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ABSTRACT

An algorithm to consistently couple a conservative semi-Lagrangian finite-volume transport scheme with a

spectral element (SE) dynamical core is presented. The semi-Lagrangian finite-volume scheme is the Con-

servative Semi-Lagrangian Multitracer (CSLAM), and the SE dynamical core is the National Center for

Atmospheric Research (NCAR)’s Community Atmosphere Model–Spectral Elements (CAM-SE). The

primary motivation for coupling CSLAM with CAM-SE is to accelerate tracer transport for multitracer

applications. The coupling algorithm result is an inherently mass-conservative, shape-preserving, and con-

sistent (for a constant mixing ratio, the CSLAM solution reduces to the SE solution for air mass) transport

that is efficient and accurate. This is achieved by first deriving formulas for diagnosing SE airmass flux through

the CSLAM control volume faces. Thereafter, the upstream Lagrangian CSLAM areas are iteratively per-

turbed tomatch the diagnosed SE airmass flux, resulting in an equivalent upstreamLagrangian grid that spans

the sphere without gaps or overlaps (without using an expensive search algorithm). This new CSLAM al-

gorithm is not specific to airmass fluxes provided by CAM-SE but applies to any airmass fluxes that satisfy the

Lipshitz criterion and for which the Courant number is less than one.

1. Introduction

State-of-the-art atmosphere models prognose an in-

creasing number of tracers, which involves solving the

continuity equation of each tracer. Tracers in atmosphere

models typically include different forms of water (hu-

midity, cloud water, cloud ice, rain, snow, etc.). Models

with a comprehensive treatment of aerosols explicitly

solve a number of aerosol continuity equations, and

models with comprehensive chemistry prognose many

chemical species. For example, NCAR’s Community

Atmosphere Model (CAM), version 5 (Neale et al. 2012),

in its standard configuration solves 30 continuity equations

in addition to the continuity equation for air and over

120 continuity equations when run with comprehensive

chemistry. Hence, the number of continuity equations in

state-of-the-art models easily outnumbers the remaining

equations of motion [momentum equations and thermo-

dynamic equation(s)]. Consequently, the computational

cost of tracer transport may dominate the overall cost of

the model even if tracer transport is supercycled (i.e., run

with a larger time step than the dynamics).

Many tracer distributions in the atmosphere have

complex spatial structures associated with them. For
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example, photolysis-driven chemical species exhibit

large gradients near the solar terminator as they are

destroyed or created by sunlight andmoist processes; for

example, convection can introduce grid-scale structure

in the water variables. It is usually challenging for

transport algorithms to accurately represent the trans-

port process for tracer distributions with large gradients

and grid-scale structure. It is important that the trans-

port scheme is not a spurious source or sink of mass. For

coupling with parameterizations, it is desirable that the

transport scheme provides physically realizable solu-

tions; in particular, it should not produce negative values

for a positive definite tracer. To avoid overshoots near

large gradients, it is desirable that the scheme is mono-

tone (also loosely referred to as shape preserving or

nonoscillatory). For the representation of aerosols and

chemical species, it is important that the transport scheme

does not spuriously perturb relations between tracers (if

they are functionally related; e.g., see Lin andRood 1996;

Lauritzen and Thuburn 2012). For a more complete dis-

cussion on desirable properties for transport schemes

intended for climate and climate/chemistry applications,

see, for example, Lauritzen et al. (2011).

To assess the transport scheme’s ability to advect rough

distributions andmaintain nonlinear correlations between

trace species, Lauritzen et al. (2012) created an idealized

test case suite for modelers to assess desirable properties

for their transport algorithm in an idealized setup. This test

case suite used an idealized 2D wind field from Nair and

Lauritzen (2010), with a range of initial condition distri-

butions for tracers ranging from smooth to distributions

with discontinuous gradients and a wide range of existing

and new diagnostics. Results from over a dozen transport

algorithms are presented in Lauritzen et al. (2014b).

To improve the scalability of CAM based on the

finite-volume dynamical core (CAM-FV; Lin 2004), the

spectral element (SE) dynamical core was imported into

CAM from High-Order Methods Modeling Environ-

ment (HOMME; Dennis et al. 2005; Nair et al. 2009;

Taylor and Fournier 2010) and is referred to as CAM-

SE. CAM-SE is based on a continuous Galerkin finite-

element (or spectral element) method (Taylor et al.

1997) and is discretized using a cubed-sphere tiling of

the sphere. Petascale scalability of CAM-SE was dem-

onstrated in Dennis et al. (2012). Also, CAM-SE pro-

vided refined mesh functionality in CAM (e.g., St-Cyr

et al. 2008; Zarzycki et al. 2014), improved accuracy of

idealized baroclinic wave simulations (Lauritzen et al.

2010a), conserved total energy to time-truncation errors

(Taylor 2011), and improved global axial angular mo-

mentum budgets compared to CAM-FV (Lauritzen

et al. 2014a). That said, the tracer transport component

of CAM-SE appeared to be less accurate than CAM-FV

for nonsmooth tracer distributions (Lauritzen et al.

2014b; Hall et al. 2016). In an idealized terminator test in

which two species react according to a reaction co-

efficient proportional to the solar terminator while being

transported by an idealized 2D flow, CAM-SE produces

errors larger than CAM-FV (Lauritzen et al. 2015). The

errors are due to the limiter used for tracer transport

that prevents oscillatory (and, in particular, negative)

solutions for tracers (Guba et al. 2014). In terms of

computational throughput, it was also found that CAM-

SE was slower for large tracer counts (at least when run

with core counts similar to the nonscalable CAM-FV).

It is the overall purpose of this paper to improve the

accuracy and efficiency of tracer transport in CAM-SE.

To improve the accuracy and efficiency of multitracer

transport, the Conservative Semi-Lagrangian Multi-

tracer (CSLAM; Lauritzen et al. 2010b) transport

scheme was implemented in HOMME (Erath et al.

2012, 2013). Later, an alternative inherently conserva-

tive semi-Lagrangian scheme called spectral element

Lagrangian transport (SPELT; Erath and Nair 2014)

was implemented in HOMME, which easily supports

mesh-refinement applications and has a simpler search

algorithm compared to the original CSLAM (note that

the new version of CSLAM presented here does not

have a comprehensive search algorithm). Both SPELT

and CSLAM are fully 2D finite-volume semi-Lagrangian

schemes. Semi-Lagrangian schemes based on dimen-

sional splitting along coordinate lines (Putman and Lin

2007) or Lagrangian translations of coordinate lines

(conservative cascade methods; e.g., Nair et al. 2002;

Zerroukat et al. 2002; Shashkin and Tolstykh 2016) are

alternatives to fully 2D methods that are more easily

extensible to 3D methods. Cascade schemes are com-

putationally efficient and designed for structured or-

thogonal grid systems. It is unclear how to extend the

cascade methods to nonorthogonal grids—in particular,

the gnomonic cubed-sphere grid used here—as the grid

lines are discontinuous near the cubed-sphere edges and

corners. All of these schemes are stable for long time

steps, inherently mass conservative, and shape pre-

serving; some of them preserve linear relations between

tracers even with a shape-preserving limiter (e.g.,

CSLAM) and are efficient for large tracer counts as the

upstream Lagrangian grids can be reused for each ad-

ditional tracer. Specific to this study, we note that in 2D

idealized test cases, the CSLAM scheme is more accu-

rate than CAM-SE in terms of the diagnostics used in

the test case suite presented in Lauritzen et al. (2012).

For 3D applications in CAM-SE, the winds for

CSLAM are provided by CAM-SE, which creates an

inconsistency between the continuity equation for air

(solved with the SE method) and tracers (solved with
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CSLAM). In other words, if a tracer is uniformly one,

then the solution for tracer mass, computed with

CSLAM, does not reduce to the CAM-SE continuity

equation for air. Inconsistency can lead to loss of tracer

mass conservation and/or unphysical solutions (non-

monotone). This problem of the discretization of the

transport equation not being consistent with the airmass

equation has been known for some time (Rood 1987; Lin

and Rood 1996; Gross et al. 2002). Discretizations that

are consistent are also referred to in the literature as

free-stream preserving, constancy preserving, or com-

patible. Solutions have been proposed for shallow-water

applications in which correction terms in the velocity

fields have been introduced to enforce consistency (e.g.,

Deleersnijder and Lebon 2001) or using a corrective

mass flux in the transport scheme (e.g., Dawson 1999).

In this paper, we present a CSLAM-based algorithm

in which CSLAM is made consistent with the SE con-

tinuity equation for air so that the CSLAM solution to

the tracer continuity equations is mass conservative,

monotone, and consistent. This is achieved by di-

agnosing CAM-SE airmass fluxes through CSLAM

control volume edges and using that information to

construct CSLAM control volumes for which the air-

mass flux implied by CSLAM matches CAM-SE fluxes

to round off. Consistency is effectively achieved by

finding an upstream departure grid for which the

CSLAM solution for air mass matches the CAM-SE

solution for air mass to round off. Rather than manip-

ulating velocity components or adjusting fluxes a pos-

teriori, the consistency is enforced in Lagrangian space.

Note that the algorithm for enforcing consistency in

CSLAM is general. Any airmass fluxes (so not neces-

sarilyCAM-SEdiagnosed fluxes) that satisfy the Lipschitz

criterion (also known as the deformational Courant

number by which the upstream trajectories do not cross

intersect in a single time step; Pudykiewicz et al. 1985;

Kuo and Williams 1990) and for which the Courant

number is less than one can be used.

The paper is organized as follows: The continuity

equation for CSLAM and SE are introduced in section 2

as well as the consistent coupling problem formulation.

In section 3, the consistent SE-CSLAM algorithm is

presented, and in section 4, we present results from

idealized baroclinic wave simulations with inert and

reactive tracers in order to assess accuracy and compu-

tational efficiency. A summary is provided in section 5.

2. Methods

a. Finite-volume continuity equation

Assume a floating Lagrangian vertical coordinate that

initially coincides with the hybrid-sigma coordinates

(Lin 2004; Starr 1945). The air mass in each layer is

DpDAij, where Dp is the pressure-level thickness (for

notational simplicity, the vertical index is dropped) and

DAij is the area of the regular (Eulerian) grid cell Aij.

Similar variable definitions for the tracer mass DpQAij,

where Q is mixing ratio. The gnomonic coordinate lo-

cations of the vertices of Aij associated with the cubed-

sphere geometry (Ran�cić et al. 1996) are (xi, yj),

(xi11, yj), (xi11, yj11), and (xi, yj11). After a number of

time steps in which the vertical coordinate is floating, all

variables are remapped back to an Eulerian reference

vertical coordinate (Lin 2004).

Consider the time-discretized integral form of

the continuity equation for air and tracer mass

discretized in time using floating Lagrangian vertical

coordinates:ð
Aij

ct11
ij dA5

ð
aij

ct
ij dA, c5Dp,DpQ , (1)

(see Fig. 1) where t is the time-level index, and aij is the

upstream Lagrangian area that, after one time step Dt,
ends up at Aij.

The Lagrangian form of the continuity equation (1)

can also be written in flux form (Harris et al. 2011):

ð
Aij

ct11
ij dA5

ð
Aij

ct
ij dA1 �

4

«51

H («)
ij , c5Dp,DpQ , (2)

where the mass fluxes through the four edges of a

CSLAM cell are given by

H («)
ij 5 sgn

(«)
ij

ð
a
(«)
ij

ct
ij dA, «5 1, . . . , 4 , (3)

and sgn
(«)
ij is21 for outflow and11 for inflow. Note that

the union of all the flux areas a
(«)
ij with appropriate signs

yields the Lagrangian upstream area:

ð
Aij

c
ij
dA1 �

4

«51

ð
a
(«)
ij

sgn
(«)
ij c

ij
dA5

ð
aij

c
ij
dA . (4)

Hence, the two forms of the continuity equation are, as

expected, equivalent in their continuous forms.

In the CSLAM discretization, the vertices of Aij are

traced upstream and connected with straight lines to

form aij. To make the scheme third order, a subgrid-

scale distribution of c is computed (fully 2D degree-two

Lagrange polynomial; Ullrich et al. 2009) with mass

conservation as a constraint; that is, the polynomial

integrated over Aij yields the gridcell average value cij.

The integral of the polynomial over the overlap areas

between aij and the regular grid cells is computed
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via line integrals. Since the scheme is fully two-

dimensional, it extends to the cubed sphere quite eas-

ily in the sense that it can accurately represent the

deformation of the Lagrangian cells when they span

different panels and hence different projections [see,

e.g., Fig. 6 in Nair and Lauritzen (2010)]. For more

details on the CSLAM scheme, see Lauritzen et al.

(2010b). For the coupling between tracer mass and air

mass, when both are solved with the CSLAM scheme,

see appendix B in Nair and Lauritzen (2010). It may be

shown that even in their discretized forms, the flux-form

version of CSLAM based on (2) is equivalent to (1).

Monotone solutions for Q are obtained by applying a

limiter/filter to the subgrid-scale reconstruction func-

tion forQ so that its extrema are within the range of the

surrounding gridcell average values of Q (Barth and

Jespersen 1989).

b. SE continuity equation

The SE continuity equation for air mass is based on

the advection–diffusion equation

›Dp

›t
52= � (uDp)1 n=kDp, k5 2, 4, . . . , (5)

FIG. 1. A graphical illustration of (a) the finite-volume Lagrangian discretization of the continuity equation and

(b)–(e) the Eulerian finite-volume flux-form discretization. In (a), the upstream Lagrangian area aij (light blue

shading) ends up at the regular Eulerian grid cell Aij after one time step. The filled circles mark the vertices of the

Eulerian cellAk, and the unfilled circles are the corresponding upstream vertices or departure points. In (b)–(e) the

swept flux areas a
(«)
ij (gray shaded areas) are shown, where «5 1, 2, 3, 4, respectively.
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where u is the velocity vector, k is the order of the vis-

cosity, and n is the (hyper)viscosity coefficient. For

simplicity, the derivations below assume k5 2. The SE

method uses a weak formulation based on globally

continuous test functions and integration over the entire

computational domain. A suitable choice of Lagrange

basis functions and a Gauss–Lobatto–Legendre (GLL)

quadrature inner product leads to a diagonal mass ma-

trix, and the SEmethod can then be formulated in terms

of operations local to each element, followed by the

direct stiffness summation (DSS) operation to maintain

continuity at the element edges. For more details, see

Deville et al. (2002).

For the SE method, we define the inner product via

hp,qi5 �
np

m51
�
np

n51

w
m
w

n
J(x

m
, y

n
)p(x

m
, y

n
)q(x

m
, y

n
), (6)

where J is the Jacobian of the map from the quadrilat-

eral spherical element to the reference element [21, 1]2;
fxm, yng are the np3 npGLL quadrature points in each

element (see Fig. 2a); p(x, y) and q(x, y) are poly-

nomials; andwm andwn are theGLL quadrature weights

[for more information on the HOMME grid system, see

Nair et al. (2009)]. Note that the GLL quadrature point

locations use subscript m and n, whereas the CSLAM

control volume edges use subscript i and j.

The SE advection step may be written as�
f,

Dpt11 2Dpt

Dt

�
5 hf,= � Fi1 h=f,Gi1 hf,Di, (7)

where f is a test function, F5 vDp and G5 n=Dp, and
D is the nodal flux corresponding to the DSS operation

(i.e., summation at element edges combined with

FIG. 2. (a) The np3npGLL points (filled red circles) in an element (light blue boundary). (b) The nc3 nc CSLAM

control volumes in an element. (c) Notation for the ijth CSLAM cell. Sides «, «5 1, . . . , 4, are numbered counter-

clockwise around the cell. The vertices are located at gnomonic coordinates x(«), «5 1, . . . , 4, with counterclockwise

orientation. Each cell side has an associated unit vector n̂(«) (dark blue arrows) pointing inwards. (d) Notation for the

perpendicular swept flux area for side «5 1. The flux area has vertices x(«), x(«) 1g(«)n̂(«), x(«11) 1 g(«)n̂(«), and x(«11)

(markedwith filled purple circles). The large black arrowpoints in the direction of the SEfluxF («) (outflow through side

one). The dashed arrows show the orientation of the line integrals used to compute the perpendicular swept flux.
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multiplication of the inverse mass matrix). Note that if

f5 1, then the right-hand side of (7) is the mass change

within each element.

It may be shown that there exists a test function f(ij)

that gives the change of mass over the ij th CSLAM

control volume (Aij):

hf(ij),Dpt11i2hf(ij),Dpti
Dt

5 hf(ij),= � Fi1 h=f(ij),Gi

1 hf(ij),Di. (8)

Moreover, the change of mass in each subcell (Aij) given

in (8) is given by a sum of edge mass fluxes F :

hf(ij),Dpt11i2hf(ij),Dpti5 �
«

F («)
ij , «5 1, 2, 3, 4 , (9)

and for each face, there is a flux contribution from F,G,

and D. In other words, the SE airmass flux can be di-

agnosed and is derived in detail in the appendix. This SE

airmass flux is essential for the coupling algorithm de-

scribed in this paper. First, let us formulate the coupling

problem.

c. Problem formulation

The challenge is to couple the CSLAM continuity

equation for tracers with the SE continuity equation for

air without violating the following:

d Tracer mass conservation
d Consistency (aka compatibility, free-stream preserva-

tion, constancy preservation)
d Tracer shape preservation
d Linear correlations between tracers (e.g., Lin and

Rood 1996; Lauritzen and Thuburn 2012)

Here, consistency refers to the property that the conti-

nuity equation for tracer mass reduces to the equation

for air mass forQ5 1 in discretized space. This is trivial

if the tracer transport equation is solved with the same

numerical method as the continuity equation for air. The

consistency is violated if, for example, the continuity

equation for tracers is forced with reanalysis data that

prescribe winds and surface pressure or, as is the case

here, if different numerical methods (on different grids)

are used for the continuity equation for tracers and

air mass.

If one can find an upstream Lagrangian grid aij that

satisfies the following constraints, then the requirements

listed above are automatically satisfied.

Constraint 1: the CSLAM fluxes must match the SE

fluxes:

"ij and «5 1, . . . , 4:H («)
ij 5F («)

ij . (10)

Constraint 2: the upstream Lagrangian cells aij span the

sphere without gaps and/or overlaps:

<
ij
a
ij
5V and \

ij
a
ij
5Ø , (11)

where V is the surface of the sphere. Note that the up-

stream grid constructed from using a standard semi-

Lagrangian trajectory algorithm does not necessarily

provide CSLAM fluxes that satisfy constraint 1 and

therefore, the airmass consistency is violated. If the in-

dividual airmass fluxes from CSLAM are overwritten

with SE fluxes, the tracer shape preservation is violated.

The problem of developing swept areas to match the

SE fluxes may initially seem intractable, as the two

methods appear very different (SE is often thought of

as a pointwise method in contrast with the volumetric

approach of finite-volume methods). However, local

construction of the swept areas is made possible by the

fact that, on the level of individual spectral elements,

there is a well-defined notion of fluxes between adjacent

elements. It is exactly this correspondence that allows

SE methods to maintain global mass conservation on a

local level.

3. Consistent CSLAM flux algorithm

The algorithm has been designed to avoid (as much as

possible) conditional statements in the code for control

volumes at the cubed-sphere edges. Hence, there is a

substantial amount of notation that needs to be in-

troduced. The basic algorithm is explained in Fig. 3.

a. Departure point algorithm

In this section, subscript ij has been dropped for no-

tational simplicity. The departure points are defined in

terms of perpendicular swept areas, d?a(«) (Fig. 2d), for
which the swept CSLAM mass flux H matches the SE

mass fluxF to round off. Themathematical formulation

is as follows: for CSLAM control volume (i, j), find

perpendicular swept area for side «5 1, 2, 3, 4, so that

H («) 5

ð
d?a(«)

Dpt dA , (12)

where d?a(«) is the perpendicular swept area (a rectan-

gle) with vertices x(«), x(«) 1 g(«)n̂(«), x(«11) 1 g(«)n̂(«), and

x(«11), where g(«) is the displacement parameter

(Fig. 2d), and n̂(«) is the unit vector perpendicular to side

« (Fig. 2c). The integral on the right-hand side of (12) is

converted to line integrals using the divergence theo-

rem, and the line integrals are computed using Gauss

quadrature [for details, see Lauritzen et al. (2010b)].

Note that the potentials for the line integrals are chosen
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such that lines with constant x coordinates have zero line

integrals.

The swept area d?a(«) is defined in terms of one in-

dependent variable g(«), and the integral on the right-

hand side of (12) is monotonically increasing with

increasing g(«). This constitutes a well-posed iteration

problem that is solved with the Newton iteration algo-

rithm. For notational simplicity, we have dropped the

side index « in the pseudoalgorithm below.

Let G[g(q)] be the difference between the perpen-

dicular CSLAM swept flux (which is a function of g) and

the SE flux G(g):

G[g(q)]5

ð
d?a[g(q)]

Dpt dA2F , (13)

whereq is the iteration index. The iteration procedure is

as follows:

1) Set g(1)5 0, G[g(1)]5 0.

2) Set g(2)5 0:5 and compute G[g(2)].
3) Compute

dg5
[g(2)2g(1)]G[g(2)]

G[g(2)]2G[g(1)]
.

4) Set g(3)5 g(2)2dg and compute G[g(3)].
5) If jG[g(3)]j is less than a given tolerance (e.g., 10214),

the iteration has converged; else set g(1)5 g(2) and

g(2)5 g(3) and repeat steps 3–5.

6) Done: set g5 g(3).

Note that when computing the line integrals for G(g), line
segments that are x isolines are zero and only the line

segments that are a function of g need to be recomputed

during each Newton iteration. Hence, for sides «5 2, 4,

there are only two line segments that need to be re-

computed for each iteration, and for sides «5 1, 3, there

is one. The iteration algorithm is therefore efficient.

Obviously, the fluxes are equal with opposite sign for

sides shared between control volumes. Hence, the

displacements, g(«), are only computed for outflow

(F («) , 0) and set to zero for inflow. For sides located in

nonexistent cells in physical space [in otherwords, the halo

cells located at the cubed-sphere corners; Fig. 5 in Erath

et al. (2012)], the displacements are set to zero. The de-

parture point corresponding to arrival point x
(«)
ij is given by

x
(«)

ij*
5 x

(«)
ij 1 �

i

i05i21
�
j

j05j21

g
(«)
i0j0 n̂

(«)
i0j0 1 g

(«)
i0j0 n̂

(«)
i0 j0 . (14)

To make sure the iterative algorithm for the final swept

area is well conditioned and simple, we set the dis-

placements to zero for circular flow and ‘‘degenerate’’

flow conditions (described in Fig. 4). If this is not done,

the iterative algorithm for the final swept areas (de-

scribed in the next section) becomes more complicated

and expensive. If we assume that the SE fluxes satisfy a

flow-deformation criterion similar to the Lipschitz

criterion (also referred to as deformational Courant

number), the circular and degenerate flow cases are

limited in terms of the size of the swept fluxes.

FIG. 3. Step-by-step example of the consistent SE-CSLAMalgorithm for face 3. (a),(b) Compute the CSLAMflux perpendicular to each

face by iteration. (c) The intersection between the upstream perpendicular flux faces defines the departure points for CSLAM (dark blue

filled circles). (d)A degree of freedom for the swept flux area is introduced at the intersection between the perpendicular swept y-flux area

and the coordinate line (red circle filled with yellow). (e),(f) By iteration, the degree of freedom is moved up and down along the

coordinate axis until the flux area exactly matches the SE flux.
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b. Final swept flux area

The algorithm for calculating the final swept areas is

the same for each side with appropriate index change.

Hence, we describe the algorithm only for side 1, «5 1,

in cell (i, j). Define displacement variables dk (defined as

the sum of the displacements on either side of a cell wall)

and associated unit/basis vectors b̂k (defined in Fig. 5).

The definitions of d and b̂ for sides 2, 3, and 4 are ob-

tained by rotating the figure 908, 1808, and 2708, re-
spectively, about the center for cell (i, j). The subscript k

is chosen quite arbitrarily. The purpose of introducing

this notation is so that after the association of dk and b̂k

with the relevant displacements and face unit vectors,

the algorithm is the same for all faces. The notation used

here closely follows the FORTRAN source code.

For the categorization of the flow cases (Fig. 6), the

logical variables L1, L2, L4, and L5 are defined as

follows:

L
1
5 d

6
, 0 ^ d

7
. 0, i:e. x

(1)

ij*
in cell (i2 1, j2 1),

L
2
5 d

3
, 0 ^ d

6
$ 0, i:e. x

(1)

ij*
in cell (i2 1, j),

L
4
5 d

2
, 0 ^ d

4
$ 0, i:e. x

(2)

ij*
in cell (i1 1, j),

L
5
5 d

4
, 0 ^ d

5
. 0, i:e. x

(2)

ij*
in cell (i1 1, j2 1),

and similarly (by appropriate rotation) for sides 2, 3, and

4. The variableLr is true if a departure point is located in

area r (see Fig. 5b for the area r definition). The chal-

lenges in the categorization are the pathological cases

where some displacements are zero. The categorization

into flow cases depicted in Fig. 6 is given by

case5

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

0, (:L
1
) ^ (:L

2
) ^ (:L

4
) ^ (:L

5
) ,

1 , L
2
^ L

4
,

2 , L
2
^ (:L

4
) ^ (:L

5
) ,

3 , L
4
^ (:L

2
) ^ (:L

1
) ,

4 , L
1
^ (:L

4
) ^ (:L

5
) ,

5 , L
5
^ (:L

1
) ^ (:L

2
) ,

6 , L
1
^ L

4
^ (:L

5
) ,

7 , L
5
^ L

2
^ (:L

1
)

8, L
1
^ L

5
.

(15)

Having defined the flow cases, a well-posed and simple

iteration algorithm is constructed to make the CSLAM

swept fluxes identical to the prescribed SE fluxes F . For

that, a swept area that decreases and increases mono-

tonically as a function of one parameter, g, is defined.

We then iteratively compute g by minimizing the dif-

ference between the swept CSLAM flux and SE flux:

G(g)5

 
�
5

k51

ð
dak

Dpt
k

!
2F , (16)

where dak is the overlap area between the swept flux area

and Eulerian cell k. For side 1, the Eulerian areas are

k5f(i21, j21), (i21, j), (i, j), (i11, j), (i11, j21)g.
A well-posed iteration problem is obtained by de-

fining the CSLAM swept areas using the following

criteria:

FIG. 4. Perpendicular swept flux situations in which the displacement g for the center vertex (x
(1)
ij , x

(4)
ij21, x

(2)
i21j, and

x
(3)
i21j21) is set to zero. (a) For flow situations in which the perpendicular swept fluxes follow a pattern of circular flow,

the displacement is set to zero. Similarly for circular flow in the reverse direction. (b)When the perpendicular fluxes

are negative (outflow) for sides «5 2, 3 in cell (i2 1, j2 1) as well as sides «5 1, 4 in cell (i, j), then the dis-

placement is set to zero. Similarly when F («)
i21j , 0 for «5 1, 2 and F («)

ij21 , 0 for «5 3, 4.
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FIG. 5. (a) Definition of displacement variable d for side 1 in cell (i, j): d0 5 g
(1)
ij ,d1 5g

(1)
ij , d2 5

g
(2)
ij 2g

(4)
i21j, d3 5 g

(4)
ij 2g

(2)
i21j, d4 5g

(1)
i11j2g

(3)
i11j21, d5 5g

(4)
i11j212g

(2)
ij21, d6 5g

(1)
i21j 2 g

(3)
i21j21, and

d7 5 g
(2)
i21j212g

(4)
ij21. The reason for defining d0 and d1 is that if there is a circular or degenerate

flow case at vertex x
(1)
ij or x

(1)
i11j, then the displacements d0 and d1 are no longer identical. (b) The

associated basis/unit vectors for each side: b̂0 5 b̂1 5 n̂
(1)
ij , b̂2 5 n̂

(2)
ij , b̂3 5 n̂

(4)
ij , b̂4 5 n̂

(1)
i11j,

b̂5 5 n̂
(4)
i11j, b̂6 5 n̂

(4)
i11j21, b̂7 5 n̂

(3)
i11j21, b̂8 5 n̂

(1)
i21j, b̂9 5 n̂

(2)
i21j, b̂105 n̂

(2)
i21j21, and b̂11 5 n̂

(3)
i21j21. The

vertex notation is as follows: x1 5 x
(1)
ij , x2 5 x

(2)
ij , x3 5 x

(1)
i11j, x4 5 x

(2)
i21j, x5 5 x

ð4)
i11j21, and

x6 5 x
(3)
i21j21. For cells in the interior of a panel, x1 5 x4 5 x6 and x2 5x3 5x5; however, for cells

at cubed-sphere corners and sides, this is no longer the case. In yellow boxes, the area index is

written; that is, areas 1, 2, 3, 4, and 5 correspond to cells (i2 1, j2 1), (i2 1, j), (i, j), (i1 1, j),

and (i1 1, j2 1), respectively, for side «5 1.
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d If the departure point x
(1)

ij*
is located in area 1 or 2

(cases 1, 2, 4, 6, 7, and 8), then the first-guess crossing

(g5 1) with side 4 is given by x1 1 gd0b̂
(1) for the line

integrals in area 3 and x4 1 gd6b̂
(8) in area 2 (see

magenta filled circles in Fig. 6). The coordinate

crossings are the same if side 4 is not coinciding with a

cubed-sphere panel side. Similarly, if the departure

point x
(2)

ij*
is located in area 3 or 4 (cases 1, 3, 5, 7, and

8), then the first-guess crossing (g5 1) with side 2 is

given by x2 1 gd1b̂
(1) for the line integrals in area 3 and

x3 1 gd4b̂
(4) for the line integrals in area 4 (see red

filled circles in Fig. 6). Note that if g is decreased, the

swept area decreases.
d If the departure point x

(1)

ij*
is located in area 1, the first-

guess crossing with side 1 of cell (i2 1, j) is computed

as the crossing between the line connecting the de-

parture point x
(1)

ij*
(blue filled circle in area 1) and the

crossing computed above x1 1gd0b̂
(1) (magenta filled

circle) given by

x
4
2 gx(left)cross b̂

(9) (17)

(green filled circle), where

x(left)cross 5
d
0
d
7

(d
0
2 d

6
)

(18)

and g5 1 for the initial iteration. Similarly, if the

departure point x
(2)

ij*
is located in area 5, the first-guess

crossing with side 1 of cell (i1 1, j) is given by

x
3
1 gx(right)cross b̂(5) (19)

(green filled circle), where

x(right)cross 5
d
1
d
5

(d
1
2 d

4
)

(20)

(cyan filled circle).
d If both departure points, x

(1)

ij*
and x

(2)

ij*
, are located in area

3, then they are given by

x
(1)

ij*
5 x

1
1 d

0
b
1
1 d

3
b
3
, (21)

x
(2)

ij*
5 x

2
1 d

1
b
1
1 d

2
b
2
. (22)

There is no crossing between the upstream flux side

and the coordinate lines.We introduce a point halfway

between the departure points:

1

2
(x

(1)

ij*
1 x

(2)

ij*
), (23)

and it is perturbed along a vector perpendicular to the

flux side—that is, a 908 counterclockwise rotation of

the vector x
(2)

ij*
2 x

(1)

ij*
(see Fig. 6; case 0).

Defining the swept flux overlap areas as a function of

g as described above guarantees that the swept flux area

is simply connected and that the iteration problem is

well posed. Also, it provides an accurate approximation

of flux areas across cubed-sphere panel sides. The ver-

tices for the overlap areas dak are defined in terms of the

displacement variables d, unit vectors b, coordinate

FIG. 6. A depiction of the categorization of possible flow cases de-

fined in (15). The light blue shaded area is the first-guess swept flux.

The dark blue filled circles are the departure points (that remain fixed)

and the yellow filled circles are moved along the coordinate lines

(according to red arrows) until the swept airmass flux matches the SE

mass flux to round off. The middle and right columns showcase where

one or two departure points coincide with a grid line.
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vertices x, and the crossings (if applicable) as defined

above. The departure point x
(1)

ij*
and x

(2)

ij*
are given by

x
(1)

ij*
5

8>><
>>:
x
6
1 d

7
b
10
2 d

6
b
11
, x

(1)

ij*
in area 1,

x
4
2 d

3
b
9
1 d

6
b
8
, x

(1)

ij*
in area 2,

x
1
1 d

0
b
1
1 d

3
b
3
, x

(1)

ij*
in area 3,

(24)

and

x
(2)

ij*
5

8><
>:

x
1
1 d

1
b
1
1 d

2
b
2
, x

(2)

ij*
in area 3,

x
3
2 d

2
b
5
1 d

4
b
4
, x

(2)

ij*
in area 4,

x
5
1 d

5
b
6
2 d

4
b
7
, x

(2)

ij*
in area 5.

(25)

respectively. If areas 1 and 2 are on a panel different than

areas 3, 4, and 5, the formulas still apply; hence, there is

no special treatment (if-else logic) for swept flux areas

spanning panel edges. The iteration problem iswell posed

if the flow deformation prescribed by the SE fluxes

satisfies the Lipschitz criterion. It is solved using the same

Newton algorithm as described in section 3a. Note again

that certain line integrals are static (e.g., the line integrals

from the Eulerian vertices to the departure points) and

do not need to be recomputed during each Newton iter-

ation. Also, only at initialization it is necessary to com-

pute intersections between line segments when da1 and/

or da5 are nonempty. This is a major simplification

compared to the ‘‘traditional’’ CSLAM algorithm.

The above algorithm constitutes a local iteration

problem since a point along the side of the swept area is

perturbed to obtain CSLAM fluxes consistent with the

diagnosed SE fluxes. In other words, the vertex locations

of the swept fluxes are determined by the orthogonal

swept fluxes (illustrated in Figs. 3a–c). The upstream

vertex locations stay fixed. We then introduce an extra

degree of freedom along the flux side (which coincides

with a coordinate line crossing else it is halfway in be-

tween the upstream vertices) andmove that point (along

the coordinate line) to make the SE and CSLAM fluxes

match. Since the vertex locations stay fixed, the iteration

only affects the swept flux area for the side in question.

Therefore, the iteration algorithm is local and con-

strained on each side by the prescribed SE flux. As il-

lustrated in Fig. 7, the union of the swept flux areas and

the Eulerian cell define the equivalent upstream La-

grangian area. This equivalent upstream Lagrangian

grid is shown in Fig. 7b for the new CSLAM algorithm.

Note that had we chosen to perturb the departure points

(Fig. 7a), then a global iteration problem would result

since the departure points are shared between Lagrang-

ian cells (or equivalently swept flux areas). This global

iteration problem would also require intersections be-

tween Eulerian and Lagrangian cells to be computed

during each iteration, which is an expensive operation.

For example, if the global iteration problem would

converge in 10 iterations, the cost (in the current im-

plementation of the original CSLAM) would be

FIG. 7. A graphical illustration of two different ways to make CSLAM and SE consistent. The dark blue filled

circles are the departure points, the dark blue lines are the sides of the Lagrangian CSLAMcells, and the black lines

are the CSLAM control volumes. The arrows indicate the points that are perturbed to make SE and CSLAM

consistent. (a) SE and CSLAM are made consistent by perturbing the departure points. Note that this problem is

a global iteration problem requiring computation of overlap areas during each iteration. (b) The approach chosen in

this paper. The intersections between the sides of the Lagrangian cells with the grid lines are perturbed. This

constitutes a local iteration problem as fluxes are matched with SE fluxes for each flux side, whereas the departure

points stay fixed.
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equivalent to transporting approximately 90–140 tracers

with the SE method (not shown).

4. Results

To assess the accuracy and efficiency of the CAM-SE–

CSLAMalgorithm, idealized baroclinic wave simulations

have been performed with inert tracer distributions as

well as idealized reactive chemical species. We compare

the SE advection algorithm with the CSLAM advection

algorithm.Note that the two transport schemes are driven

by the same winds and airmass fields from the CAM-SE

solution to the equations of motion. (The tests have been

performed with the https://svn-homme-model.cgd.ucar.

edu/branches/cslam@5168 code base.) This model ver-

sion uses a floating Lagrangian vertical coordinate (Starr

1945; Lin 2004) but is otherwise equivalent to the CAM-

SE version documented in Neale et al. (2012).

The model is run with 30 vertical levels (level loca-

tions as in CAM5), and the horizontal resolution is ap-

proximately 18 (303 30 elements on each cubed-sphere

panel and 4 3 4 GLL quadrature points in each ele-

ment). The time step for solving the equations of motion

(including SE tracer transport) is 300 s, the hypervis-

cosity time step is 100 s, and the hyperviscosity

coefficient is 1015m4 s21. High-resolution reference so-

lutions are computed with a horizontal resolution of

approximately 1/48 (1203 120 elements on each cubed-

sphere panel) with a dynamics time step of 75 s, a hy-

perviscosity time step of 12.5 s, and a hyperviscosity

coefficient of 1013m4 s21. The vertical remapping is

performed every third dynamics time step.

The CSLAM scheme has been implemented within the

element structure (Erath et al. 2012) where each element

has been subdivided into 33 3 control volumes (using

equiangular partitioning). Hence, the CSLAM grid res-

olution is also approximately 18 when using 303 30 ele-

ments on each panel. Contrary to Lauritzen et al. (2010b),

we use quadratic interpolation (instead of cubic) in the

halo regions to interpolate cell average values on neigh-

boring panels to halo cells resulting from extending the

panel in question during the reconstruction process.

FIG. 8. (columns from left to right) 18 SE, 18 CSLAM, and 1/48 SE solutions for tracer oneQ1 at (top) day 0, (middle) day 5, and (bottom)

day 10 at level 20 (at approximately 610 hPa).
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CSLAMhas been implemented for Courant numbers less

than unity; hence, CSLAMis runwith the remapping time

step (i.e., 3 times longer time step than SE advection).

The idealized baroclinic wave used here is defined in

Ullrich et al. (2014). This wave is similar to the

Jablonowski and Williamson (2006) wave but with an-

alytic support for deep atmosphere approximations.

Both waves consist of a steady-state solution to the

equations of motion with a perturbation that triggers

the growth of a baroclinic wave. For this study, either of

the baroclinic waves could have been used. In separate

sections below, we describe the inert tracer transport

test and reactive chemical species test, both being driven

by the same SE solution to the Ullrich et al. (2014)

baroclinic wave. For simplicity, we assume that the

tracers are dimensionless.

a. Idealized baroclinic wave with inert tracers

Three (Q1,Q2,Q3) inert tracer distributions are used.

The first tracer is a smooth ‘‘Gaussian ball’’ distribution:

Q
1
(l, u,h)5

(
0, if j ~Q

1
j, 1028 ,

~Q
1
, if j ~Q

1
j$ 1028 ,

(26)

where h is the hybrid vertical coordinate,

~Q
1
(l, u,h)5 exp

(
2

"� r
R

�2
1

�
h2h

c

h
hw

�2
#)

, (27)

l is longitude, u is latitude, maximum amplitude in the

vertical is placed at hc 5 0:1 (which is near the surface

where strong gradients occur during the baroclinic

wave evolution), horizontal half-width ~R5R/10 (where

R is the mean radius of Earth), and vertical half-

width hhw is 0.1. The great-circle distance r is mea-

sured as the distance between (l, u) and the center

of the initial distribution (lc, uc) 5 (p/9, 11p/18) 5
(408N, 208E):

r5R arccos[sinu
c
sinu1 cosu

c
cosu cos(l2 l

c
)] . (28)

The initial condition is shown in row 1 in Fig. 8.

The second tracer distribution structurally resembles

the initial condition temperature field, which is zonally

symmetric (see Fig. 9):

Q
2
(l, u,h)5

1

2
[tanh(3juj2p)1 1] . (29)

The third distribution is the slotted cylinder with dis-

continuous gradients (see Fig. 10):

FIG. 9. As in Fig. 8, but for tracer two Q2 and (top) day 0, (middle) day 8, and (bottom) day 10.
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Q
3
(l, u,h)5

8>>>>><
>>>>>:

2 if r#
R

4
and jl2 l

c
j$R

6
,

2 if r#
R

4
and jl2 l

c
j,R

6
and u2 u

c
,2

R

24
,

1 otherwise.

(30)

To assess the accuracy of CAM-SE using SE advection

and the CSLAM transport scheme, we qualitatively

and quantitatively compare the 18 solutions to the 1/48
solutions. A standard normalized root-mean-square

error norm is used to quantify the accuracy of the so-

lution of c compared with a high-resolution reference

solution C:

‘
2
5

(
I[(c2C)2]

I[C)2]

)
, (31)

[e.g., appendixA in Lauritzen et al. (2012)] where I is the

global integral. All data have been interpolated to a 18
regular latitude–longitude grid for plotting and analysis.

The wind and surface pressure evolution at these two

resolutions are significantly different when the baro-

clinic wave starts growing and rapidly evolves with

explosive cyclogenesis betweenmodel days 6 and 9. This

is illustrated in the ‘2 error norm for surface pressure ps

shown in Fig. 11a, which is similar to the error norm

analysis for the Jablonowski and Williamson (2006)

wave. Since the winds and pressure fields driving the

transport scheme differ significantly after day 9, the ‘2
error norms for Qi, i5 1, 2, 3, are dominated by wind

and ps differences rather than differences in the accu-

racy of the transport algorithms. Up until days 6–9,

however, the ‘2 errors are dominated by the transport

scheme errors if the tracer distributions are challenging

enough for the transport scheme.

Figure 11b shows ‘2(Q1) as a function of time for Q1

computed with SE (blue line) and CSLAM (red line) at

18 resolutions, respectively, compared to the high-

resolution reference solution C5Q1 computed with
1/48 SE. Also, the black line is the ‘2 error norm for the

FIG. 10. As in Fig. 8, but for tracer threeQ3. Note that the background value is nonzero and remains constant throughout the simulation;

that is, the transport algorithms are consistent/free-stream preserving.
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high-resolution solutions computed with CSLAM (c)

and SE (C). As expected, the high-resolution solutions

differ a lot less (approximately an order of magnitude

difference in ‘2) than the low-resolution solutions (cf.

red and blue lines with black lines). For the relatively

smooth Gaussian initial condition Q1, the CSLAM 18
solution is about twice as accurate compared to the SE

solution until the baroclinic wave starts growing rapidly.

This can also be seen in the instantaneous fields shown in

Fig. 8.

For the zonally symmetric distribution Q2 (see Fig. 9),

the errors for SE and CSLAM are completely dominated

by the differences in the winds and pressure fields, which

is expected for initially smooth and well-resolved tracer

distributions (Fig. 11c). SE transport is formally fourth-

order accurate (the addition of hyperviscosity, which

scales as dx3:2, implies that the scheme is 3.2-order accu-

rate), and CSLAM is third order. For this smooth tracer,

both transport schemes provide almost indistinguishable

solutions consistent with both schemes being high order

for smooth problems. Both schemes drop in formal ac-

curacy (approximately second order; Lauritzen et al.

2014b) when a shape-preserving limiter is used.

In the case of the slotted-cylinder initial distribution

Q3 (see Fig. 10), errors develop immediately because of

the models inability to represent a distribution with

discontinuous gradients. The CSLAM solution, how-

ever, produces errors that are approximately half that of

SE until ‘2 starts saturating by the driving flow differ-

ences. This is also visible in the instantaneous solutions

shown in Fig. 10, where CSLAM resolves the sharp

gradients more accurately than SE.

FIG. 11. Standard ‘2 error norm for (a) ps, (b)Q1, (c)Q2, and (d)Q3 using SE and CSLAM. The 1/48 SE solution is

used as the ‘‘truth’’ for ‘2 computations.
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b. Idealized baroclinic wave with reactive chemical
species

To assess the performance of SE and CSLAM in the

presence of subgrid-scale forcing, we use a three-

dimensional extension of the Lauritzen et al. (2015)

idealized terminator test referred to as ‘‘the toy termi-

nator chemistry test.’’ It consists of two reactive species

Q4 5Cl and Q5 5Cl2 that initially add up to a constant

Cl
y
5Cl1 2Cl

2
5 43 1026 , (32)

and that react nonlinearly with each other. The chemical

reactions are given in Lauritzen et al. (2015). We use the

same initial conditions in each level for Cl and Cl2 as was

used in Lauritzen et al. (2015). An advantage of this test

is that no matter what flow the chemical species are

placed in, the weighted sum (32) must always be con-

served. So instead of using a prescribed analytical flow

field as in Lauritzen et al. (2015), we use the idealized

baroclinic wave flow field. The tendencies from the

chemical reactions are computed every 900 s for the 18
computations. The tendencies are used to update the

state every 900 s [the ftype5 1 configuration is explained

in appendix E in Lauritzen et al. (2015)].

As diagnostics, we used the averaged column in-

tegrated quantities:

hci5

ðptop
p5ps

cdpðptop
p5ps

dp

, c5Cl, Cl
2
, Cl

y
. (33)

The initial condition for hCli, hCl2i, hClyi, and ps are

shown in Fig. 12. The same fields at day 15 are shown in

Fig. 13 for CSLAM and Fig. 14 for SE. Note that ps for

SE and ps implied by CSLAM are identical. The SE

transport scheme maintains a constant Cly until day 11,

after which errors start growing. In Lauritzen et al.

(2015), this error growth was shown to be due to the

monotone limiter fromGuba et al. (2014). In Lopez and

Taylor (2015), it was shown that this limiter preserves

FIG. 12. Initial condition for (top left) hCli, (top right) hCl2i, (bottom left) hClyi, and (bottom right) ps used in the ‘‘toy’’ terminator

chemistry test.
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constant Cly in exact arithmetic but not in the presence

of round-off error. TheCSLAMalgorithmmaintains the

constant Cly throughout the simulation.

c. Computational performance

Computational performance experiments are performed

on the NCAR Yellowstone cluster (Computational and

Information Systems Laboratory 2012) with standard

computer optimization flags. We do not make use of

threading. The amount of information that needs to be

communicated between elements (if residing on differ-

ent tasks) is very different between SE and CSLAM—

similarly for the frequency of communication between

elements. While the SE method only needs to share

values at quadrature points located on the boundary of

an element, communication is performed at every

Runge–Kutta stage and every subcycling of the hyper-

viscosity operator. For the 18 model, that amounts to 21

communications per remapping time step (900 s), 5

communications per 300-s tracer time step, and 2 com-

munications for hyperviscosity per tracer time step.

CSLAMonly needs one communication per 900-s tracer

time step. That said, CSLAM needs all finite-volume

values for each element surrounding the element being

updated—that is, 72 values per tracer in the horizontal

compared to 20 values for SE (four points on each edge

plus the corner points). Figure 15a shows throughput for

tracers for a 1-day simulation using SE (purple and

black) and CSLAM (green) as a function of the number

of tracers. The throughput for SE is shown for the

CESM1 release code (purple line). The CAM-SE tracer

advection code is currently being optimized further

(J. Dennis 2016, personal communication). At a rela-

tively low tracer count (at least for climate and climate-

chemistry modeling), CSLAM is faster than SE. Note

that the new CSLAM algorithm does not make use of an

extensive search algorithm as the original formulation of

CSLAM. The crossover between SE and CSLAM with

the old formulation of flux-form CSLAM in HOMME

(Harris et al. 2011) is over 20 tracers (not shown) and

with the new consistent CSLAMalgorithm, it is closer to

10 tracers. Figure 15a also shows the breakdown of

FIG. 13. As in Fig. 12, but for day 15 using CSLAM.
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computational cost for the different stages of the

CSLAM algorithm. The departure point algorithm (or-

ange line) and computation of high-order weights (yel-

low line) remains constant as a function of tracers and

makes up a small cost even at low tracer counts. The

communication (light blue), reconstruction (dark blue),

and remapping (multiplication of reconstruction co-

efficients and precomputed weights; red) are all a func-

tion of tracers. The computation of the reconstruction

coefficients is themost expensive step, mostly because of

the reconstruction limiter that involves if2 else logic.

About half of the cost of reconstruction is the boundary

exchange (communication).

Especially for lower-resolution modeling, strong

scaling is important. Figure 15b shows throughput as a

function of tasks/processors. Note that the last data

point on the right-hand side of the plot (5400 processors)

is the throughput where there is only one element in the

horizontal per processor. It is well known that SE ex-

hibits strong scaling; however, CSLAMalso scales to the

limit of scalability despite the large halo.

Compared to the original formulation of CSLAM, the

new CSLAM algorithm does not make use of an ex-

tensive search algorithm. It has been replaced with a

local iterative algorithm to enforce consistency with SE.

The communication structure (amount of data com-

municated and the frequency of communication), re-

construction, shape-preserving limiter, and remapping

algorithm are essentially the same as the original

CSLAM scheme. Hence, the detailed performance

analysis as a function of cores and tracers presented in

Erath et al. (2012) is also relevant for the algorithm

presented here.

CAM-SE–CSLAM has been presented in the context

of a dry dynamical core. The extension to a full physics

setup requires several modifications to the existing

modeling system. First of all, one need to make choices

about which grid is used to run the physics parameteri-

zations (quadrature grid or CSLAM control volumes). In

either case, tendencies from the parameterizations must

be mapped between grids. Second, the treatment of

moisture in the dynamical core can complicate the

FIG. 14. As in Fig. 12, but for day 15 using SE.
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coupling between CAM-SE and CSLAM. Currently,

CAM-SE is based on a vertical coordinate based onmoist

(full) surface pressure, which implies that the model

levels move when there are changes in the moisture field

from parameterized sources/sinks of moisture. These

sources/sinks need to be accounted for both in SE and

CSLAM. To avoid this, dry-mass vertical coordinates, in

which the model levels are determined by dry surface

pressure (as well as the usual hybrid coefficients), can be

used. With dry-mass vertical coordinates, the model

levels do not change because of parameterized water

vapor sources/sinks. The infrastructure to run physics,

tracers, and dynamics on different grids has been added

to CAM, and a dry-mass vertical coordinate version of

CAM-SE has been derived and implemented. This ver-

sion also easily accounts for condensate loading. Details

on these developments are beyond the scope of this

paper.

5. Summary

In this paper, it has been shown that it is possible to

consistently couple CAM-SE with the CSLAM trans-

port algorithm without violating desirable properties

such as shape preservation, mass conservation, linear

correlation preservation, and consistency (aka compat-

ibility, free-stream preservation). This is achieved by

first deriving formulas for diagnosing SE airmass flux

through the CSLAM control volume faces. These mass

fluxes are used to construct CSLAM swept areas for

which the airmass fluxes computed with CSLAMmatch

the SE airmass fluxes to round off. The iterative algo-

rithm is local and results in an equivalent upstream

Lagrangian CSLAM grid that spans the sphere without

gaps or overlaps. This new consistent SE-CSLAM

algorithm avoids the expensive search for overlap areas

used in the original formulations of CSLAM. The source

code for computing weights has almost been cut in half

with the new algorithm compared to the original

CSLAM. This is mainly due to the new algorithm being

formulated more generally, so special case statements

for the edges and corners of the sphere have been re-

duced to a minimum.

It has been shown in idealized tracer experiments

that CSLAM is more accurate than SE for challenging

tracer distributions and at the same time is more effi-

cient that SE if one is using more than approximately

12–15 tracers. Also, the CAM-SE–CSLAM model

retains the excellent strong scaling properties of

CAM-SE. The algorithm for making the CSLAM

Lagrangian grid consistent with SE is general in the

sense that CSLAM can be made consistent with any

airmass fluxes as long as the fluxes satisfy the Lipshitz

criterion.
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APPENDIX

Spectral Element Subcell Flux

Our goal is to write each of the three terms on the

right-hand side of (8) as a sum of edge fluxes in such a

way that the fluxes along an edge shared by two subcells

will be equal in magnitude and of opposite sign.

FIG. 15. (a) Time (s) spent in various parts of the CSLAM transport algorithm for a 1-day simulation using 256 tasks as a function of

number of tracers (the yellow line is on top of the orange line). The throughput for SE transport based on theCESM1 release (CAM-SE) is

also shown. See text for details. (b) As in (a) but for a fixed number of tracers (40) and as a function of tasks. Note that for the rightmost

data point (5400 tasks), there is only one element in the horizontal per processor. This is the limit of scalability for CAM-SEandCAM-SE–

CSLAM without threading.
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a. Strong form divergence: hf(ij), = � Fi
The divergence in curvilinear coordinates is given by

= � F5
1

J

�
›

›x
(JF1)1

›

›y
(JF2)

	
, (A1)

where J is the Jacobian and (F1, F2) are the contra-

variant components of the flux vector F5 vDp.
To compute the implied spectral element flux over the

ij th CSLAM control volume, we construct special test

functions f(ij) such that

hf(ij), pi5
ðxi11

xi

ðyj11

yj

Jp(x, y) dx dy (A2)

for all polynomials p(x, y) of degree np2 1. Such test

functions must exist since the integral is a linear func-

tional of p, and p is uniquely determined by its GLL

nodal values. One can further show that f(ij) is a tensor

product of one-dimensional test functions f(ij) 5
f(i)(x)f( j)(y). Hence, the flux for the ijth CSLAM

control volume is

hf(ij),= � Fi5
ðxi11

xi

ðyj11

yj

�
›

›x
(JF1)1

›

›y
(JF2)

	
dx dy

5

ðyj11

yj

JF1(x
i11

, y) dy2

ðyj11

yj

JF1(x
i
, y) dy

1

ðxi11

xi

JF2(x, y
j11

) dx2

ðxi11

xi

JF2(x, y
j
) dx.

(A3)

Thus, the flux naturally decomposes into the integral of

F � n̂ along each edge. These can be computed numeri-

cally based on the GLL nodal values via

hf(ij),= � Fi5 2 �
np

m51
�
np

n51

w
m
f(i)
m I( j)n JF2(x

m
, y

n
)

ðbottom edge flux)

1 �
np

m51
�
np

n51

w
n
f( j)
n I(i11)

m JF1(x
m
, y

n
)

ðright edge flux)

1 �
np

m51
�
np

n51

w
m
f(i)
m I( j11)

n JF2(x
m
, y

n
)

ðtop edge flux)

2 �
np

m51
�
np

n51

w
n
f( j)
n I(i)m JF1(x

m
, y

n
)

ðleft edge flux), (A4)

where I is a polynomial interpolation matrix defined so

that

Dp(x
i
, y

j
)5 �

np

m51
�
np

n51

I(i)m I( j)n Dp(x
m
, y

n
). (A5)

Each term on the right-hand side of (A4) constitutes

the contribution to F («)
ij , «5 1, 2, 3, 4 from the strong

flux divergence.

We note that in the SE method, at an edge shared by

neighboring elements, both J, F1, and F2 will not nec-

essarily be continuous because of deformed elements

and different contravariant coordinates used within

each element. However, the flux JF1 5F � n̂ is continu-

ous at element boundaries if F is continuous (Taylor and

Fournier 2010).

b. Weak form diffusion: h=f(ij), Gi
This term, whereG5 n=Dp, does not change themass

within an element and thus has zero net flux at element

boundaries. It does induce mixing between subcells and

will change the nodal values of Dp. The DSS operation

can then redistribute some of this mass into neighboring

cells. However, that flux is accounted for in the DSS

operation below, not here.

For each subinterval, we need to decompose the

change in mass into left, right, top, and bottom fluxes:

G
(i)
L , G

(i)
R , G

(i)
T , and G

(i)
B , respectively. The requirement,

that the flux at the sides of the element is zero and that

the fluxes at CSLAM control volume edges are equal

and with opposite signs, is sufficient to uniquely de-

termine all the fluxes.

In each coordinate direction, we have

*
›f(i)

›x
,G

+
5G

(i)
L 1G

(i)
R (A6)

(similarly for the top and bottom). Starting with the

leftmost (i5 1) subinterval, we know that G
(1)
L 5 0,

and then (A7) can be used to determine G
(1)
R . Since

the fluxes at adjacent subelement boundaries must be

equal and opposite, this determines G
(2)
L 52G(1)

r , and

as before, once G2
L is determined, (A6) determines

G
(2)
R .

Since f(i) is a partition of unity, it can be shown that

this procedure will end with the flux at the interval

endpoint of G
(i)
R 5 0, as required.

Thus these fluxes are given by

G
(i)
L 5



0 if i5 1

2G
(i21)
R if i. 1

, (A7)
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G
(i)
R 5

8<
:
�

›

›x
f(i),G

�
2G

(i)
L if i, nc

0 if i5 nc

. (A8)

In two dimensions, we first integrate by parts (weak form):

h=f,Gi5 �
np

m51
�
np

n51

w
m
w
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3
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!
. (A9)

Then using the results from above, we get

�
np

m51

w
m

›f(i)
m

›x
JG1 5G

(i)
L (y

n
)1G

(i)
R (y

n
) , (A10)

�
np

n51

w
n

›f( j)
n

›y
JG2 5G

(i)
T (x

m
)1G

(i)
B (x

m
) , (A11)

andwe can write the diffusion term as a sum of four edge

fluxes:

h=f,Gi5 �
i

w
m
f(i)
m G

(i)
B (x

m
)1 �

j

w
n
f( j)

n G
(i)
R (y

n
)

1 �
i

w
m
f(i)
m G

(i)
T (x

m
)1 �

j

w
n
f( j)

n G
(i)
L (y

n
) .

(A12)

Each term on the right-hand side of (A12) constitutes

the contribution to F («)
ij , «5 1, 2, 3, 4 from the diffu-

sion operator.

c. DSS operation: hf(ij), Di
We now treat the edge flux term coming from theDSS

operation. First, consider the DSS term along a co-

ordinate line: In one dimension, the net change in mass

in the entire element is given by

h1,Di5w
1
D(x

1
)1w

np
D(x

np
) , (A13)

where we have used the fact that D5 0 at element in-

terior points. This term naturally decomposes into a flux

at the left and right interval endpoints

D
(1)
L 5w

1
D(x

1
) , (A14)

D
(i)
R 5w

np
D(x

np
) , (A15)

with

h1,Di5D
(1)
L 1D

(i)
R . (A16)

We first note that this flux is conservative at the element

level since the flux on the right edge of one element will

be equal and opposite to the flux on the left edge of its

adjacent element.

As for the diffusion term, given D
(1)
L , the remaining

fluxes are determined by requiring that adjacent fluxes

are equal and opposite, D
(i)
R 52D

(i11)
L , and that the

change in mass from the DSS term in each subinterval

is given by the sum of the subinterval fluxes:

hf(i),Di5D
(i)
L 1D

(i)
R . (A17)

The fact thatf(i) is a partition of unity ensures that the final

flux computed by this procedure, G
(i)
R , will satisfy (A15).

The result can be written as

D
(i)
L 5

(
w

1
D(x

1
) if i5 1

2Di21
R if i. 1

, (A18)

D
(i)
R 5

8<
:hf(i),Di2D
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) if i5 nc

. (A19)

In two dimensions, we have

hf(ij),Di5 �
np
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(A20)

Applying the one-dimensional (1D) procedure from

above to this term and denoting the resulting fluxes

(which are now a function of xm) at the top and bottom

edges by D
( j)
T and D

( j)
B , respectively, we get

�
np

n51

w
n
f( j)

n (JD)(x
m
, y

n
)5D

( j)
T (x

m
)1D
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m
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) , (A22)

so that

hf(ij),Di5 1
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np
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m
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1
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(A23)
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Each term on the right-hand side of (A23) constitute the

contribution toF («)
ij , «5 1, 2, 3, 4 from theDSSoperator.

ThedefinitionofD
( j)
T andD

( j)
B is a simpleextensionofD

( j)
L

and D
( j)
R as defined in (A18) and (A19). The only difficulty

is at the corners, (x1, y1), (x1, ynp), (xnp, y1), (xnp, ynp),

where some ambiguity exists in how D is conservatively

distributed among the element edges that share the

corner node—that is, D(x1, y1)5D
(1)
T (x1)1D

(1)
L (y1).

We use the fact that all the DSS terms from all the ele-

ments that share a corner must sum to zero,�De(x0)5
0, where the sum is taken over the three or four ele-

ments, e, that share a single corner point, x0.We can then

divide the contributions among each of the three or four

elements, noting that even elements that share only a

single node and not an edge will have flux contributions

that flow through intermediate elements. For three ele-

ments sharing a point, the flux is based on one-third the

difference of theDSS terms across neighboring faces. The

formula for four elements is similar.
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