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ABSTRACT

One of the recognized weaknesses of land surface models as used in weather and climate models is the

assumption of constant soil thickness because of the lack of global estimates of bedrock depth. Using a 30-arc-s

global dataset for the thickness of relatively porous, unconsolidated sediments over bedrock, spatial variation

in soil thickness is included here in version 4.5 of the Community LandModel (CLM4.5). The number of soil

layers for each grid cell is determined from the average soil depth for each 0.98 latitude3 1.258 longitude grid
cell. The greatest changes in the simulation with variable soil thickness are to baseflow, with the annual

minimum generally occurring earlier. Smaller changes are seen in latent heat flux and surface runoff primarily

as a result of an increase in the annual cycle amplitude. These changes are related to soil moisture changes that

are most substantial in locations with shallow bedrock. Total water storage (TWS) anomalies are not strongly

affected over most river basins since most basins contain mostly deep soils, but TWS anomalies are sub-

stantially different for a river basin with more mountainous terrain. Additionally, the annual cycle in soil

temperature is partially affected by including realistic soil thicknesses resulting from changes in the vertical

profile of heat capacity and thermal conductivity. However, the largest changes to soil temperature are in-

troduced by the soil moisture changes in the variable soil thickness simulation. This implementation of

variable soil thickness represents a step forward in land surface model development.

1. Introduction

Land surface models (LSMs) are utilized by general

circulation models (GCMs) to represent land surface

processes, primarily for the purpose of modeling land–

atmosphere interactions as represented by energy and

water fluxes across the land–atmosphere interface.

When coupled to river transport models (RTMs), LSMs

can also represent the transport of water from land back

to the ocean. Accurate modeling of soil moisture is a

prerequisite for a good representation of land–atmosphere

interactions and surface runoff (Liang et al. 2003). Both

of these require an accurate representation of ground-

water. Gravity and capillary forces create water fluxes

between the unsaturated soil and groundwater (Niu et al.

2007). Thus, a shallowwater table would havemore of an

effect on the soil moisture profile than a deep one (Chen

and Hu 2004). Shallow water tables also provide water

for evapotranspiration and are more likely to result in

runoff from saturation excess (Gutowski et al. 2002;

York et al. 2002; Liang et al. 2003; Chen andHu 2004). In

fact, runoff was found to be more related to water table

depth than to precipitation (Eltahir and Yeh 1999).

Additionally, shallow water tables have been shown to

impede drainage, creatingwetlands in regions unaffected
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by seasonal flooding (Miguez-Macho and Fan 2012). Fan

et al. (2013) found that 22%–32% of land globally is

affected by shallow groundwater. Groundwater provides

a source of water for evapotranspiration even during dry

seasons or drought conditions (Yeh et al. 1998; Gutowski

et al. 2002; Miguez-Macho and Fan 2012). In fact, some

plants are highly reliant on groundwater (Orellana et al.

2012; Rossatto et al. 2012). Roots have been documented

down to around 18m in the Amazon (Nepstad et al.

1994) and even deeper elsewhere (Canadell et al. 1996).

Fan et al. (2013) estimated that the water table was high

enough to be used by plants in between 7% and 17% of

global land.

A widespread practice to model groundwater is to

implement a model to represent the groundwater that

interacts with a soil moisture column of constant depth

globally. Somemodels (e.g., Gutowski et al. 2002; York

et al. 2002) explicitly model the three-dimensional flow

of groundwater, but these are computationally expen-

sive to implement into GCMs (York et al. 2002). These

have largely been implemented into regional models

with finer horizontal resolution since horizontal trans-

port is more important at these smaller scales (York

et al. 2002; Yeh and Eltahir 2005). Others implement a

simplified one- (e.g., Liang et al. 2003; Niu et al. 2007;

Yeh and Eltahir 2005; Koirala et al. 2014) or two-

dimensional (e.g., Miguez-Macho et al. 2007) rep-

resentation of groundwater. One of these simpler

representations (Niu et al. 2007) is currently included

in the Community Land Model, version 4.5 (CLM4.5;

Oleson et al. 2013). It is connected to a soil column of a

constant depth of 3.8m. Within the soil column, soil

moisture is found using the revised Richards equation

of Zeng and Decker (2009). This revision allows the

soil-moisture-based version of the Richards equation

to be used under saturated conditions as would be

found when the water table lies within the soil column,

so that a separate groundwater model may not be

necessary. Decker and Zeng (2009) suggested that the

separation of soil moisture processes and groundwater

is unrealistic and physically unjustified and further

showed how this revision of the Richards equation (with

the groundwater model removed) improved CLM3.5. Still,

the thickness of the soil column was held constant at

around 3.5m.

However, soil thickness varies from region to region.

Uplands tend to have shallow soil thicknesses, while

lowlands have deeper soils. In uplands, soil depths vary

from slope to slope because of differences between rates

of soil production and erosion, which depend on terrain

slope, climate, and rock type (Pelletier and Rasmussen

2009). In principle, variable soil thickness in LSMs should

make the models more realistic, but implementation

has been impractical because of a lack of global esti-

mates of bedrock depth. Instead, localized estimates

have been more prevalent. For instance, Dietrich

et al. (1995), Roering (2008), Pelletier and Rasmussen

(2009), and Tesfa et al. (2009) developed geo-

morphically based soil depth models, applying them to

upland basins.

Including variations in soil thickness is an important

next step in LSM evolution. Soil thickness is the main

determinant of hydrologic response in upland water-

sheds since thin soils are more likely to produce surface

runoff than thicker soils which can store more water

(Pelletier and Rasmussen 2009). Soil depth has been

shown to control infiltration rates in a desert basin in

Nevada (Woolhiser et al. 2006). When the soil column

thickness was reduced to realistic values in the Noah

LSM for selected locations in the mountains of semiarid

northwest Mexico, there was more variation in simu-

lated half-hourly latent heat fluxes over the summer

(Gochis et al. 2010). However, soil thickness may not

have a large impact on model simulations in all regions

or in all model configurations, as Gulden et al. (2007)

showed that a deeper soil column containing 30 layers is

equally adept at representing column total water storage

in Illinois as the 10-layer CLM coupled with the un-

confined aquifer model.

The use of variable soil thickness in LSMs has been

hampered by the lack of any global estimate of such a

quantity. Building upon the partial success of previous

localized attempts at soil depth generation, Pelletier

et al. (2016) have developed a 30-arc-s (;1 km) global

dataset of the thickness of relatively porous, un-

consolidated sediments over bedrock (essentially soil

thickness) based on topographic, geologic, and climate

data. Separate models for upland hillslopes and valley

bottoms/lowlands are utilized. Globally, lowlands are

determined from geologic data and topographic criteria.

Lowland soil thickness is simply predicted using a model

that is based on topographic curvature that is calibrated

with high-density well data from four U.S. states. Valley

bottoms that exist in upland landscapes are determined

using topographic analysis (Pelletier 2013), and the

thickness of soil/alluvium for a particular valley bottom

is predicted from the curvature of the valley bottom and

the gradient of the hillslopes flanking the valley. Soil

thickness on the remaining upland hillslopes is then

predicted by a geomorphic model that balances soil

production with erosion. It is based on topographic

curvature but has parameters that are dependent on

climate, which are calibrated with soil data from the

State Soil Geographic (STATSGO) database across the

contiguous United States (Miller and White 1998). This

dataset contains separate soil thickness estimates for
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uplands and lowlands along with the fraction of lowland/

upland within each 30-arc-s pixel.

The calibration and evaluation data for the dataset are

primarily from midlatitude sites, so their quality in

tropical and polar regions is more uncertain than in the

midlatitudes. The distinction between shallow and deep

soils is also largely influenced by geologic mapping. The

quality of these maps is highest in North America

(where the data are at higher resolution) and regions of

the world where there has been significant oil and gas

exploration. The predicted soil depths for areas with

shallow soils (which would potentially influence results

here) are found to be within 80 cm of those indicated by

independent validation data on a different continent

than the calibration data a majority (.80%) of the time.

More information about the techniques and data used to

construct the dataset, as well as calibration and valida-

tion of the models are provided in Pelletier et al. (2016).

The previous small-scale studies motivate us to in-

vestigate what would happen when global soil depth is

implemented into an LSM. We hypothesize that the

LSMwould bemore sensitive to a variable soil thickness

in places where bedrock is shallow, as was found by

Gochis et al. (2010), but simulations with deep bedrock

would be similar to existing simulations using a

groundwater model, like what Gulden et al. (2007)

found. Here, we document the implementation of the

global soil thickness into the latest version of CLM,

CLM4.5. Section 2 describes how groundwater pro-

cesses are handled currently in CLM4.5 and the changes

that are made here to include variable soil thickness.

The various sensitivity tests carried out to evaluate the

performance of variable soil thickness are explained in

section 3, and the results of these sensitivity tests are

given in section 4. Finally, these results are summarized

and further discussed in section 5.

2. The model

a. The current representation of hydrological
processes in CLM4.5

The current configuration of CLM4.5 is shown in the left

panel of Fig. 1. It includes an unconfined aquifer (Niu et al.

2007) that is positioned below a 10-layer soil column of a

constant depth of around 3.8m.Amaximumof 5000mmof

water is allowed in the unconfined aquifer (Oleson et al.

2013). If the unconfined aquifer reaches this maximum, the

water table is allowed to be within the soil column. In this

case, a recharge rate is defined by Darcy’s law:

q
recharge

52k
aq

c
=
2c

jwt

z
=
2 z

jwt

, (1)

where c= 5 0 is the soil matric potential at the water

table depth z=, cjwt is the soil matric potential in the

layer above the water table, and zjwt is the depth of the

layer above the water table. Furthermore, kaq is a hy-

draulic conductivity of recharge that is based on the hy-

draulic conductivity of the layer that contains the water

table depth (jwt 1 1) such that kaq 5 Qice,jwt11k(zjwt11)

withQice,jwt11 being an ice impedence factor for that layer

such that
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where Fice,i is the fraction of pore space filled with ice. The

change in water table depth is a function of how much

water is added to the unconfined aquifer by recharge

qrecharge and how much is removed by drainage qdrain:

Dz
=
5

q
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2 q
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S
y

Dt , (3)

where Dt is the model time step. The specific yield Sy is

defined as

S
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#
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where usat and csat are the saturated values of volumetric

soil moisture and soil matric potential, respectively, and

B is the Clapp–Hornberger exponent. The subsurface

drainage qdrain is based upon Niu et al. (2005) with the

addition of the ice impedence factor:

q
drain

5Q
ice
q
drainmax

exp(2f
drain

z
=
) , (5)

where qdrainmax
is a maximum drainage rate based upon

the mean gridcell topographic slope b such that

qdrainmax 5 10 sinb and fdrain is a decay factor of 2.5m21.

In the case of the water table lying below the model

soil column, the aquifer water storage is less than

5000mm, and the recharge rate is based upon a hypo-

thetical soil layer between the bottom of the explicit soil

column in layer Nlevsoi and the top of the unconfined

aquifer (Zeng and Decker 2009):

q
recharge

5
Du

liq,Nlevsoi11
Dz

Nlevsoi11

Dt
, (6)

where Duliq,Nlevsoi11 is the change of liquid water content

in this hypothetical layer during a model time step and

DzNlevsoi11 is the difference between the water table depth
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FIG. 1. Hydrological processes (left) considered originally in CLM4.5 and how they are considered in the version (right) with variable soil

thickness (VAR). The yellow-brown layers represent the soil column.
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z= and the bottom of the soil columnDzNlevsoi
. The change

in the amount of water in the unconfined aquifer is given

by the following:

DW
a
5 (q

recharge
2 q

drain
)Dt . (7)

b. How variable soil thickness is accounted for in
CLM4.5

To include variable soil depth, the almost 1-km soil

thicknesses within each 0.98 latitude 3 1.258 longitude
resolution grid cell are averaged to obtain the gridcell

average depth to bedrock (DTB). This depth is then

used to determine the number of soil layers in each grid

cell (Fig. 2a). This is one of a number of ways to ag-

gregate the high-resolution DTB into a single gridcell

quantity. For instance, the median DTB for each grid

cell could be used to determine the number of soil layers

instead. We will briefly explore this possibility for a

single grid cell in Colorado with a large intragridcell

variability in DTB in section 4.

The ground layer vertical structure in CLM4.5 is

maintained, but the number of hydrologically active soil

layers is increased or decreased based on average DTB

from the standard value of 10. The depth of the node

for a particular layer i is determined to be

FIG. 2. (a) The dataset soil thickness averaged to the model resolution used here of ap-

proximately 0.98 lat 3 1.258 lon. (b) The number of hydrologically active CLM layers above

bedrock from (a).
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z
i
5 0:025[e0:5(i20:5) 2 1], (8)

and the bottom of that layer is found by the following:

z
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1 z

i11
) , for i5 1, . . . , 14

z
14
1 0:5(z

15
2 z

14
) , for i5 15

. (9)

The node and bottom interface depths fromEqs. (8) and

(9) are given in Table S1 of the supplementalmaterial. A

minimum of five layers (corresponding to a soil thick-

ness of ;0.3m) and a maximum of 14 layers (corre-

sponding to a soil thickness of ;28m) are allowed. The

number of soil layers for a particular grid cell within that

range is determined based upon where the 0.98 3 1.258
depth to bedrock happens to fall. If the bedrock depth

falls above the middle of a particular layer N, then the

model bedrock depth is put at the top of that layer, and

there are N 2 1 soil layers. If the bedrock depth falls at

or below themiddle of layerN, themodel bedrock depth

is placed at the bottom of that layer, and there are N

layers. Figure 2b shows the number of soil layers allowed

in CLM4.5 with variable soil depth globally. This simple

change is appropriate in this study because it keeps the

model as similar to the original version as possible in

order to avoid colluding the effects of introducing vari-

able soil thicknesses from other effects due to model

changes. However, we would note that as the thickness

of layers grows exponentially with depth, this may in-

troduce limitations when the soil thickness is deep.

As the number of soil layers at each land grid cell

extends effectively to bedrock, it is no longer necessary

to include an artificial unconfined aquifer below the soil

column; therefore, we remove it. Instead, a water table

only exists if any of the soil layers become fully or par-

tially saturated (Fig. 1, right). In such a case, recharge is

defined as in Eq. (1), and the water table depth changes

according to Eq. (3) with the constraint that it cannot be

deeper than the bottom of the last soil layer allowed (i.e.,

the model bedrock depth). An assumption of equilib-

rium in that bottom soil layer is made so as to determine

when water table depth can be above model bedrock

depth (see section S1 of the supplemental material). A

zero bottom flux boundary is currently assumed, which

allows no water to flow into bedrock, but future versions

could allow a flow of water into the bedrock if the bedrock

porosity and hydraulic conductivity are known. Also,

maximumbaseflow is determined as inEq. (5), but the total

baseflow cannot exceed that fraction that can be removed

from the saturated storage of the soil column.

If a particular soil column has less than the default 10

layers, then the root fractions (Zeng 2001) used in the

determination of howmuch water is removed from each

layer by transpiration need to be adjusted. When the

number of layers is less than 10, the original root frac-

tions within the number of layers allowed are normal-

ized by the sum of the root fractions calculated for the

original 10 layers. For grid cells with 10 or more layers,

the root distribution is unchanged, and no roots are al-

lowed in any layer below the tenth soil layer. As the

focus of this paper is on the effects of variable soil

thickness and not on vegetation, we do this to keep the

model as similar to the CLM4.5 release as possible.

However, deep roots have been observed in places like

the Amazon (Nepstad et al. 1994; Zeng et al. 1998) and

may play more of a role in arid and semiarid environ-

ments (Canadell et al. 1996). The root fraction distri-

bution might need to be adjusted to account for the

possibility of these deep roots in the future. While we

ignore the effects of deep roots for now, we perform a

sensitivity test of the effect of this assumption that is

shown in section 5.

If there are less than 10 layers within a soil column,

surface runoff also must be adjusted, since it depends on

water table depth:

q
over

5 f
max

e20:5foverq
liq,0

(10)

where qliq,0 is the flux of water coming from above the

soil, fover is a decay factor set to 0.5m21, and fmax is the

maximum fraction of surface water flux capable of

running off if the water table is at the surface (z=5 0). In

our new version with variable soil thickness, depth to the

water table from the surface cannot exceed the model

bedrock depth, because a saturated zone is assumed not

to be able to exist below this depth. For shallow soil

thicknesses, this constrained z=would be too close to the

surface, leading to an overestimation of surface runoff.

Therefore in our adapted version, we adjust fover so that

the exponent will be near 0 at the model bedrock depth

by increasing it such that

f
over

5 0:5
3:8m

z
bot

, (11)

where zbot is the model bedrock depth.

3. Sensitivity tests

The principal runs performed here are the unaltered

CLM4.5 (referred to as CLM4.5), VAR with the changes

to include variable soil depth as described above, and

DEEP using the same framework as for VAR but with a

constant 14 soil layers globally (down to a depth of

;28.25m). In other words, model bedrock depth is at the

bottom of the 14th layer everywhere in DEEP allowing
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the simulation of the unconfined aquifer within the soil

column and not by the Niu et al. (2007) formulation with

the water table possibly below the bottom of the tenth

soil layer in CLM4.5. This last run is performed to help

illustrate some of the differences in VAR relative to

CLM4.5 that are contributed by the change in the bot-

tom boundary condition of removing the aquifer model

and replacing it with zero flux at the bottom interface.

All simulations are run uncoupled to the atmosphere

using the Qian et al. (2006) forcing data with satellite

phenology of prescribed vegetation characteristics as

derived fromMODIS.We found that VARwith its deep

soil profiles in some grid cells needed about 200 years for

the soil moisture and water table to spin up to equilib-

rium. Additionally, DEEP with its 14 soil layers every-

where would need that same amount of simulation time

to spin up.We spin up all the runs, using a repeatedQian

et al. (2006)meteorological forcing for 1948–2004. Then,

we use the same forcing to perform 50-yr simulations for

each experiment. These final runs are what are analyzed

in the following sections, focusing mostly on the 20 years

corresponding to 1978–97 unless otherwise noted. We

also assess the sensitivity of VAR to the forcing used by

running it with the forcing that is derived from the Cli-

mate Research Unit (CRU) climatology with the di-

urnal cycle and daily variability of the National Centers

for Environmental Prediction (NCEP)–National Center

forAtmospheric Research (NCAR) reanalysis (referred to

as CRUNCEP forcing). This run (denoted as VARCRU)

is spun up in the same way as the other runs. This run will

be explored in sections 4c and 5.

To illustrate differences between the simulations, we

analyze standard statistics like means and root-mean-

square differences (RMSDs). We also analyze mean

annual ranges (MARs) with a focus on both the differ-

ences inMAR between simulations and theMAR of the

differences between simulations. The former would be

0 if there is no amplitude difference in the mean annual

cycles of the two runs and is not affected by the phase

shift. However, the latter is affected by both phase shifts

in the annual cycle and amplitude changes. The statis-

tical significance of the mean differences is found by

performing a two-tailed Student’s t test.

Also shown in section 4c are the simulated monthly

mean total water storage (TWS) anomalies from the sim-

ulations compared with those from the Gravity Recovery

and Climate Experiment (GRACE) observations.

GRACE-derived anomalies based on spherical harmonics

from three groups [Chen et al. 2005; Swenson and Wahr

2006; Landerer and Swenson 2012; dataset produced by

Swenson (2012), downloaded from http://grace.jpl.nasa.

gov] are used to represent data uncertainty. For CLM4.5,

the subsurface contribution to TWS is considered to be the

sum of the water stored in the unconfined aquifer below

the soil column and the integrated water within the soil

column. In DEEP and VAR, it is just the integrated water

in the soil column since the aquifer does not exist below the

soil column in these simulations. For all simulations, TWS

also includes snow and surface water. All anomalies are

computed from the 2002–04 means.

4. Results

a. Changes to the mean and interannual variability

Generally, seasonal means in DEEP surface runoff

are only slightly changed compared to CLM4.5 (Fig. 3c

and Fig. S1c in the supplemental material). Therefore,

the change in bottom boundary condition by removing

the unconfined aquifer model has little effect on sur-

face runoff. On the other hand, baseflow can be quite

strongly affected by the bottom boundary change in

some regions and varying by season as shown in Fig. 3d

and Fig. S1d. However, some of these large changes in

baseflow are not statistically significant at the 90% level.

The reduction of soil layers in VAR compared to DEEP

in certain areas such as parts of eastern Siberia, south-

eastern Asia, and northwestern North America has

more of an impact on surface runoff as represented by

the statistically significant differences between VAR and

DEEP (Fig. 3e and Fig. S1e) and also impacts baseflow

quite substantially in some of these same regions (Fig. 3f

and Fig. S1f).

Interannual variability in surface runoff and baseflow

is also affected in VAR. Figures 4a,b present the median

RMSDs of annual mean surface runoff and baseflow

between VAR and CLM4.5 for various bins of mean

annual range in total precipitation as a function of the

number of soil layers used in VAR. The interannual

variability of VAR surface runoff and baseflow is higher

at locations where the number of soil layers is the same

or less than in CLM4.5 and where there is a higher mean

annual range in precipitation (Figs. 4a,b). There is also

elevated interannual variability of baseflow at some

deep bedrock grid cells (number of soil layers.10) if the

annual range in rainfall is high enough (Fig. 4b). Com-

paring this to the median RMSDs between DEEP and

CLM4.5, some of the higher variability in baseflow can

be explained by the change in bottom boundary espe-

cially for the extended soil columns (Figs. 4b,d), whereas

very little of the change in variability in surface runoff

can be explained by this (Figs. 4a,c). The median

RMSDs between VAR and DEEP (Fig. S2 in the sup-

plemental material) look similar to those between VAR

and CLM4.5 for shallow soil columns (i.e., number of

soil layers #10) (Figs. 4a,b), confirming that the change
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in interannual variability fromCLM4.5 toVAR is due to

the reduction of the number of soil layers when the

model bedrock is shallow.

b. Changes in the mean annual cycle

Figure 5 explores the changes in mean annual cycle by

looking at the mean annual range of the difference in

the quantities surface runoff and baseflow between two

runs [i.e., MAR(DEEP 2 CLM4.5), MAR(VAR 2
CLM4.5), or MAR(VAR 2 DEEP)]. Note that this

MAR of the difference between two simulations is

maximized when there is a magnitude change in or a

temporal phase shift in the mean annual cycle. If neither

of these occur, this statistic can be zero as indicated in

the medians for 5 layers for surface runoff (Fig. 5a) and

for 5, 6, and 14 layers for baseflow (Fig. 5b). The median

for MAR(DEEP 2 CLM4.5) of surface runoff is ap-

proximately 0.07mmday21 where there are more than

six soil layers in VAR. The median for MAR(VAR 2
CLM4.5) is similar to MAR(DEEP 2 CLM4.5) where

the number of soil layers in VAR is greater than 10,

while MAR(VAR 2 CLM4.5) is higher than that of

MAR(DEEP 2 CLM4.5) where the number of soil

layers is not changed or decreased in VAR (Fig. 5a).

This suggests that the change in the mean annual cycle

is due largely to the change in bottom boundary where

the bedrock is deep (i.e., soil layers increased), whereas

the reduced soil thickness in VAR adds to the annual

cycle changes where the bedrock is shallow (i.e., soil

layers #10). Similar to surface runoff, MAR(VAR 2
CLM4.5) and MAR(DEEP 2 CLM4.5) in baseflow are

similar where the number of soil layers is greater than

10, but MAR(VAR 2 CLM4.5) � MAR(DEEP 2
CLM4.5) for areas where the bedrock is shallow

(Fig. 5b). The MAR(DEEP 2 VAR) for both surface

runoff and baseflow is of a similar magnitude to MAR

(VAR 2 CLM4.5) for shallow model bedrock but de-

creases to zero where DEEP and VAR are the same for

14 soil layers (Figs. 5a,b). This suggests that, where the

model soil column is shallow, the differences between

VAR and CLM4.5 is due to or added by the soil column

being shallower than in CLM4.5, whereas most of the

change between VAR and CLM4.5, where the bedrock

is deep, is simply due to the change in bottom boundary

condition imposed also in DEEP.

These changes to the mean annual cycle may be best

illustrated at select locations (Table 1). First, we will

consider five locations where the number of soil layers is

less than 10 (i.e., shallow model bedrock). The annual

cycle in latent heat (LH) flux (not shown) largelymatches

that of rainfall (Fig. S3 in the supplemental material) so

that there can be no phase shift in LH flux in DEEP or

VAR. This may not be the case if coupled to an atmo-

spheric model because of potential feedbacks between

LH flux and precipitation. Several studies (Anyah et al.

2008; Jiang et al. 2009; Leung et al. 2011) have shown

changes to LH flux in response to changes in precipita-

tion caused by the inclusion of groundwater models. At

Karakoram and southeastern Africa, LH flux in DEEP is

almost the same as in CLM4.5, whereas LH flux in VAR

is as much as about 12Wm22 lower than in DEEP and

CLM4.5 (Figs. S4a,b in the supplemental material).

FIG. 3. The March–May seasonal mean (a) surface runoff and (b) baseflow in CLM4.5, (c),(d) the difference in these seasonal means

between DEEP and CLM4.5, and (e),(f) the difference in these between VAR and DEEP (mmday21). The overshading in (c)–(f) indicates

areas where the difference is not statistically significant at the 90% level according to a Student’s t test.
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Temporal phase shifts are also not present in sur-

face runoff at these five locations (Figs. 6a–c and

Figs. S4e,f). DEEP tends to have a slightly smaller

MAR at these locations with near-zero runoff at the

southeastern Africa location. On the other hand,

VAR generally has a higher maximum runoff at these

locations (Figs. 6a–c) with the largest change in max-

imum runoff of approximately 0.37mmday21 occur-

ring in southeastern Africa in February (Fig. S4b). In

eastern Siberia, CLM4.5 and DEEP both produce peak

runoff in late summer or early autumn with a secondary

peak in the snowmelt season inMay.DEEPdecreases this

secondary peak, butVAR increases it such thatMay is the

month of maximum runoff in this run while maintaining

similar runoff in late summer (Fig. 6b).

There are clear phase shifts in baseflow to earlier max-

imums in VAR at some locations (Figs. 6d–f). In the

Yukon, DEEP reduces baseflow fromCLM4.5, andVAR

shifts it earlier (Fig. 6d).On the other hand, SoutheastAsia

baseflow is first increased by the bottom boundary condi-

tion change (i.e., DEEP) and then shifted earlier by vari-

able soil thickness (i.e., VAR) (Fig. 6f).

FIG. 4. The median root-mean-square difference (mm day21) (a),(b) between VAR and CLM4.5 and (c),(d)

between DEEP and CLM4.5 in (left) surface runoff and (right) baseflow for every 2 mm day21 bin of the mean

annual range in rainfall and every number of soil layers to bedrock allowed in VAR. The gray areas denote bins

with no data.
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Infiltration (solid lines) and snowmelt (dashed lines)

from the three runs are compared in the bottom row of

Fig. 6 and Fig. S4. DEEP produces similar snowmelt and

infiltration to CLM4.5 at all locations. On the other hand,

the springtime peaks in surface runoff (Fig. 6a) and in-

filtration (Fig. 6g) are due to snowmelt in the Yukon. In

the Yukon, snowmelt in VAR is reduced in April and

enhanced in May, suggesting a delay in snowmelt with

variable soil thickness. The increases in VAR surface

runoff at all locations result in reduced infiltration,

whereas DEEP infiltration is similar to CLM4.5’s, espe-

cially in eastern Siberia and Southeast Asia. This suggests

that the change in bottom boundary conditions has little

effect on these quantities, but variable soil thickness does.

These changes to the water fluxes in the experimental

simulations are clearly evidence or a result of soil

moisture changes. The change in soil moisture u in VAR

relative to CLM4.5 for the latter four of the five shallow

bedrock locations is shown in Figs. 7a–d, and the cor-

responding change in the saturation fraction u/usat
(where usat is soil porosity determined based on the soil

texture, which is not uniform throughout the column) is

presented in Figs. 7h–k. Soil moisture and saturation

fraction are very much affected at these locations with

shallow bedrock in VAR (Figs. 7a–d,h–k), but the an-

nual cycle of soil moisture changes depends on location.

In the Yukon (Figs. 7a,h), the soil column generally

becomes wetter in the VAR simulation. On the other

hand, in Siberia (Figs. 7b,i), the soil column generally

becomes drier. Both locations have similar annual

rainfall, but snowfall is less in Siberia than in the Yukon

(Figs. S3b,c). The lower snowfall in Siberia results in

lower infiltration during the snowmelt season, which is

further reduced in VAR (Fig. 6h), drying out the soil

column in that run. Snowfall is comparable in the Kar-

akoram to that in the Yukon (Figs. S3a,b), but the

snowmelt maximum is lower at Karakoram as a result of

snowmelt occurring over an extended period (Fig. 6g

and Fig. S4i). Thus, the moisture profile at Karakoram is

also generally drier throughout the year except during

the snowmelt maximum in March (not shown). For

Southeast Asia (Fig. S3d), where there is a higher am-

plitude of the annual cycle of rainfall, the soil moisture

amplitude is enhanced in VAR (Figs. 7c,j) with a drier

springtime dry tongue and wetter wet tongues

throughout the rest of the year. In South Africa, where

there is less rainfall overall (Fig. S3e), the soil column

gets drier in VAR (Figs. 7d,k) as a result of the de-

creased infiltration (Fig. S4j) resulting from the in-

creased surface runoff (Fig. S4f). Many of these soil

moisture changes at these shallow bedrock locations are

statistically significant at the 90% level (Figs. 7a–d,h–k).

Interestingly, the moisture response in DEEP relative

to CLM4.5 (Fig. S5 in the supplemental material) also

FIG. 5. The median MAR of the difference in (a) surface runoff

and (b) baseflow between DEEP and CLM4.5 (i.e., DEEP 2
CLM4.5), between VAR and CLM4.5 (i.e., VAR2 CLM4.5), and

between DEEP and VAR (i.e., DEEP2 VAR) for the number of

soil layers used in VAR. A zero value of this statistic indicates that

there is no change in the amplitude of or a temporal phase shift in

the mean annual cycle.

TABLE 1. The sample locations referred to in Figs. 6, 7, and 8.

Location Lat Lon

No. of soil layers

above bedrock

in VAR

Karakoram 36.38N 76.38E 5

Yukon 62.58N 129.58W 7

Eastern Siberia 60.08N 120.08E 9

Southeastern Asia 20.08N 102.08E 8

Southeastern Africa 31.08S 27.58E 9

Chattanooga, Tennessee 35.08N 85.38W 10

Boulder, Colorado 40.08N 105.38W 13

Lower Mississippi

River valley

35.08N 93.08W 14

Amazon 4.58S 69.08W 14

Tucson, Arizona 32.28N 110.98W 14
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depends on location. The soil columns in the Yukon and

eastern Siberia become slightly wetter throughout the

year in all layers (Figs. S5a,b,f,g), whereas most of the

soil column is changed very little throughout the year in

Southeast Asia and southeastern Africa (Fig. S5c,d,i,j).

Except at the eastern Siberian site, less of thesemoisture

changes are statistically significant at the 90% level.

Therefore, most of the soil moisture response seen in

Figs. 7a–d,h–k is due to the change in soil thickness as

seen in the change in soil moisture in VAR relative to

DEEP (Fig. S6 in the supplemental material).

The horizontal lines in Figs. 7h–k represent the mean

annual cycle in water table depth (WTD) in CLM4.5

(red), DEEP (green), and VAR (blue). VAR does not

produce an aquifer at any of these locations as repre-

sented by the constant WTD at model bedrock depth,

whereas CLM4.5 utilizing the unconfined aquifer model

does have a WTD within model bedrock at these loca-

tions (Figs. 7h–k). DEEP with its 14 layers everywhere

generates an aquifer in the Yukon and Southeast Asia as

represented by WTDs generated above the bottom of the

fourteenth layer (,;28m) (Figs. 7h,j). On the other hand,

it does not produce one in eastern Siberia and southeast-

ern Africa since the DEEP WTDs at these two locations

are at the bottom of the fourteenth layer (Figs. 7i,k).

At Chattanooga and in the lower Mississippi River

valley and the Amazon, the mean annual cycles of LH

flux and surface runoff from VAR and DEEP are both

very similar to CLM4.5 and, thus, not shown. Baseflow,

however, is more substantially affected in the sensitivity

runs (Figs. 8a–c). In the 10 soil layers at Chattanooga,

the spring maximum is slightly lower than CLM4.5 in

DEEP but very similar to CLM4.5 throughout most of

the rest of the year. On the other hand, VAR’s spring-

time maximum is a little higher, while baseflow in VAR

is much lower than CLM4.5 and DEEP throughout

summer (Fig. 8a). These baseflows seem to follow the

patterns in aquifer recharge as indicated by the dotted

lines in Fig. 8d. In the lowerMississippi River valley and

the Amazon, VAR and DEEP both produce similarly

FIG. 6. The gridcell mean annual cycles in (a)–(c) surface runoff, (d)–(f) baseflow, and (g)–(i) infiltration and snowmelt simulated by

CLM4.5, DEEP, and VAR for the first three locations in Table 1 where the number of soil layers is reduced from the CLM4.5 original

10 layers.

1 MAY 2016 BRUNKE ET AL . 3451



slightly higher maximum baseflow in boreal spring

and lower minimum baseflow in boreal autumn at

both locations (Figs. 8b,c). While maximum baseflow

in the lower Mississippi River valley is slightly higher,

it is preceded by larger winter baseflows as much as

approximately 0.3mmday21, and summer baseflows are

lower by a similar amount (Fig. 8b). The higher boreal

winter to spring baseflows are the result of more re-

charge to the aquifer, while the lower baseflows in

summer and autumn are a result of less recharge to the

FIG. 7. The mean annual cycles of the change in (a)–(g) volumetric soil moisture content u and (h)–(n) fraction of saturation u/usat in

VAR from CLM4.5 for the grid cells containing 7 of the 10 locations in Table 1. Dots are given in each grid cell in which the difference is

statistically significant at the 90% level according to a Student’s t test. The horizontal lines in (h)–(n) represent the mean annual cycle in

WTD in CLM4.5 (red), DEEP (green), and VAR (blue).

FIG. 8. The grid cell mean annual cycles in (a)–(c) baseflow and (d)–(f) infiltration, snowmelt, and recharge simulated by CLM4.5,

DEEP, and VAR for three locations given in Table 1 where the number of soil layers is the same or increased from the CLM4.5 original

10 layers.
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aquifer (Figs. 8e,f). These changes in DEEP and VAR

relative to CLM4.5 in the lower Mississippi River valley

and in the Amazon are a result of the change in the

bottom boundary condition at these deep bedrock lo-

cations since these two simulations are exactly the same

with the 14 soil layers at these two locations.

At the dry locations with deeper soil columns (Boul-

der and Tucson), LH flux (Figs. S4c,d) and baseflow (not

shown) are not substantially changed as in the above

three locations. Surface runoff is quite a bit lower in

VAR and DEEP at these locations although not as

much in VAR at Boulder (Figs. S4g,h).

Because of the above changes in recharge, WTD in

the lower Mississippi River valley and the Amazon is

slightly higher at the annual maximum and lower at the

minimum.Otherwise,WTD is very similar inDEEP and

VAR to that of CLM4.5 (Figs. 7l,m). Also, the simulated

soil moisture in VAR is very similar to that of CLM4.5

(Figs. 7e,f,l,m), consistent with Gulden et al. (2007). Soil

moisture changes in VAR are also similarly small in

Chattanooga and Boulder (not shown). In the dry condi-

tions of Tucson, the soil moisture profile in VAR is drier

with slightly more drying in layers 9 and 10 (Figs. 7g,n).

Since they both have 14 layers in the lower Mississippi

FIG. 9. The median change in the (a),(c) mean difference and the (b),(d) mean annual range in the difference in

integrated top-five-layer (down to ;0.3m) soil moisture between VAR and CLM4.5 for (top) 2mmday21 bins of

themean annual range in rainfall or (bottom) 0.5mmday21 bins of themean annual range in snowfall and for every

number of soil layers above bedrock allowed in VAR.
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River valley, in the Amazon, and at Tucson, the soil

moisture in DEEP and VAR is exactly the same, and the

differences between the two are not shown.

To illustrate that variable soil thickness hasmore of an

effect at locations with shallow bedrock than at those

with deep bedrock applies globally, Fig. 9 shows the

medians of the change in 1978–97 annual mean soil

moisture content in the topmost five layers (down to

;0.3m) in VAR from CLM4.5 and in the MAR of the

difference between the two runs for various bins in the

mean annual range in rainfall and snowfall as a function

of the number of soil layers used inVAR. These topmost

layers are of particular interest because they exist in

every grid cell in VAR and interact most directly with

the atmosphere. Figure 9 clearly shows that the soil

moisture is most affected at locations where the number

of soil layers is reduced. Since the change in these

quantities in DEEP relative to CLM4.5 is small (not

shown), most of this change is due to the reduction of

soil layers used in VAR. Also, how much rain varies

throughout the year has a greater impact on the mean

annual cycle in soil moisture at shallow bedrock loca-

tions than does snowfall (Figs. 9a,c).

Figure 10a presents the median WTD difference be-

tween VAR and CLM4.5 when WTD is above model

bedrock in VAR for various 2mmday21 wide bins of

mean annual range of total precipitation. Where the

number of soil layers has been increased beyond the 10

layers, WTD is less than 0.5m different from CLM4.5.

WTD can be within the soil column in VAR where the

number of layers is 9 or 10 and can be.5m lower (closer

to the surface) than in CLM4.5 for nine soil layers.

With a model bedrock depth of around 2.3m, this means

that CLM4.5 with the unconfined aquifer model places

WTD below bedrock. No aquifer develops within the

soil column in VAR for any fewer than nine soil layers,

but one can see how much CLM4.5 WTDs are below

model bedrock in the WTD difference between VAR

and CLM4.5 for instances when there is no aquifer in

VAR in Fig. 10b. CLM4.5 WTDs are below model

bedrock in grid cells with 10 or fewer soil layers in VAR,

being as high as 5m or more below model bedrock

where the soil column is shallow and the mean annual

range of precipitation is small. For soil columns that

have been extended in VAR, the WTD can actually be

above the model bedrock in CLM4.5 when it does not

actually develop in VAR as represented by the positive

run differences here (Fig. 10b).

c. Examples of regional changes

To see how moisture changes on the regional scale,

the monthly mean TWS anomalies from the model runs

averaged over nine river basins across the globe are

FIG. 10. The median difference in mean WTD between

VAR and CLM4.5 for every 2 mm day21 bin of the mean annual

range in total precipitation and every number of soil layers to

bedrock allowed in VAR for instances (a) when there is and

(b) when there is not an aquifer in VAR. The negative values

in (b) represent how much the WTD in CLM4.5 is theoreti-

cally below the model bedrock depth, while positive values

indicate the existence of an aquifer in CLM4.5 when none exists

in VAR.
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compared with those derived from GRACE measure-

ments. Considering that a large fraction of these river

basins are located mostly in lowlands with deep bedrock

in the model, it is not surprising that the TWS anomalies

are similar betweenDEEP andVAR formost river basins

and that the difference in these fromCLM4.5 is also small

(Fig. 11). However, VAR TWS anomalies are dramati-

cally different fromCLM4.5’s andDEEP’s in theYangtze

River basin (Fig. 11f). Mountainous terrain with shallow

model bedrock is included in a large portion of this basin.

There are still problems with the model annual cycle of

TWS such as the timing of peak storage or the lower an-

nual range in TWS in the Colorado River basin (Fig. 11d)

that the changes to the model implemented in VAR do

not rectify.

Regional responses to rain events are also affected.

Examples for rain events during June–August 1993 in

the southwestern United States and northern Great

Plains are given in section S2 of the supplemental ma-

terial. The former region is more influenced by a de-

crease in soil column thickness since VAR’s uppermost

soil moisture is consistently lower than those from

DEEP and CLM4.5. In the northern Great Plains,

DEEP and VAR soil moisture are slightly higher than

CLM4.5 on the day of rainfall, returning to CLM4.5

values within approximately 4 days (Fig. S8 in the sup-

plemental material). VARCRU using the CRUNCEP

forcing is also included in Fig. S8. The uppermost soil

moisture in VARCRU is even lower than VAR’s in the

southwestern United States and lower than all the other

runs in the northern Great Plains.

d. The effect on soil temperature

An additional effect of the inclusion of variable soil

thickness in VAR is a change in the annual cycle of

soil temperature globally. The mean annual range in soil

temperature in CLM4.5 decreases with depth but still is

as large as .4K in some regions in the mid-to-high

latitudes at the 12th node (Fig. 12a and Figs. S9a,b in the

supplemental material). In much of the mid-to-high

latitudes, the DEEP annual range in node 12 is re-

duced by as much as .2K (Fig. 12b) in these same

FIG. 11. The basin mean total water storage anomalies (DTWS) derived from GRACE measurements based upon the spherical har-

monics from the Center for Space Research (CSR) at The University of Texas at Austin, GeoForschungsZentrum (GFZ) Potsdam, and

the Jet Propulsion Laboratory (JPL) and as simulated by CLM4.5, DEEP, and VAR.
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regions (Fig. 12a). This represents a substantial re-

duction in the annual cycle of temperature at this deep

layer, which intuitively seems more realistic, as the an-

nual cycle at such a depth is expected to be small.

The difference in mean annual range between VAR

and DEEP, representing what is added by including

variable soil thickness, is 0 everywhere the model bed-

rock is deep (Fig. 12c). Therefore, VAR retains the re-

duction in deep soil temperature annual range in these

regions. However, the annual range in the whole column

is increased in locations where the bedrock is shallower

than the original 10 soil layers of CLM4.5 (Fig. 12c and

Figs. S9e,f).

In those grid cells with deep bedrock necessitating

adding soil layers to the original 10, the reduction of

deep soil temperature annual range is caused by a re-

duction in heat capacity from that of granite/sandstone

(2.0 3 106 Jm23K; Shabbir et al. 2000) to that of soil,

which varies based on organic matter content and soil

texture (Lawrence and Slater 2008). Thermal conduc-

tivity is also lowered from that of saturated granitic rock

(3.0Wm21K21; Clauser and Huenges 1995) to that of

soil (Farouki 1981). Of course, the opposite occurs in

grid cells with shallow bedrock where the number of soil

layers is reduced. Thus, the soil temperature annual

cycle is increased throughout the column in places with

shallow model bedrock and reduced substantially in

deep soil throughout much of the mid-to-high latitudes

where the model bedrock is deep (Figs. 12b,c and

Fig. S9). Further changes in the soil temperature profile

occur when adding water to the extra layers where the

soil column is deepened. Changes also occur when re-

moving water from soil layers where the soil column is

made shallower.

This is further substantiated by comparing the single-

point sensitivity simulations VARCV and VARTKwith

VAR in Fig. 13. The changes to VARCV of just the

specific heat is minimal throughout the soil column and

not statistically significant (Figs. 13c,d).When the thermal

conductivity is also changed in VARTK, statistically sig-

nificant changes are only made deeper, especially at the

deeper soil site in the lower Mississippi River valley

(Figs. 13e,f). The largest changes are made in VAR

(Figs. 13g,h). At the shallower soil site in the Yukon

(Fig. 13g), the soil temperature annual cycle is enhanced

because the cold and warm tongues are stronger. The

deep soil temperature is reduced at the deeper soil site in

the lower Mississippi River valley (Fig. 13h) where the

cold and warm tongues in the deeper layers are made

slightly warmer and cooler. These changes in the deep

layers are statistically significant. The soil water in VAR

substantially enhances the changes made by just the spe-

cific heat in VARCV, whereas the thermal conductivity

works in opposition to specific heat and the soil water, so

the soil temperature profile changes in VAR would be

even higher if it were not for thermal conductivity.

5. Discussion and conclusions

Variable soil thickness based upon a 30-arc-s dataset

of the thickness of relatively porous, unconsolidated

sediments over bedrock (Pelletier et al. 2016) has been

FIG. 12. (a) The mean annual range in soil temperature (K) in

CLM4.5 and the difference in soil temperature mean annual range

between (b) DEEP and CLM4.5 and (c) VAR and DEEP at node

12 (;7.9-m depth).
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tested in version 4.5 of the Community Land Model

(CLM4.5). Including variable soil thickness affects the

model the most in locations with shallow bedrock (i.e.,

where the number of soil layers is reduced). The largest

impact is to the mean annual range of the difference in

quantities like surface runoff and baseflow in the simu-

lation with variable soil depth (VAR) and the original

version with a constant 10 layers atop an unconfined

aquifer (CLM4.5) and in the root-mean-square differ-

ence between the two simulations representing the in-

terannual variability. Baseflow is also affected in some

grid cells where the number of soil layers actually in-

creases, whereas surface quantities like latent heat flux

and surface runoff are only substantially changed where

the model bedrock is shallow.

The mean annual range of the simulation differences

represents changes in the amplitude of the annual cycle as

well as phase shifts in the annual cycle. There are no phase

shifts in latent heat flux and surface runoff, so changes in

these quantities are only limited to amplitude changes.

However, there can be a change in the time of maximum

baseflow in mountainous areas with shallow bedrock.

VAR is compared to a sensitivity run (DEEP) with

the same framework as VAR but with a constant 14

layers everywhere in order to help reveal that some of

the changes in VAR are due to the change of the bottom

boundary conditions implicit with the removal of the

aquifer model. The removal of the unconfined aquifer

and the change in bottom boundary condition to zero

flux does impact the model simulation even in regions

with greater soil thickness), though these changes are

much more dramatic in locations where the number of

soil layers is decreased because of the presence of

shallow soil thickness.

These changes to the water fluxes at and below the

surface can be explained by the column soil moisture

changes. When the model bedrock is deep (allowing for

additional soil layers), the soil moisture does not change

much throughout the column in VAR and DEEP. Thus,

it similarly simulates the water table depth at many of

these deep bedrock locations, and latent heat flux and

surface runoff in particular remain largely unchanged in

most of the grid cells where this occurs. This is consistent

with Gulden et al. (2007), who found that total column

water storage was similarly simulated with the un-

confined aquifer model and a 30-layer soil column in

Illinois. Therefore, the unconfined aquifer model is not

necessary in CLM4.5 to produce a realistic aquifer for

FIG. 13. (a),(b) The mean anomaly in soil temperature from the annual mean in CLM4.5 and the mean difference in soil temperature

between (c),(d) VARCV, (e),(f) VARTK, and (g),(h) VAR from CLM4.5 in the grid cells containing the locations in Table 1 given for

(top) theYukon and (bottom) the lowerMississippi River valley. The contours for the anomalies in (a),(b) and the differences in (c)–(h) are

the same. The overshading in (c)–(h) indicates areas where the difference is not statistically significant at the 90% level according to

a Student’s t test.
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regions with deep bedrock as long as the model soil

column is realistically thick since the Richards equation

was adapted for use in both unsaturated and saturated

conditions (Zeng and Decker 2009).

On the other hand, the unconfined aquifer model

simulates a water table depth in CLM4.5 that is below

the model bedrock in VAR throughout the year in lo-

cations where the number of soil layers is reduced to

below nine, whereas VAR produces no aquifer at these

locations. It is at these locations that soil moisture

throughout the soil column is most affected, explaining

the enhanced sensitivity of surface runoff and baseflow.

The effect on soil moisture and surface runoff varies in

these shallow bedrock grid cells depending on annual

rainfall and snowfall. The soil column can actually be-

come drier throughout most of the year if snowfall or

rainfall is low. If the annual cycle of rainfall is large, the

annual cycle of soil moisture is enhanced in VAR with

wetter wet tongues and drier dry tongues.

The above changes in soil moisture help to explain

why the mean total water storage (TWS) anomalies for

2002–04 over several river basins globally do not gen-

erally change much from CLM4.5 to either DEEP or

VAR, because river basins contain a large number of

grid cells with deep bedrock in VAR. VAR is quite

different than DEEP and CLM4.5 in the Yangtze River

basin, which does include more mountainous terrain

with shallow bedrock, suggesting that variable soil

thickness would have more of an effect on basins largely

within such terrain.

An added benefit of implementing variable soil depth

is a change in the soil temperature annual cycle. For

those grid cells with deep bedrock, which necessitates

adding soil layers to the original 10 layers, the heat ca-

pacity of the layer is reduced from that of granite/

sandstone (Shabbir et al. 2000) to that of soil, which

varies based on organic matter content and soil texture

(Lawrence and Slater 2008), and thermal conductivity is

similarly reduced from that of granitic rock (Clauser and

Huenges 1995) to that of soil (Farouki 1981). Of course,

the opposite occurs in grid cells with shallow bedrock

where the number of soil layers is reduced. Thus, the soil

temperature annual cycle is increased throughout the

column in places with shallow model bedrock and re-

duced substantially in deep soil throughout much of the

mid-to-high latitudes where the model bedrock is deep.

Specific heat has a minimal effect on the soil tempera-

ture profiles at two locations, one where the number of

soil layers should be reduced (Yukon) and another

where the number of soil layers should be increased

(lower Mississippi River valley), as seen in a sensitivity

run with just a change to the specific heat (VARCV).

There is more of an effect with the addition of thermal

conductivity in VARTK at the two locations, but the

largest impact is made with the changes to the soil

moisture profiles in VAR.

It is important to note some caveats here. The model

bedrock depth in VAR has been determined from the

dataset soil thicknesses averaged to 0.98 latitude3 1.258
longitude used here, so unless much of a model grid box

contains mountainous terrain, the shallow soil thick-

nesses found in that terrain will be averaged out with the

deeper soil thickness of the valley bottoms. This could

have important implications in basins where the hy-

drologic response is dominated by processes such as

snowmelt in the headwaters. Perhaps this might be re-

duced when going to finer horizontal resolution in the

land model or by including multiple columns within a

grid cell each with its own soil thickness similar to what

is already done for multiple vegetation covers in the

model. Then, the gridcell mean quantities would be

derived from the area-weighted means of the column

values. A sample of what this might look like is given in

Fig. 14 for the single grid cell at 40.058N, 1058W con-

taining Boulder, Colorado. The number of soil layers

derived from the 30-arc-s soil thicknesses range across

all allowed in VAR (5–14 layers; see Table S1 for the

depths of these). There is a large spread in latent heat

FIG. 14. The variation in (a) LH flux and (b) surface runoff

from single-column simulations at 40.058N, 1058W for all of the

number of soil layers possible from the 30-arc-s data within the

0.98 lat3 1.258 lon grid cell (colored lines) and the area-weighted

mean of these different simulations (dark black line). The soil

depths for each of these number of layers can be found in

Table S1.
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fluxes simulated for the single column from spring into

autumn with the largest spread of about 12Wm22 oc-

curring in June (colored lines in Fig. 14a). The spread in

surface runoff between the various layer numbers occurs

throughout the year (Fig. 14b). The area-weightedmean

of these is given as the thick black line in Fig. 14; this is

similar to the results for 11 layers. The number of layers

as derived from the grid cell mean DTB is 11, whereas

that derived from the median DTB is 9. The former

produces LH fluxes and surface runoff closest to the

area-weighted mean. The best way to characterize this

subgrid variability in soil thickness will be the focus of

future research. One possible way to do this would be to

discriminate specifically between vertical and lateral

processes. The former would be solved at the grid scale,

while the latter would be performed at a much higher

resolution. Recently, Hazenberg et al. (2015) have

shown that such a hybrid three-dimensional approach

performs well at the hillslope scale, and this method is

currently being extended to account for lateral flow

within hillslopes, riparian zones, and valley bottoms.

The interaction between the atmosphere and land is

also ignored here by running CLM4.5 offline with the

Qian et al. (2006) forcing. Recent research has shown

that a model atmosphere would respond to groundwater

dynamics (Anyah et al. 2008; Jiang et al. 2009; Leung

et al. 2011). Using a different forcing, CRUNCEP in

VARCRU, also has an effect on the variable soil

thickness simulation as seen by the drier uppermost soil

moisture in the southwestern United States and the

northern Great Plains in Fig. S8. Even so, the changes to

basin TWSs is minimal in VARCRU (not shown). There

are very large changes in VARCRU surface runoff and

baseflow from that of VAR in the same regions where

VAR seemed to have the most effect on these quantities

(Fig. S11 in the supplemental material). In some regions,

the changes in VARCRU counteract those made by

VAR from CLM4.5. Still, most of these largest differ-

ences from VAR are statistically significant at the

90% level.

Furthermore, the effects of deep roots are ignored by

limiting the roots to the 10th layer in VAR. However,

deep roots have been observed down to around 18m in

the Amazon (Nepstad et al. 1994), and deep roots may

be particularly important in arid and semiarid regions

(Canadell et al. 1996). To test how important this is, we

perform an additional sensitivity test that is the same as

VAR except that root fractions are allowed in all layers.

The latent heat fluxes from this sensitivity run are within

61Wm22 of VAR’s everywhere, the difference of

which is not statistically significant at the 90% level

anywhere (Fig. S10 in the supplemental material). The

effects of deep roots may be minimized here because of

the formulation of root fraction used in CLM4.5. Root

fraction exponentially decays with depth, so root frac-

tions are very small at depth. This may need to be ad-

justed for the deeper soil columns allowed with variable

soil thickness. Another possibility is that the deep roots

serve to move water up during dry periods and down

during wet periods via hydraulic redistribution. Lee

et al. (2005) showed that the inclusion of this process

improved the simulation of climate over the Amazon in

CLM coupled to the Community Atmosphere Model.

However, Romero-Saltos et al. (2005) observed that

water moved upward during dry periods in the Amazon

through the soil rather than through the roots. The im-

pacts of land–atmosphere feedbacks and deep root dis-

tributions should be explored further using variable soil

depth in LSMs.

Still, the model is made more realistic with the in-

clusion of variable soil thickness on the coarse gridcell

scale used here because soil thickness is known to vary

between uplands and lowlands. The use of unconfined

aquifer models in which groundwater is partially sepa-

rate from the soil column was necessitated by the

implementation of constant soil thicknesses in CLM

because of the previous lack of sufficient information to

establish a reasonable estimate of soil thickness. Be-

cause of the use of Zeng and Decker’s (2009) revised

Richards equation in CLM,VARhas similar water table

depths to those in CLM4.5 in areas where the bedrock is

deep. However, in some cases, the CLM4.5 aquifer

model generates water table depths below bedrock in

locations with shallow soil thicknesses, whereas no

aquifer is able to exist in VAR. Therefore, this im-

plementation of variable soil thickness represents a step

forward in LSM development that might have more of

an impact at higher resolution or when the subgrid

variability in soil thickness can be represented.
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