IMACS World Congress, Lausanne (2000),
pp. 1–6.

[50] Tolstykh, A. I., and Shirobokov, D. A. On using radial basis functions in a “finite difference mode”
with applications to elasticity problems. In Computational Mechanics, vol. 33. Springer, December 2003,
pp. 68 – 79.

[51] Vetter, J., Glassbrook, R., Dongarra, J., Schwan, K., Loftis, B., McNally, S., Mered-
ith, J., Rogers, J., Roth, P., Spafford, K., and Yalamanchili, S. Keeneland: Bringing
heterogeneous GPU computing to the computational science community. IEEE Computing in Science
and Engineering 13, 5 (2011), 90–95.

[52] Vuduc, R., Demmel, J. W., and Yelick, K. A. Oski: A library of automatically tuned sparse
matrix kernels. In Institute of Physics Publishing (2005).

[53] Weiler, M., Botchen, R., Stegmaier, S., Ertl, T., Huang, J., Jang, Y., Ebert, D., and
Gaither, K. Hardware-Assisted Feature Analysis and Visualization of Procedurally Encoded Multifield
Volumetric Data. IEEE Computer Graphics and Applications 25, 5 (2005), 72–81.

[54] Wendland, H. Piecewise polynomial, positive definite and compactly supported radial functions of
minimal degree. Advances in Computational Mathematics 4 (1995), 389–396. 10.1007/BF02123482.

[55] Wendland, H. Scattered Data Approximation. Cambridge Monographs on Applied and Computational
Mathematics. Cambridge University Press, 2005.

[56] Wright, G. B. Radial Basis Function Interpolation: Numerical and Analytical Developments. PhD
thesis, University of Colorado, 2003.

[57] Wright, G. B., Flyer, N., and Yuen, D. A. A hybrid radial basis function–pseudospectral method
for thermal convection in a 3-d spherical shell. Geochem. Geophys. Geosyst. 11, Q07003 (2010), 18 pp.

[58] Wright, G. B., and Fornberg, B. Scattered node compact finite difference-type formulas generated
from radial basis functions. J. Comput. Phys. 212, 1 (2006), 99–123.

[59] Yokota, R., Barba, L., and Knepley, M. G. PetRBF — A parallel O(N) algorithm for radial
basis function interpolation with Gaussians. Computer Methods in Applied Mechanics and Engineering
199, 25-28 (May 2010), 1793–1804.

24

	Introduction
	Calculating RBF-FD weights
	Hyperviscosity

	Targeting Multi-CPU/GPU
	Memory Layout
	Targeting the GPU
	Naive Approach: One thread per stencil
	Alternate Approach: One warp per stencil

	Numerical Validation
	Vortex Rollup
	Solid body rotation

	Performance Benchmarks
	One GPU vs One CPU
	Multi-CPU/GPU vs One CPU

	Conclusion
	Acknowledgements

