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Numerical models are a cornerstone of weather 
prediction today, and they support a broad range 
of weather research. Studies quantifying the 

ability of numerical models to predict the atmospher-
ic state, and to simulate atmospheric phenomena, 
form two key lines of inquiry. By establishing model 
fidelity to the atmosphere, those studies also provide 
a basis for broader scientific inquiry with models. The 
use of numerical models in atmospheric research has 
become ubiquitous over the past few decades. Areas of 
research include physical process identification and 
analysis, atmospheric predictability, and predictions 
of future climates, among others.

Extensive use of numerical models in research 
demands educating students for diligent applica-
tion of these large and complex codes. Beyond basic 
theory and best practices in numerical methods, the 
opportunities for mistakes are vast. While mistakes 
can provide positive learning experiences, they can 

also produce misleading results and consequently 
incorrect interpretation.

The purpose of this article is to describe the imple-
mentation of software containers for numerical weather 
prediction (NWP) research and education. Container 
technology has profound implications for education 
and research in numerical weather prediction. Con-
tainers not only enable reproducibility, but they greatly 
lower barriers for accessing cutting-edge NWP codes. 
The tools discussed herein, such as source code reposi-
tories and containers, may be relatively new for many 
readers. These tools are presented in detail to fully de-
scribe the procedures used. But a deep understanding is 
not needed. The containers presented here have already 
been tested successfully by multiple users, primarily 
from universities. The technical details can remain 
mostly transparent for new users; the power of these 
tools can then be further realized by users (including 
students and educators) who become more advanced.
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The Weather Research and Forecasting (WRF) 
Model (Skamarock et al. 2008) is a state-of-the-art 
NWP model for operations and research, with users 
numbering in the tens of thousands. It was engineered 
to be portable and easy to install on a limited yet com-
mon set of platforms, with code that is both complex 
and extensive (over 1.5 million lines). It has many 
dependencies on external software packages [e.g., for 
input/output (I/O), parallel communications, and data 
compression] that are not trivial to satisfy; compilation 
and execution can be an intensive effort for beginning 
users who lack support from experienced system 
administrators. The WRF help desk requests are 
dominated by new users reporting difficulty compil-
ing the model. A new version has been released twice 
annually for the last 15 years, and users who want to 
update and rebuild may face repeated challenges with 
each new set of code.

Running the model can also be difficult for new 
users. Individual steps to generate computational 
grids, import initialization data, produce initial and 
boundary conditions, and run the model can be 
daunting. Those steps can be scripted into a workflow 
that can range from simple to complex, depending 
on the application. Scripted workflows have been 
developed by countless individuals and groups over 
the last decade; the proverbial “wheel” has been rein-
vented countless times, especially when considering 
the number of individuals who have written analysis 
tools to compute the same diagnostics on output.

Implementation of experiential learning with 
numerical weather prediction codes is especially 
challenging for users in the classroom. Some universi-
ties are able to provide hands-on exercises due to a 
combination of sufficient laboratory resources and, 
most importantly, staff (faculty and support) with a 
sufficient knowledge base in modeling and informa-
tion technology. But even those universities with 

sufficient knowledge struggle with continual updates 
to compilers, operating systems, and model code.

Results from software that implements floating-
point operations are generally not numerically re-
producible. Examples of the impacts on numerical 
weather models can be found in Thomas et al. (2002) 
and Baker et al. (2015). A consequence is that NWP 
research is not reproducible.

Numerical uncertainty can lead to misleading 
results. The chaotic nature of the models means that 
small perturbations, perhaps arising from truncation 
errors, can organize and grow into features that are 
tempting to interpret as an important response to a 
change in input or model formulation. The classic 
paper by Lorenz (1963) is an example of how numeri-
cal truncation can lead to chaotic results, and in that 
case it was truncation that led to Lorenz’s discovery 
of chaos. Many times the differences that appear 
meaningful cannot be reproduced, or they simply 
cannot be distinguished from chance.

Finally, collaboration among researchers working 
on different computing platforms can be cumber-
some. It often relies on careful manual code manage-
ment to make sure collaborators are working with the 
same code. Configuration of a complex model must 
also be done carefully—and still the opportunity to 
make mistakes is always present.

Software containers, which are becoming an es-
sential part of modern software development and 
deployment, offer a path for mitigating or eliminating 
many of the problems in NWP research and educa-
tion that are described above. In the remaining text, 
we describe how and show some examples. First, 
software containers are reviewed. Then a set of con-
tainers for initializing, running, and analyzing results 
from the WRF Model are presented. Numerical and 
performance reproducibility are demonstrated with 
a simulation of Hurricane Sandy, leading to a clear 
way to perform uncertainty quantification in the 
following section. The discussion section  concludes 
with some analysis of the implications for container 
technology in numerical simulation and prediction. 
In the final section, links to online content and open 
repositories are provided.

SOFTWARE CONTAINERS. A container is 
a software-based packaging and distribution tool 
that collects all elements and dependencies of a 
Linux-based application. Containers store the run-
time environment together with one or more ap-
plications for ease of transportation, installation, 
and execution across a variety of operating systems 
(Linux, Mac, Windows). Containers avoid any need 
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for recompilation or complex virtual machine en-
vironments. Because they house only the necessary 
components to execute an application, they are much 
simpler and smaller than virtual machines running 
complete operating systems. Containers allow an 
application (or suite of applications) to be developed, 
tested, and executed in such a way that when relocated 
to an alternative compute environment, the execution 
and results of the application workflow are consistent 
and repeatable. Modern container tools have origins 
based on Linux containers that have long been part 
of Linux kernels. They are now evolving toward a 
standards-based “engine” that allows portability and 
compatibility despite changes to underlying compute 
systems, networks, or operating systems.

An image, or base image, is a prebuilt set of ap-
plication elements—binaries, libraries, configuration 
files, and any ancillary tools—required to provide an 
entire execution environment for the application to 
function. An image can be developed over time by 
being tagged and maintained with version control 
methods, and downloaded from official repositories 
as a basis for developer or operational use. An ap-
plication image may be maintained by a known set 
of developers for the purposes of official verification 
at known version levels, and contain official patches 
and security updates.

Launching a particular instance of an application 
image into a run-time state produces a container 
running that application. The container is executing 
the entire environment of the application, without 
requiring the host operating system to have any soft-
ware installed other than the container engine itself.

Linux containers have been used in cloud services 
for over 10 years to provide stability, scalability, and 
a more secure, isolated run-time environment than 
is often possible on commonly used computing plat-
forms. Today’s container engines have defined an 
emerging standard that can execute prebuilt codes 
within every modern operating system (OS), includ-
ing Windows, Mac OS X, and Linux. Containerized 
applications provide a well-documented command set 
that users can implement quickly without regard to 
a destination OS. Software deployment methods are 
simple and reduce the level of introduction needed 
to bring new users or developers into a collaborative 
group.

Industry experts believe containers will continue 
to be prevalent, with accelerating adoption due to 
best-fit scaling on desktops and laptops. Commercial 
and research cloud platforms are providing greater 
off-the-shelf server resources as hardware prices 
either fall or computing power per dollar spent rises. 

Container technology is a natural fit to commer-
cial cloud services; a user can immediately deploy 
software without any knowledge of the underlying 
hardware or OS. Once software tools are in contain-
ers, users have easy access to vast resources of cloud 
computing, which can be exploited when conditions 
demand.

We chose Docker (www.docker.com) as the con-
tainer engine for this work, but others are available. 
Docker containers are user friendly, already widely 
adopted across the software industry, and allow us-
ers to execute complex precompiled scientific codes 
anywhere. The combination of all these features 
enables users to focus on running numerically re-
producible scientific analysis and to reduce start-up 
times. Within containers, software configurations 
can be easily integrated into arbitrary workflows that 
assemble trivially portable modules. The containers 
may use differing datasets assigned at launch and 
may be built on demand. The resulting output can 
be stored with metadata using local storage; proven 
distributed storage technologies; cloud storage, such 
as Amazon Simple Storage Service (Amazon S3) and 
Amazon Glacier offered by Amazon Web Services 
(https://aws.amazon.com/); or similar resources.

The open-source community and the rapid adop-
tion of Docker (and similar) container technologies 
have boomed since 2012, with entire companies, such 
as Uber, Netflix, Goldman Sachs, and others, leverag-
ing containers across hybrid (on premise and cloud) 
platforms for dynamic scalability that can be based 
on users (or events) worldwide. Frameworks for man-
aging complex and multiple instances of containers 
are evolving to provide streamlined tools that allow 
flexibility, verification, reporting, and coordination.

Containers internally run a very lightweight Linux 
environment, as opposed to a full Linux kernal sup-
porting an operating system. Prior to June 2016, the 
stable released Docker engine software components 
for Windows and Mac OS X required an addi-
tional thin virtual machine (VM) layer, managed by 
VirtualBox (www.virtualbox.org), to pass container 
commands to a Linux VM environment that supports 
containers. The VM layer added a slight performance 
loss (approximately 5% in run time), and it created ex-
tra Docker Machine configuration and management 
steps often not familiar to general users. As of June 
2016, new (version 1.10 + beta and beyond) versions of 
the Docker engine for Windows and Mac OS X have 
bypassed the requirement of a Linux VM, completely 
discarding Virtualbox and all local Docker Machine 
management and VM configuration steps. Docker 
containers now run natively on Windows and Mac 
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OS X platforms, eliminating the slight performance 
penalty of VMs and delivering container commands 
to native Windows and Mac OS X kernels. Docker 
continues to build upon this new beta software for the 
purposes of incorporating the same native features 
across Linux, Windows, and Mac OS X.

A SET OF CONTAINERS FOR NUMERICAL 
WEATHER PREDICTION. The Docker contain-
ers described above have been implemented so that a 
user can easily configure and complete a WRF run. An 
example deployment of the containers is summarized 
in the schematic in Fig. 1. The Docker-WRF container 
also includes the WRF and the WRF Preprocessing 
System (WPS) to ensure software version consistency 
and compatibility. A separate container with the Na-
tional Center for Atmospheric Research (NCAR) 
Command Language (NCL; www.ncl.ucar.edu) plot-
ting scripts is also implemented. Easy run-time con-
figuration is provided by external access to the WPS 
and WRF namelists on the local file system. Output 
and namelists (to record provenance) are written to the 
local file system, and additional metadata can be easily 
included. Prebuilt data containers (including WPS and 
WRF namelists) for specific simulation periods and 
regions are currently available in open repositories. In 
that case the local folders for the namelist, input files, 
and static geographic (GEOG) data are unnecessary. 
Containers for acquiring input data, archiving output, 
and sharing output are under development in col-
laboration with several universities under the National 

Science Foundation (NSF)-funded Big Weather Web 
project (http://bigweatherweb.org).

The WPS–WRF container currently holds the 
WPS and WRF code and the prebuilt binary ex-
ecutables (applications). The container includes 
executables to create domains, populate files with 
geographical and land surface data, interpolate input 
meteorological data to the WRF computational grid, 
and run the WRF to produce a simulation or forecast. 
GNU compilers and all dependencies are included. 
A user launches the container with command line 
options for recompiling the code and executing the 
various WPS and WRF executables. It is simple for 
users who want to make code modifications to enter 
the container and make changes before recompiling, 
or to recompile within the container before exiting 
and executing WRF runs from the outside.

Figure 1 is an example of one possible workflow. 
It is easily scripted or run from the command line. 
The intent is for users to be able to deploy any num-
ber of the containers and to substitute their own at 
any step in the workflow. For example we can imag-
ine that a user may want to introduce a different and 
more sophisticated postprocessing approach that al-
lows for analysis supporting a physical process study. 
That new container would be deployed in exactly 
the same way as long as it only needs access to the 
WRF output files. The results would be archived or 
shared in the same way, and the new container can 
be uploaded to the repository for community use 
and reproducibility.

Fig. 1. Schematic illustrating an example deployment of the WPS and WRF in a Docker container. Green 
folders denote files on a local file system that are easily made available to the containers or a local user. This 
example uses GFS output files for WRF initial conditions and lateral boundary conditions. The containers (blue) 
interact with the local file system along the paths shown with arrows. Output and metadata can be stored and 
served with local resources, or in a hosted computing and storage environment (the cloud). Data can be served 
in either case with help from, e.g., the Geode Systems’s Repository for Archiving and Managing Diverse Data 
(RAMADDA) or Unidata’s Thematic Real-Time Environmental Distributed Data Services (THREDDS) software.
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In the spirit of a community and open-source effort, 
users can contribute useful containers so that others 
can reproduce results or address other scientific ques-
tions with similar tools. The question a researcher of-
ten faces, of developing his or her own code or trying to 
adapt and port code developed by others, will go away 
in many cases because no porting effort is required.

Source codes for the model and ancillary systems, 
the containers, and datasets (e.g., the geography data 
needed to design WRF domains) are managed in 
version-controlled source repositories, which allow 
continuous integration and unit testing through the 
chain of source commits to Docker-build image gen-
eration. We chose GitHub (www.github.com), but we 
could have equally chosen another repository host, 
such as Bitbucket (www.bitbucket.org) or GitLab 
(https://gitlab.com). The GitHub repositories are for 
developers, or for researchers who want to rebuild 
containers to address specific scientific questions. 
When a project on GitHub is executed to produce 
a Docker image, the resulting image is pushed to 
Docker Hub, which manages Git repositories for 
Docker images. We could have equally chosen an 
Amazon or Google registry service for hosting the 
Docker images. A user who is not interested in de-
veloping (e.g., changing the WRF code or analysis 
tools) can simply pull images and use them to run 
containers with any necessary run-time input files 
(namelists, gridded data, etc.). Keeping all known 
fixes and build environments updated, patched, 
and tested through a quality assurance process via 
a core development team, including code commits 
to a GitHub repository and pulls from a Docker 
Hub image repository, guarantees software integrity 
in the launch environment for model results to be 
replicated, or queried, for future studies.

Collaboration on research, which may or may not 
require code changes, is easily enabled via Github, 
Docker Hub, and the reproducibility properties 
inherent to working in containers. Collaborators 
can maintain a repository with version control on 
the code and container. Information and links on 
how to obtain the source for the containers, or the 
images, on open GitHub and Docker Hub reposito-
ries are given in the resources section at the end of 
this paper. The version control system ensures that 
bit-perfect results can be obtained across native OS 
platforms, and that users are accessing an identical 
code base as required. All collaborators in a group 
can be sure they are using identical codes and even 
binaries, providing unambiguous interpretation of 
quantitative analysis of output from the model or a 
set of analysis tools.

NUMERICAL AND PERFORMANCE RE-
PRODUCIBILITY. One of the primary reasons 
that NWP research has historically been numeri-
cally nonreproducible is that different computer 
architectures and environments perform math-
ematical operations differently. Differences can 
be greater when parallel operations are included. 
First, different chips have different binary trunca-
tion, leading to different effects of round-off error. 
Second, compilers sometimes reorder operations 
in attempts to speed computation; the reordering 
depends on the compiler brand, version, and level of 
optimization. Third, unless carefully implemented, 
parallel operations may not be performed in the 
order intended. Often this is not a requirement, but 
truncation guarantees that some computations are 
not reproducible when the order of a parallel com-
putation is not enforced. For example, the result of 
an average depends on the precision in the sum and 
division, and in which order they are performed. 
Thomas et al. (2002) demonstrate the effect of com-
piler optimization and parallel topology on NWP, 
and Baker et al. (2015) show how the lack of expected 
numerical uncertainty can indicate deficient code 
quality. Experiments described here test uncertainty 
introduced by different hardware and operating 
systems, parallel topology, and compiler options.

A computationally inexpensive WRF simulation 
of Hurricane Sandy is the basis for experimentation. 
The simulation is on a single computational 50 × 50 
horizontal domain with Δx = 40 km and 60 vertical 
levels. Initial and boundary conditions are inter-
polated from National Centers for Environmental 
Prediction (NCEP)’s Global Forecast System (GFS). 
Twelve-hour simulations are initialized at 1200 UTC 
27 October 2012. Details of the complete subgrid and 
forcing schemes (known as “physics”) are unimport-
ant here, but they do represent a reasonable set with 
components widely found in the literature. This 
computationally inexpensive simulation serves to 
illustrate the capability. A plot of total precipitation ac-
cumulated over the 12-h simulation, shown in Fig. 2, 
is also useful to see the computational domain. The 
very same container demonstrated here can be trivi-
ally used to execute other WRF simulations simply 
by changing the input data and namelists.

The Sandy container simulation has been tested 
on dozens of different computers with a variety of 
hardware and operating systems. Table 1 shows a 
small representative sample, including common 
Mac and Linux platforms. It also includes resources 
available on Amazon Elastic Compute Cloud (EC2) 
and Packet’s (www.packet.net) Tiny Atom cloud 

1133AMERICAN METEOROLOGICAL SOCIETY |JUNE 2017

http://www.github.com
http://www.bitbucket.org
https://gitlab.com
http://www.packet.net


computing infrastructure. Successful deployment and 
testing is far more extensive than shown in Table 1.

In each case, the same container is deployed and 
executed. Hourly WRF output files are saved on a 
user’s file system by externally linking to the WRF 
output directory within the container’s file system. 
An arbitrary platform is chosen as a reference, which 
serves as comparison for all of the other test deploy-
ments. A deployment in Mac OS X 10.10.5 (Yosemite), 
with an Intel Xeon E5 on a Mac Pro, serves as the ref-
erence here. Free GNU compilers—namely, GFortran 
and GNU Compiler Collection (GCC)—are part 
of the container for building the WRF executable. 
Because the compiler and compiler flags are the same, 
the binary WRF executable is identical regardless of 
what computer compiles it. But it is not necessarily 
obvious that the same binary will produce the same 
output on different hardware.

Numerical differences between the reference deploy-
ment and any other deployment are simple to compute 
with any variety of binary difference utility, such as the 
UNIX cmp or checksum, or the netCDF differencing 
operator ncdiff. In all testing so far and regardless of 
the computing system, all of the WRF output files from 
the same configuration are bitwise identical.

A container that builds the WRF internally, via the 
GNU compilers that are inside the container, can be 
equally deployed on any platform that supports con-
tainers. Experiments have shown that those results 

are also identical to the output from prebuilt binary 
executables deployed as above.

Container deployment on individual servers, 
regardless of the number of CPUs or computational 
cores, also yields identical results. Both the container 
technology and that the WRF code is sufficiently 
mature to make the same calculations on any parallel 
topology are responsible for that result. Numerical 
reproducibility across different parallel topologies 
is nontrivial for such a complex code (e.g., Thomas 
et al. 2002), and the WRF developers deserve credit. 
We have not tested all possible configurations of the 
WRF, which number in the tens of thousands, so we 
cannot guarantee that all configurations are robust 
to differences in parallel topologies.

Results from the cross-platform testing here show 
that numerical reproducibility is easy to achieve with 
containers, within some easily controlled limitations 
that are discussed next. By wrapping all dependencies 
in a container, researchers working on disparate lo-
cal hardware, OS, and compiler resources can obtain 
numerically identical results.

Containers are an attractive upgrade from vir-
tual machines because the computational overhead 
is significantly less. In an extensive analysis, Felter 
et al. (2014) found that configured properly, Docker 
containers surpassed kernel-based virtual machines 
(KVM) in every performance test. Computational and 
memory performance overhead is very small, and any 
performance penalty is on I/O and interactions with 
the operating system. Although OS interactions are 
negligible for NWP models, I/O can be a limitation. 
Fortunately the overhead is dependent on the number 
of I/O operations, not the I/O size. In many relevant 
problems, the WRF does not output many files, but it 
can output large files for large computational domains.

Fig. 2. Simulated 12-h total precipitation from the 
demonstration Hurricane Sandy simulation, valid 0000 
UTC 28 Oct 2012.

Table 1. Representative sample of container test 
platforms for the Hurricane Sandy simulations. 
AMD: Advanced Micro Devices Inc. RHEL = Red Hat 
Enterprise Linux.

OS Chip/CPU Cores

Mac OS X 10.10.5 Intel Xeon E5 6

Mac OS X 10.9.5 Intel Core i7 2

Ubuntu 14.04 AMD Opteron 6320 16

Ubuntu 14.04 Intel Xeon E5 16

RHEL Intel Xeon X5550 8

Ubuntu 14.04a Intel Xeon E5-2666, version 3 32

Ubuntu 14.04b Intel Atom C2550 4
a	Deployment on an Amazon EC2 resource; the others are on a 

laptop or desktop/server.
b	Deployment on a Packet Tiny Atom resource.
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In tests on the Sandy simulation we also find 
minimal performance impact from running within 
the Docker container. Identical binary executables were 
run four times on the same machine both inside the 
container and outside the container on a Linux server. 
Results showed an average 3.6% overhead on wall-clock 
time when running in the container. The overhead will 
be greater for operating systems requiring a VM layer 
(e.g., Windows) with older versions of Docker.

This Sandy simulation requires relatively few 
floating-point operations, compared to model execu-
tions in typical research and operational NWP today. 
It is parallelized on shared-memory computer servers. 
On a MacBook Air as described in the second line of 
Table 1, the sequence of pulling the container from the 
repository, running the WRF, and making plots takes 
approximately 4 min. The example demonstrates the 
potential for classroom utility.

Performance reproducibility can be contrasted 
with the numerical reproducibility examined above. 
Performance reproducibility deals with the issue of 
obtaining the same performance (run time, through-
put, latency, etc.) across executions. Reproducing 
performance is important for gaining accurate 
evaluations of that performance. For example, when 
performance improvements to the WRF code base 
are implemented, evaluating improvements is diffi-
cult because it is difficult to account for the changes 
in hardware over time. In Jimenez et al. (2016), 
the authors introduce a framework to control the 

cross-platform variability arising from changes in 
CPU architectures and generations. This technique 
leverages Linux’s cgroups technology (an underlying 
component of Docker), which allows a user to specify 
the CPU bandwidth associated with a container. For 
example, one can constrain a WRF container to have 
50% the capacity of a CPU core (instead of 100% of 
the bandwidth available, the default behavior). With 
this feature, one can find the amount of CPU capac-
ity that emulates the behavior of a slower (usually 
older) machine. Table 2 shows the results of applying 
this technique to reproduce the performance of the 
Hurricane Sandy simulation on multiple platforms.

In Table 2, machine issdm-6 is the base system 
where a reference simulation was executed. When 
this same simulation is reexecuted in other (newer) 
machines, an inherent speedup in run time results 
from the improvements in newer CPU technology. 
For example, machine dwill improves the run time 
of the original execution by approximately 2.8 times. 
Using the CPU calibration techniques introduced in 
Jimenez et al. (2016), which leverage the OS-level vir-
tualization in containers, we carefully constrain the 
CPU of the machines and reexecute the simulation. 
As described in Jimenez et al. (2016), the limits on 
CPU are obtained by executing a battery of micro-
benchmarks that characterize the CPU performance 
of a base system (issdm-6 in this case). Benchmark 
results are used to calibrate the target machine (for 
example dwill) by finding the percentage of CPU 

Table 2. Run time of container executions for the Hurricane Sandy simulations on multiple machines. 
The normalized run time is the ratio between the reference system issdm-6 and the platform identi-
fied in the particular row. In the CPU limit column, 100% denotes no limitations imposed on the CPU, 
i.e., the simulation had all the CPU capacity from the system.

Machine identification CPU model Run time (s) CPU limit (%) Normalized

issdm-6 AMD Opteron 2212 1251.697012 100 1.000000

packet0 Intel Atom C2550 1173.848259 100 1.066319

packet0 1265.819255 99 0.988843

nibbler Intel i7 930 571.163721 100 2.191485

nibbler 1425.671584 63 0.877970

dwill Intel i5 2400 442.803647 100 2.826754

dwill 1244.367972 38 1.005890

rackform4 AMD Opteron 6320 689.738835 100 1.814741

rackform4 1560.987534 62 0.801862

pl2 Intel E5-2630 V2 425.031332 100 2.944952

pl2 1431.383836 48 0.874466

node Intel E5-2630 V3 396.553413 100 3.156440

node 1564.413064 56 0.800106
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capacity it needs to execute the same list of micro-
benchmarks and emulate the performance of the base 
system. In Table 2, the CPU limits column denotes 
the tuned amount of CPU capacity that the machine 
was given for a simulation, with the goal of emulating 
the performance behavior of the base machine. For 
the case of dwill, the limitations on CPU bandwidth 
(38% of CPU capacity) bring the runtime down (in-
troduce an artificial slowdown), closely resembling 
the original performance.

Performance reproducibility also enables planning 
for computing needs. This is becoming more important 
as cloud computing becomes more prevalent. Com-
mercial cloud vendors such as Amazon Web Services, 
Packet, Google Kubernetes (https://kubernetes.io), and 
Microsoft Azure (https://azure.microsoft.com/en-us/) 
generally support container deployment. A researcher 
or company writing a proposal that may include a 
need for cloud computing resources can get accurate 
estimates of performance and expect it to hold onto 
the variety of hardware offered by vendors.

This section presented a subset of results from runs 
on many different machines. Although parallel WRF 
runs have been part of the testing, they are limited so far 
to single shared-memory nodes. Distributed (multiple 
nodes or servers) message passing interface (MPI) for 
WRF within Docker containers is under investigation. 
Progress depends on the MPI-based WRF application 
having awareness of other linked WRF executables in 
other containers that may be part of a collective con-
tainer group. Currently MPI does not have that capabil-
ity, although Docker containers can be made aware of 
parallel containers within a collective.

UNCERTAINTY QUANTIFICATION. A 
corollary to numerical reproducibility is that a 
precise quantification of uncertainty from other 
factors is enabled. The reproducibility means that 
by leveraging available computer power wherever it 
is available, hundreds or thousands of simulations 
can be produced with perturbations introduced in 
initial conditions or model configurations. Such an 
ensemble would reflect only the perturbations given 
to it and would not be contaminated by random 
or systematic errors introduced from traditional 
computing platforms or changing compiler options. 
Leaving ensemble investigations for future work, here 
we examine the effects of compiler optimization. The 
effects we report here are certain to be reproducible 
across many computing platforms.

A simple pair of simulations illustrates the effects 
of compiler optimization on numerical predictions. 
The basic Fortran optimization f lag for the GNU 

compiler was successively set to levels from 0 to 3, 
which is a typical range for compilers. Setting -O0 
forces the compiler to avoid optimizing calculations 
and memory access, and setting -O3 allows the com-
piler a number of relatively aggressive optimization 
strategies. Those may change the order of operations, 
for example. Different compilers introduce different 
optimizations at that level. We found in this specific 
case that levels 0–2 led to a WRF executable that pro-
duced identical results, but level 3 produces differ-
ences. One of the optimizations introduced at level 3 
has an effect on output, but it is beyond the scope of 
this work to determine exactly what that is. Instead, 
we simply compare the output between levels 0 and 3.

A histogram of 3D gridpoint differences between the 
two Sandy simulations, after 12 h of simulation time, 
shows that meaningful differences are present (Fig. 3). 
Although the majority of differences are small, the dis-
tribution tails indicate the onset of local perturbations. 
We know those perturbations will grow and propagate 
upscale because the model equations are chaotic (e.g., 
Lorenz 1969). We can expect that higher-resolution 
grids, subject to more small-scale nonlinear processes, 
will lead to greater rates of growth of the differences be-
tween the two simulations. Grids covering larger regions 
will be subject to greater rates of growth too, because the 
dynamical interactions cover a broader range of scales.

DISCUSSION. This article presents a set of open-
source Docker containers intended to provide a basis 
for a WRF execution and ancillary workflow compo-
nents. As shown above, the container infrastructure 
offers many advantages for enabling research and 
education to be reproducible and more collaborative. 
A few more discussion points are summarized here.

The containers offer numerical and performance 
reproducibility in an easily—and rapidly—deployable 
framework that can enable collaborative research and 
education. In the earlier section on uncertainty quanti-
fication, we demonstrated the effects of compiler flags. 
Many NWP experiments reported in the literature 
focus on small differences between simulations, which 
are interpreted as physically relevant signals to be di-
agnosed. Although the majority of the differences may 
be physically relevant, the reproducibility provided by 
containers offers certainty. The extension is that uncer-
tainty from sources besides numerical truncation can 
be isolated. To further understand these issues, a study 
evaluating whether compiler optimizations, hardware 
variations, and parallel topologies lead to random-like 
or systematic errors would be helpful.

The containers enable the same kind of collabora-
tive environment as a single community resource, but 
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they make use of any resources locally available to 
individual researchers. In general, identical compil-
ers and operating systems are not available to col-
laborating researchers, except when all participants 
are working on the same community computing 
resource and in the same environment. Numerical 
reproducibility even within collaborating groups is 
not straightforward. With containers, collaboration 
among groups of scientists that need to work on the 
same code, or produce parallel simulations with only 
small variations, is immediately enabled. Examples 
include ensemble forecasts run on distributed and 
inhomogeneous platforms by multiple people in 
different locations, model developers from different 
institutions who are working to improve a physics 
scheme, or researchers collaborating to better quantify 
an energy budget within the model.

Educational activities clearly benefit from con-
tainers. Hands-on exercises are a valuable part of 
any student learning experience. Containers give 
instructors control over what parts of the modeling 
system students will experience directly. For example, 
the WRF could be run initially as a “black box” and 
then intermediate steps be made accessible as students 
work through exercises. Software containers help 
standardize modules that can be easily shared among 
teaching colleagues with vastly different technology 
environments.

The broader science community has recently been 
placing a greater emphasis on reproducible research, 

and containers offer a key step toward reproducible 
NWP research. Published papers can cite a specific 
container version used in one part of a research flow 
(e.g., the model, set of analysis tools, or a data contain-
er with initialization files). As long as that container 
revision exists and is accessible, research consumers 
can reproduce the results. This provides not only an 
unprecedented level of openness in NWP research but 
also an easier way for researchers to build on published 
results. The resources in the next section offer one 
component of the suite of tools needed to enable fully 
reproducible science. Metadata and analysis methods 
also need to be tracked and made available. Tools for 
that exist, and they should be adopted by the NWP 
community as we go forward.

RESOURCES. This section provides links to online 
content, including documentation and open reposito-
ries for WRF-based containers. A basic knowledge of 
repositories, and access to GitHub and Docker Hub 
public repositories, are needed to pull source code or 
container images from the repositories. The following 
is a list of resources:

•	 Docker-WRF project home page: www.ral.ucar 
.edu/projects/ncar-docker-wrf

•	 Slack channel (user discussion forum): https://
ncar-dockerwrf.slack.com/

•	 WRF–WPS container image: https://hub.docker 
.com/r/bigwxwrf/ncar-wrf/

Fig. 3. Differences between gridpoint values of two Sandy simulations: (a) temperature, (b) zonal wind, and (c) 
precipitation valid 0000 UTC 28 Oct 2012 after 12 h. WRF executables differ only in a single compiler optimiza-
tion flag. All grid points in the 3D volume are included.
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•	 Static geography data container image: https://hub 
.docker.com/r/bigwxwrf/ncar-wpsgeog/

•	 Input data container for Sandy simution: https://
hub.docker.com/r/bigwxwrf/ncar-wrfinputsandy/

•	 Input data container for Katr ina simula-
tion: https://hub.docker.com/r/bigwxwrf/ncar 
-wrfinputkatrina/ 

•	 NCL script container for producing images: 
https://hub.docker.com/r/bigwxwrf/ncar-ncl/

•	 GitHub repository Docker files and scripts to build 
images: https://github.com/NCAR/container-wrf
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