
Software containers can revolutionize research and education with numerical weather

prediction models by easing use and guaranteeing reproducibility.

A CONTAINERIZED MESOSCALE
MODEL AND ANALYSIS TOOLKIT
TO ACCELERATE CLASSROOM
LEARNING, COLLABORATIVE

RESEARCH, AND UNCERTAINTY
QUANTIFICATION

Joshua P. Hacker, John Exby, David Gill, Ivo Jimenez, Carlos Maltzahn, Timothy See,
Gretchen Mullendore, and Kathryn Fossell

Numerical models are a cornerstone of weather
prediction today, and they support a broad range
of weather research. Studies quantifying the

ability of numerical models to predict the atmospher-
ic state, and to simulate atmospheric phenomena,
form two key lines of inquiry. By establishing model
fidelity to the atmosphere, those studies also provide
a basis for broader scientific inquiry with models. The
use of numerical models in atmospheric research has
become ubiquitous over the past few decades. Areas of
research include physical process identification and
analysis, atmospheric predictability, and predictions
of future climates, among others.

Extensive use of numerical models in research
demands educating students for diligent applica-
tion of these large and complex codes. Beyond basic
theory and best practices in numerical methods, the
opportunities for mistakes are vast. While mistakes
can provide positive learning experiences, they can

also produce misleading results and consequently
incorrect interpretation.

The purpose of this article is to describe the imple-
mentation of software containers for numerical weather
prediction (NWP) research and education. Container
technology has profound implications for education
and research in numerical weather prediction. Con-
tainers not only enable reproducibility, but they greatly
lower barriers for accessing cutting-edge NWP codes.
The tools discussed herein, such as source code reposi-
tories and containers, may be relatively new for many
readers. These tools are presented in detail to fully de-
scribe the procedures used. But a deep understanding is
not needed. The containers presented here have already
been tested successfully by multiple users, primarily
from universities. The technical details can remain
mostly transparent for new users; the power of these
tools can then be further realized by users (including
students and educators) who become more advanced.

1129AMERICAN METEOROLOGICAL SOCIETY |JUNE 2017

The Weather Research and Forecasting (WRF)
Model (Skamarock et al. 2008) is a state-of-the-art
NWP model for operations and research, with users
numbering in the tens of thousands. It was engineered
to be portable and easy to install on a limited yet com-
mon set of platforms, with code that is both complex
and extensive (over 1.5 million lines). It has many
dependencies on external software packages [e.g., for
input/output (I/O), parallel communications, and data
compression] that are not trivial to satisfy; compilation
and execution can be an intensive effort for beginning
users who lack support from experienced system
administrators. The WRF help desk requests are
dominated by new users reporting difficulty compil-
ing the model. A new version has been released twice
annually for the last 15 years, and users who want to
update and rebuild may face repeated challenges with
each new set of code.

Running the model can also be difficult for new
users. Individual steps to generate computational
grids, import initialization data, produce initial and
boundary conditions, and run the model can be
daunting. Those steps can be scripted into a workflow
that can range from simple to complex, depending
on the application. Scripted workflows have been
developed by countless individuals and groups over
the last decade; the proverbial “wheel” has been rein-
vented countless times, especially when considering
the number of individuals who have written analysis
tools to compute the same diagnostics on output.

Implementation of experiential learning with
numerical weather prediction codes is especially
challenging for users in the classroom. Some universi-
ties are able to provide hands-on exercises due to a
combination of sufficient laboratory resources and,
most importantly, staff (faculty and support) with a
sufficient knowledge base in modeling and informa-
tion technology. But even those universities with

sufficient knowledge struggle with continual updates
to compilers, operating systems, and model code.

Results from software that implements floating-
point operations are generally not numerically re-
producible. Examples of the impacts on numerical
weather models can be found in Thomas et al. (2002)
and Baker et al. (2015). A consequence is that NWP
research is not reproducible.

Numerical uncertainty can lead to misleading
results. The chaotic nature of the models means that
small perturbations, perhaps arising from truncation
errors, can organize and grow into features that are
tempting to interpret as an important response to a
change in input or model formulation. The classic
paper by Lorenz (1963) is an example of how numeri-
cal truncation can lead to chaotic results, and in that
case it was truncation that led to Lorenz’s discovery
of chaos. Many times the differences that appear
meaningful cannot be reproduced, or they simply
cannot be distinguished from chance.

Finally, collaboration among researchers working
on different computing platforms can be cumber-
some. It often relies on careful manual code manage-
ment to make sure collaborators are working with the
same code. Configuration of a complex model must
also be done carefully—and still the opportunity to
make mistakes is always present.

Software containers, which are becoming an es-
sential part of modern software development and
deployment, offer a path for mitigating or eliminating
many of the problems in NWP research and educa-
tion that are described above. In the remaining text,
we describe how and show some examples. First,
software containers are reviewed. Then a set of con-
tainers for initializing, running, and analyzing results
from the WRF Model are presented. Numerical and
performance reproducibility are demonstrated with
a simulation of Hurricane Sandy, leading to a clear
way to perform uncertainty quantification in the
following section. The discussion section concludes
with some analysis of the implications for container
technology in numerical simulation and prediction.
In the final section, links to online content and open
repositories are provided.

SOFTWARE CONTAINERS. A container is
a software-based packaging and distribution tool
that collects all elements and dependencies of a
Linux-based application. Containers store the run-
time environment together with one or more ap-
plications for ease of transportation, installation,
and execution across a variety of operating systems
(Linux, Mac, Windows). Containers avoid any need

AFFILIATIONS: Hacker, Exby, and Gill—Research Applications
Laboratory, National Center for Atmospheric Research, Boulder,
Colorado; Jimenez and Maltzahn—Computer Science Depart-
ment, University of California, Santa Cruz, Santa Cruz, California;
See and Mullendore—Department of Atmospheric Sciences, Uni-
versity of North Dakota, Grand Forks, North Dakota; Fossell—
Mesoscale and Microscale Meteorology Laboratory, National
Center for Atmospheric Research, Boulder, Colorado
CORRESPONDING AUTHOR: Joshua P. Hacker, hacker@ucar.edu

The abstract for this article can be found in this issue, following the
table of contents.
DOI:10.1175/BAMS-D-15-00255.1

In final form 24 August 2016
©2017 American Meteorological Society

1130 | JUNE 2017

mailto:hacker%40ucar.edu?subject=
http://dx.doi.org/10.1175/BAMS-D-15-00255.1

for recompilation or complex virtual machine en-
vironments. Because they house only the necessary
components to execute an application, they are much
simpler and smaller than virtual machines running
complete operating systems. Containers allow an
application (or suite of applications) to be developed,
tested, and executed in such a way that when relocated
to an alternative compute environment, the execution
and results of the application workflow are consistent
and repeatable. Modern container tools have origins
based on Linux containers that have long been part
of Linux kernels. They are now evolving toward a
standards-based “engine” that allows portability and
compatibility despite changes to underlying compute
systems, networks, or operating systems.

An image, or base image, is a prebuilt set of ap-
plication elements—binaries, libraries, configuration
files, and any ancillary tools—required to provide an
entire execution environment for the application to
function. An image can be developed over time by
being tagged and maintained with version control
methods, and downloaded from official repositories
as a basis for developer or operational use. An ap-
plication image may be maintained by a known set
of developers for the purposes of official verification
at known version levels, and contain official patches
and security updates.

Launching a particular instance of an application
image into a run-time state produces a container
running that application. The container is executing
the entire environment of the application, without
requiring the host operating system to have any soft-
ware installed other than the container engine itself.

Linux containers have been used in cloud services
for over 10 years to provide stability, scalability, and
a more secure, isolated run-time environment than
is often possible on commonly used computing plat-
forms. Today’s container engines have defined an
emerging standard that can execute prebuilt codes
within every modern operating system (OS), includ-
ing Windows, Mac OS X, and Linux. Containerized
applications provide a well-documented command set
that users can implement quickly without regard to
a destination OS. Software deployment methods are
simple and reduce the level of introduction needed
to bring new users or developers into a collaborative
group.

Industry experts believe containers will continue
to be prevalent, with accelerating adoption due to
best-fit scaling on desktops and laptops. Commercial
and research cloud platforms are providing greater
off-the-shelf server resources as hardware prices
either fall or computing power per dollar spent rises.

Container technology is a natural fit to commer-
cial cloud services; a user can immediately deploy
software without any knowledge of the underlying
hardware or OS. Once software tools are in contain-
ers, users have easy access to vast resources of cloud
computing, which can be exploited when conditions
demand.

We chose Docker (www.docker.com) as the con-
tainer engine for this work, but others are available.
Docker containers are user friendly, already widely
adopted across the software industry, and allow us-
ers to execute complex precompiled scientific codes
anywhere. The combination of all these features
enables users to focus on running numerically re-
producible scientific analysis and to reduce start-up
times. Within containers, software configurations
can be easily integrated into arbitrary workflows that
assemble trivially portable modules. The containers
may use differing datasets assigned at launch and
may be built on demand. The resulting output can
be stored with metadata using local storage; proven
distributed storage technologies; cloud storage, such
as Amazon Simple Storage Service (Amazon S3) and
Amazon Glacier offered by Amazon Web Services
(https://aws.amazon.com/); or similar resources.

The open-source community and the rapid adop-
tion of Docker (and similar) container technologies
have boomed since 2012, with entire companies, such
as Uber, Netflix, Goldman Sachs, and others, leverag-
ing containers across hybrid (on premise and cloud)
platforms for dynamic scalability that can be based
on users (or events) worldwide. Frameworks for man-
aging complex and multiple instances of containers
are evolving to provide streamlined tools that allow
flexibility, verification, reporting, and coordination.

Containers internally run a very lightweight Linux
environment, as opposed to a full Linux kernal sup-
porting an operating system. Prior to June 2016, the
stable released Docker engine software components
for Windows and Mac OS X required an addi-
tional thin virtual machine (VM) layer, managed by
VirtualBox (www.virtualbox.org), to pass container
commands to a Linux VM environment that supports
containers. The VM layer added a slight performance
loss (approximately 5% in run time), and it created ex-
tra Docker Machine configuration and management
steps often not familiar to general users. As of June
2016, new (version 1.10 + beta and beyond) versions of
the Docker engine for Windows and Mac OS X have
bypassed the requirement of a Linux VM, completely
discarding Virtualbox and all local Docker Machine
management and VM configuration steps. Docker
containers now run natively on Windows and Mac

1131AMERICAN METEOROLOGICAL SOCIETY |JUNE 2017

http://www.docker.com
https://aws.amazon.com/
http://www.virtualbox.org

OS X platforms, eliminating the slight performance
penalty of VMs and delivering container commands
to native Windows and Mac OS X kernels. Docker
continues to build upon this new beta software for the
purposes of incorporating the same native features
across Linux, Windows, and Mac OS X.

A SET OF CONTAINERS FOR NUMERICAL
WEATHER PREDICTION. The Docker contain-
ers described above have been implemented so that a
user can easily configure and complete a WRF run. An
example deployment of the containers is summarized
in the schematic in Fig. 1. The Docker-WRF container
also includes the WRF and the WRF Preprocessing
System (WPS) to ensure software version consistency
and compatibility. A separate container with the Na-
tional Center for Atmospheric Research (NCAR)
Command Language (NCL; www.ncl.ucar.edu) plot-
ting scripts is also implemented. Easy run-time con-
figuration is provided by external access to the WPS
and WRF namelists on the local file system. Output
and namelists (to record provenance) are written to the
local file system, and additional metadata can be easily
included. Prebuilt data containers (including WPS and
WRF namelists) for specific simulation periods and
regions are currently available in open repositories. In
that case the local folders for the namelist, input files,
and static geographic (GEOG) data are unnecessary.
Containers for acquiring input data, archiving output,
and sharing output are under development in col-
laboration with several universities under the National

Science Foundation (NSF)-funded Big Weather Web
project (http://bigweatherweb.org).

The WPS–WRF container currently holds the
WPS and WRF code and the prebuilt binary ex-
ecutables (applications). The container includes
executables to create domains, populate files with
geographical and land surface data, interpolate input
meteorological data to the WRF computational grid,
and run the WRF to produce a simulation or forecast.
GNU compilers and all dependencies are included.
A user launches the container with command line
options for recompiling the code and executing the
various WPS and WRF executables. It is simple for
users who want to make code modifications to enter
the container and make changes before recompiling,
or to recompile within the container before exiting
and executing WRF runs from the outside.

Figure 1 is an example of one possible workflow.
It is easily scripted or run from the command line.
The intent is for users to be able to deploy any num-
ber of the containers and to substitute their own at
any step in the workflow. For example we can imag-
ine that a user may want to introduce a different and
more sophisticated postprocessing approach that al-
lows for analysis supporting a physical process study.
That new container would be deployed in exactly
the same way as long as it only needs access to the
WRF output files. The results would be archived or
shared in the same way, and the new container can
be uploaded to the repository for community use
and reproducibility.

Fig. 1. Schematic illustrating an example deployment of the WPS and WRF in a Docker container. Green
folders denote files on a local file system that are easily made available to the containers or a local user. This
example uses GFS output files for WRF initial conditions and lateral boundary conditions. The containers (blue)
interact with the local file system along the paths shown with arrows. Output and metadata can be stored and
served with local resources, or in a hosted computing and storage environment (the cloud). Data can be served
in either case with help from, e.g., the Geode Systems’s Repository for Archiving and Managing Diverse Data
(RAMADDA) or Unidata’s Thematic Real-Time Environmental Distributed Data Services (THREDDS) software.

1132 | JUNE 2017

http://www.ncl.ucar.edu
http://bigweatherweb.org

In the spirit of a community and open-source effort,
users can contribute useful containers so that others
can reproduce results or address other scientific ques-
tions with similar tools. The question a researcher of-
ten faces, of developing his or her own code or trying to
adapt and port code developed by others, will go away
in many cases because no porting effort is required.

Source codes for the model and ancillary systems,
the containers, and datasets (e.g., the geography data
needed to design WRF domains) are managed in
version-controlled source repositories, which allow
continuous integration and unit testing through the
chain of source commits to Docker-build image gen-
eration. We chose GitHub (www.github.com), but we
could have equally chosen another repository host,
such as Bitbucket (www.bitbucket.org) or GitLab
(https://gitlab.com). The GitHub repositories are for
developers, or for researchers who want to rebuild
containers to address specific scientific questions.
When a project on GitHub is executed to produce
a Docker image, the resulting image is pushed to
Docker Hub, which manages Git repositories for
Docker images. We could have equally chosen an
Amazon or Google registry service for hosting the
Docker images. A user who is not interested in de-
veloping (e.g., changing the WRF code or analysis
tools) can simply pull images and use them to run
containers with any necessary run-time input files
(namelists, gridded data, etc.). Keeping all known
fixes and build environments updated, patched,
and tested through a quality assurance process via
a core development team, including code commits
to a GitHub repository and pulls from a Docker
Hub image repository, guarantees software integrity
in the launch environment for model results to be
replicated, or queried, for future studies.

Collaboration on research, which may or may not
require code changes, is easily enabled via Github,
Docker Hub, and the reproducibility properties
inherent to working in containers. Collaborators
can maintain a repository with version control on
the code and container. Information and links on
how to obtain the source for the containers, or the
images, on open GitHub and Docker Hub reposito-
ries are given in the resources section at the end of
this paper. The version control system ensures that
bit-perfect results can be obtained across native OS
platforms, and that users are accessing an identical
code base as required. All collaborators in a group
can be sure they are using identical codes and even
binaries, providing unambiguous interpretation of
quantitative analysis of output from the model or a
set of analysis tools.

NUMERICAL AND PERFORMANCE RE-
PRODUCIBILITY. One of the primary reasons
that NWP research has historically been numeri-
cally nonreproducible is that different computer
architectures and environments perform math-
ematical operations differently. Differences can
be greater when parallel operations are included.
First, different chips have different binary trunca-
tion, leading to different effects of round-off error.
Second, compilers sometimes reorder operations
in attempts to speed computation; the reordering
depends on the compiler brand, version, and level of
optimization. Third, unless carefully implemented,
parallel operations may not be performed in the
order intended. Often this is not a requirement, but
truncation guarantees that some computations are
not reproducible when the order of a parallel com-
putation is not enforced. For example, the result of
an average depends on the precision in the sum and
division, and in which order they are performed.
Thomas et al. (2002) demonstrate the effect of com-
piler optimization and parallel topology on NWP,
and Baker et al. (2015) show how the lack of expected
numerical uncertainty can indicate deficient code
quality. Experiments described here test uncertainty
introduced by different hardware and operating
systems, parallel topology, and compiler options.

A computationally inexpensive WRF simulation
of Hurricane Sandy is the basis for experimentation.
The simulation is on a single computational 50 × 50
horizontal domain with Δx = 40 km and 60 vertical
levels. Initial and boundary conditions are inter-
polated from National Centers for Environmental
Prediction (NCEP)’s Global Forecast System (GFS).
Twelve-hour simulations are initialized at 1200 UTC
27 October 2012. Details of the complete subgrid and
forcing schemes (known as “physics”) are unimport-
ant here, but they do represent a reasonable set with
components widely found in the literature. This
computationally inexpensive simulation serves to
illustrate the capability. A plot of total precipitation ac-
cumulated over the 12-h simulation, shown in Fig. 2,
is also useful to see the computational domain. The
very same container demonstrated here can be trivi-
ally used to execute other WRF simulations simply
by changing the input data and namelists.

The Sandy container simulation has been tested
on dozens of different computers with a variety of
hardware and operating systems. Table 1 shows a
small representative sample, including common
Mac and Linux platforms. It also includes resources
available on Amazon Elastic Compute Cloud (EC2)
and Packet’s (www.packet.net) Tiny Atom cloud

1133AMERICAN METEOROLOGICAL SOCIETY |JUNE 2017

http://www.github.com
http://www.bitbucket.org
https://gitlab.com
http://www.packet.net

computing infrastructure. Successful deployment and
testing is far more extensive than shown in Table 1.

In each case, the same container is deployed and
executed. Hourly WRF output files are saved on a
user’s file system by externally linking to the WRF
output directory within the container’s file system.
An arbitrary platform is chosen as a reference, which
serves as comparison for all of the other test deploy-
ments. A deployment in Mac OS X 10.10.5 (Yosemite),
with an Intel Xeon E5 on a Mac Pro, serves as the ref-
erence here. Free GNU compilers—namely, GFortran
and GNU Compiler Collection (GCC)—are part
of the container for building the WRF executable.
Because the compiler and compiler flags are the same,
the binary WRF executable is identical regardless of
what computer compiles it. But it is not necessarily
obvious that the same binary will produce the same
output on different hardware.

Numerical differences between the reference deploy-
ment and any other deployment are simple to compute
with any variety of binary difference utility, such as the
UNIX cmp or checksum, or the netCDF differencing
operator ncdiff. In all testing so far and regardless of
the computing system, all of the WRF output files from
the same configuration are bitwise identical.

A container that builds the WRF internally, via the
GNU compilers that are inside the container, can be
equally deployed on any platform that supports con-
tainers. Experiments have shown that those results

are also identical to the output from prebuilt binary
executables deployed as above.

Container deployment on individual servers,
regardless of the number of CPUs or computational
cores, also yields identical results. Both the container
technology and that the WRF code is sufficiently
mature to make the same calculations on any parallel
topology are responsible for that result. Numerical
reproducibility across different parallel topologies
is nontrivial for such a complex code (e.g., Thomas
et al. 2002), and the WRF developers deserve credit.
We have not tested all possible configurations of the
WRF, which number in the tens of thousands, so we
cannot guarantee that all configurations are robust
to differences in parallel topologies.

Results from the cross-platform testing here show
that numerical reproducibility is easy to achieve with
containers, within some easily controlled limitations
that are discussed next. By wrapping all dependencies
in a container, researchers working on disparate lo-
cal hardware, OS, and compiler resources can obtain
numerically identical results.

Containers are an attractive upgrade from vir-
tual machines because the computational overhead
is significantly less. In an extensive analysis, Felter
et al. (2014) found that configured properly, Docker
containers surpassed kernel-based virtual machines
(KVM) in every performance test. Computational and
memory performance overhead is very small, and any
performance penalty is on I/O and interactions with
the operating system. Although OS interactions are
negligible for NWP models, I/O can be a limitation.
Fortunately the overhead is dependent on the number
of I/O operations, not the I/O size. In many relevant
problems, the WRF does not output many files, but it
can output large files for large computational domains.

Fig. 2. Simulated 12-h total precipitation from the
demonstration Hurricane Sandy simulation, valid 0000
UTC 28 Oct 2012.

Table 1. Representative sample of container test
platforms for the Hurricane Sandy simulations.
AMD: Advanced Micro Devices Inc. RHEL = Red Hat
Enterprise Linux.

OS Chip/CPU Cores

Mac OS X 10.10.5 Intel Xeon E5 6

Mac OS X 10.9.5 Intel Core i7 2

Ubuntu 14.04 AMD Opteron 6320 16

Ubuntu 14.04 Intel Xeon E5 16

RHEL Intel Xeon X5550 8

Ubuntu 14.04a Intel Xeon E5-2666, version 3 32

Ubuntu 14.04b Intel Atom C2550 4
a	Deployment on an Amazon EC2 resource; the others are on a

laptop or desktop/server.
b	Deployment on a Packet Tiny Atom resource.

1134 | JUNE 2017

In tests on the Sandy simulation we also find
minimal performance impact from running within
the Docker container. Identical binary executables were
run four times on the same machine both inside the
container and outside the container on a Linux server.
Results showed an average 3.6% overhead on wall-clock
time when running in the container. The overhead will
be greater for operating systems requiring a VM layer
(e.g., Windows) with older versions of Docker.

This Sandy simulation requires relatively few
floating-point operations, compared to model execu-
tions in typical research and operational NWP today.
It is parallelized on shared-memory computer servers.
On a MacBook Air as described in the second line of
Table 1, the sequence of pulling the container from the
repository, running the WRF, and making plots takes
approximately 4 min. The example demonstrates the
potential for classroom utility.

Performance reproducibility can be contrasted
with the numerical reproducibility examined above.
Performance reproducibility deals with the issue of
obtaining the same performance (run time, through-
put, latency, etc.) across executions. Reproducing
performance is important for gaining accurate
evaluations of that performance. For example, when
performance improvements to the WRF code base
are implemented, evaluating improvements is diffi-
cult because it is difficult to account for the changes
in hardware over time. In Jimenez et al. (2016),
the authors introduce a framework to control the

cross-platform variability arising from changes in
CPU architectures and generations. This technique
leverages Linux’s cgroups technology (an underlying
component of Docker), which allows a user to specify
the CPU bandwidth associated with a container. For
example, one can constrain a WRF container to have
50% the capacity of a CPU core (instead of 100% of
the bandwidth available, the default behavior). With
this feature, one can find the amount of CPU capac-
ity that emulates the behavior of a slower (usually
older) machine. Table 2 shows the results of applying
this technique to reproduce the performance of the
Hurricane Sandy simulation on multiple platforms.

In Table 2, machine issdm-6 is the base system
where a reference simulation was executed. When
this same simulation is reexecuted in other (newer)
machines, an inherent speedup in run time results
from the improvements in newer CPU technology.
For example, machine dwill improves the run time
of the original execution by approximately 2.8 times.
Using the CPU calibration techniques introduced in
Jimenez et al. (2016), which leverage the OS-level vir-
tualization in containers, we carefully constrain the
CPU of the machines and reexecute the simulation.
As described in Jimenez et al. (2016), the limits on
CPU are obtained by executing a battery of micro-
benchmarks that characterize the CPU performance
of a base system (issdm-6 in this case). Benchmark
results are used to calibrate the target machine (for
example dwill) by finding the percentage of CPU

Table 2. Run time of container executions for the Hurricane Sandy simulations on multiple machines.
The normalized run time is the ratio between the reference system issdm-6 and the platform identi-
fied in the particular row. In the CPU limit column, 100% denotes no limitations imposed on the CPU,
i.e., the simulation had all the CPU capacity from the system.

Machine identification CPU model Run time (s) CPU limit (%) Normalized

issdm-6 AMD Opteron 2212 1251.697012 100 1.000000

packet0 Intel Atom C2550 1173.848259 100 1.066319

packet0 1265.819255 99 0.988843

nibbler Intel i7 930 571.163721 100 2.191485

nibbler 1425.671584 63 0.877970

dwill Intel i5 2400 442.803647 100 2.826754

dwill 1244.367972 38 1.005890

rackform4 AMD Opteron 6320 689.738835 100 1.814741

rackform4 1560.987534 62 0.801862

pl2 Intel E5-2630 V2 425.031332 100 2.944952

pl2 1431.383836 48 0.874466

node Intel E5-2630 V3 396.553413 100 3.156440

node 1564.413064 56 0.800106

1135AMERICAN METEOROLOGICAL SOCIETY |JUNE 2017

capacity it needs to execute the same list of micro-
benchmarks and emulate the performance of the base
system. In Table 2, the CPU limits column denotes
the tuned amount of CPU capacity that the machine
was given for a simulation, with the goal of emulating
the performance behavior of the base machine. For
the case of dwill, the limitations on CPU bandwidth
(38% of CPU capacity) bring the runtime down (in-
troduce an artificial slowdown), closely resembling
the original performance.

Performance reproducibility also enables planning
for computing needs. This is becoming more important
as cloud computing becomes more prevalent. Com-
mercial cloud vendors such as Amazon Web Services,
Packet, Google Kubernetes (https://kubernetes.io), and
Microsoft Azure (https://azure.microsoft.com/en-us/)
generally support container deployment. A researcher
or company writing a proposal that may include a
need for cloud computing resources can get accurate
estimates of performance and expect it to hold onto
the variety of hardware offered by vendors.

This section presented a subset of results from runs
on many different machines. Although parallel WRF
runs have been part of the testing, they are limited so far
to single shared-memory nodes. Distributed (multiple
nodes or servers) message passing interface (MPI) for
WRF within Docker containers is under investigation.
Progress depends on the MPI-based WRF application
having awareness of other linked WRF executables in
other containers that may be part of a collective con-
tainer group. Currently MPI does not have that capabil-
ity, although Docker containers can be made aware of
parallel containers within a collective.

UNCERTAINTY QUANTIFICATION. A
corollary to numerical reproducibility is that a
precise quantification of uncertainty from other
factors is enabled. The reproducibility means that
by leveraging available computer power wherever it
is available, hundreds or thousands of simulations
can be produced with perturbations introduced in
initial conditions or model configurations. Such an
ensemble would reflect only the perturbations given
to it and would not be contaminated by random
or systematic errors introduced from traditional
computing platforms or changing compiler options.
Leaving ensemble investigations for future work, here
we examine the effects of compiler optimization. The
effects we report here are certain to be reproducible
across many computing platforms.

A simple pair of simulations illustrates the effects
of compiler optimization on numerical predictions.
The basic Fortran optimization f lag for the GNU

compiler was successively set to levels from 0 to 3,
which is a typical range for compilers. Setting -O0
forces the compiler to avoid optimizing calculations
and memory access, and setting -O3 allows the com-
piler a number of relatively aggressive optimization
strategies. Those may change the order of operations,
for example. Different compilers introduce different
optimizations at that level. We found in this specific
case that levels 0–2 led to a WRF executable that pro-
duced identical results, but level 3 produces differ-
ences. One of the optimizations introduced at level 3
has an effect on output, but it is beyond the scope of
this work to determine exactly what that is. Instead,
we simply compare the output between levels 0 and 3.

A histogram of 3D gridpoint differences between the
two Sandy simulations, after 12 h of simulation time,
shows that meaningful differences are present (Fig. 3).
Although the majority of differences are small, the dis-
tribution tails indicate the onset of local perturbations.
We know those perturbations will grow and propagate
upscale because the model equations are chaotic (e.g.,
Lorenz 1969). We can expect that higher-resolution
grids, subject to more small-scale nonlinear processes,
will lead to greater rates of growth of the differences be-
tween the two simulations. Grids covering larger regions
will be subject to greater rates of growth too, because the
dynamical interactions cover a broader range of scales.

DISCUSSION. This article presents a set of open-
source Docker containers intended to provide a basis
for a WRF execution and ancillary workflow compo-
nents. As shown above, the container infrastructure
offers many advantages for enabling research and
education to be reproducible and more collaborative.
A few more discussion points are summarized here.

The containers offer numerical and performance
reproducibility in an easily—and rapidly—deployable
framework that can enable collaborative research and
education. In the earlier section on uncertainty quanti-
fication, we demonstrated the effects of compiler flags.
Many NWP experiments reported in the literature
focus on small differences between simulations, which
are interpreted as physically relevant signals to be di-
agnosed. Although the majority of the differences may
be physically relevant, the reproducibility provided by
containers offers certainty. The extension is that uncer-
tainty from sources besides numerical truncation can
be isolated. To further understand these issues, a study
evaluating whether compiler optimizations, hardware
variations, and parallel topologies lead to random-like
or systematic errors would be helpful.

The containers enable the same kind of collabora-
tive environment as a single community resource, but

1136 | JUNE 2017

https://kubernetes.io
https://azure.microsoft.com/en-us/

they make use of any resources locally available to
individual researchers. In general, identical compil-
ers and operating systems are not available to col-
laborating researchers, except when all participants
are working on the same community computing
resource and in the same environment. Numerical
reproducibility even within collaborating groups is
not straightforward. With containers, collaboration
among groups of scientists that need to work on the
same code, or produce parallel simulations with only
small variations, is immediately enabled. Examples
include ensemble forecasts run on distributed and
inhomogeneous platforms by multiple people in
different locations, model developers from different
institutions who are working to improve a physics
scheme, or researchers collaborating to better quantify
an energy budget within the model.

Educational activities clearly benefit from con-
tainers. Hands-on exercises are a valuable part of
any student learning experience. Containers give
instructors control over what parts of the modeling
system students will experience directly. For example,
the WRF could be run initially as a “black box” and
then intermediate steps be made accessible as students
work through exercises. Software containers help
standardize modules that can be easily shared among
teaching colleagues with vastly different technology
environments.

The broader science community has recently been
placing a greater emphasis on reproducible research,

and containers offer a key step toward reproducible
NWP research. Published papers can cite a specific
container version used in one part of a research flow
(e.g., the model, set of analysis tools, or a data contain-
er with initialization files). As long as that container
revision exists and is accessible, research consumers
can reproduce the results. This provides not only an
unprecedented level of openness in NWP research but
also an easier way for researchers to build on published
results. The resources in the next section offer one
component of the suite of tools needed to enable fully
reproducible science. Metadata and analysis methods
also need to be tracked and made available. Tools for
that exist, and they should be adopted by the NWP
community as we go forward.

RESOURCES. This section provides links to online
content, including documentation and open reposito-
ries for WRF-based containers. A basic knowledge of
repositories, and access to GitHub and Docker Hub
public repositories, are needed to pull source code or
container images from the repositories. The following
is a list of resources:

•	 Docker-WRF project home page: www.ral.ucar
.edu/projects/ncar-docker-wrf

•	 Slack channel (user discussion forum): https://
ncar-dockerwrf.slack.com/

•	 WRF–WPS container image: https://hub.docker
.com/r/bigwxwrf/ncar-wrf/

Fig. 3. Differences between gridpoint values of two Sandy simulations: (a) temperature, (b) zonal wind, and (c)
precipitation valid 0000 UTC 28 Oct 2012 after 12 h. WRF executables differ only in a single compiler optimiza-
tion flag. All grid points in the 3D volume are included.

1137AMERICAN METEOROLOGICAL SOCIETY |JUNE 2017

http://www.ral.ucar.edu/projects/ncar-docker-wrf
http://www.ral.ucar.edu/projects/ncar-docker-wrf
https://ncar-dockerwrf.slack.com/
https://ncar-dockerwrf.slack.com/
https://hub.docker.com/r/bigwxwrf/ncar-wrf/
https://hub.docker.com/r/bigwxwrf/ncar-wrf/

•	 Static geography data container image: https://hub
.docker.com/r/bigwxwrf/ncar-wpsgeog/

•	 Input data container for Sandy simution: https://
hub.docker.com/r/bigwxwrf/ncar-wrfinputsandy/

•	 Input data container for Katr ina simula-
tion: https://hub.docker.com/r/bigwxwrf/ncar
-wrfinputkatrina/

•	 NCL script container for producing images:
https://hub.docker.com/r/bigwxwrf/ncar-ncl/

•	 GitHub repository Docker files and scripts to build
images: https://github.com/NCAR/container-wrf

ACKNOWLEDGMENTS. Partial funding for this
work where provided by National Science Foundation
Awards ATM0753581/M0856145 to NCAR and 1450488 to
the University of California, Santa Cruz. Sandia National
Laboratories and LANL–UCSC Institute for Scalable Scien-
tific Data Management (ISSDM) also contributed funding.
Work at the University of North Dakota was funded by
NSF ACI-1450168 (PI Gretchen Mullendore) and the North
Dakota Space Grant Consortium. Cindy Halley-Gotway
at NCAR produced the schematic in Fig. 1. Amazon Web
Services is acknowledged for providing an educational
resource grant used for some of these investigations.

REFERENCES
Baker, A. H., and Coauthors, 2015: A new ensemble-

based consistency test for the Community Earth
System Model (pyCECTv1.0). Geosci. Model Dev., 8,
2829–2840, doi:10.5194/gmd-8-2829-2015.

Felter, W., A. Ferreira, R. Rajamony, and J. Rubio, 2014:
An updated performance comparison of virtual
machines and Linux containers. IBM Research Rep.
RC25482, 12 pp. [Available online at http://domino
.research.ibm.com/library/cyberdig.nsf/papers/092
9052195DD819C85257D2300681E7B/$File/rc25482
.pdf.]

Jimenez, I., C. Maltzahn, J. Lofstead, A. Moody,
K. Mohror, R. Arpaci-Dusseau, and A. Arpaci-
Dusseau, 2016: Characterizing and reducing cross-
platform performance variability using OS-lev-
el virtualization. Proc. 2016 Int. Parallel and
Distributed Processing Symp. Workshops (IPDPSW
2016), Chicago, IL, IEEE, 1077–1080, doi:10.1109
/IPDPSW.2016.97.

Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. At-
mos. Sci., 20, 130–141, doi:10.1175/1520-0469(1963)020
<0130:DNF>2.0.CO;2.

—, 1969: The predictability of a f low which pos-
sesses many scales of motion. Tellus, 21A, 289–307,
doi:10.3402/tellusa.v21i3.10086.

Skamarock, W. C., and Coauthors, 2008: A descrip-
tion of the Advanced Research WRF version 3.
NCAR Tech. Note NCAR/TN-475+STR, 113 pp.,
doi:10.5065/D68S4MVH.

Thomas, S., J. P. Hacker, M. Desgagné, and R. B. Stull,
2002: An ensemble analysis of forecast errors related
to floating point performance. Wea. Forecasting, 17,
898–906, doi:10.1175/1520-0434(2002)017<0898:AE
AOFE>2.0.CO;2.

1138 | JUNE 2017

https://hub.docker.com/r/bigwxwrf/ncar-wpsgeog/
https://hub.docker.com/r/bigwxwrf/ncar-wpsgeog/
https://hub.docker.com/r/bigwxwrf/ncar-wrfinputsandy/
https://hub.docker.com/r/bigwxwrf/ncar-wrfinputsandy/
https://hub.docker.com/r/bigwxwrf/ncar-wrfinputkatrina/
https://hub.docker.com/r/bigwxwrf/ncar-wrfinputkatrina/
https://hub.docker.com/r/bigwxwrf/ncar-ncl/
https://github.com/NCAR/container-wrf
http://dx.doi.org/10.5194/gmd-8-2829-2015
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://dx.doi.org/10.1109/IPDPSW.2016.97
http://dx.doi.org/10.1109/IPDPSW.2016.97
http://dx.doi.org/10.1175/1520-0469(1963)020%3C0130%3ADNF%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0469(1963)020%3C0130%3ADNF%3E2.0.CO%3B2
http://dx.doi.org/10.3402/tellusa.v21i3.10086
http://dx.doi.org/10.5065/D68S4MVH
http://dx.doi.org/10.1175/1520-0434(2002)017%3C0898%3AAEAOFE%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0434(2002)017%3C0898%3AAEAOFE%3E2.0.CO%3B2

