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ABSTRACT: Oxidation of monoterpenes (C10H16) by nitrate
radicals (NO3) constitutes an important source of atmospheric
secondary organic aerosol (SOA) and organonitrates. However,
knowledge of the mechanisms of their formation is incomplete
and differences in yields between similar monoterpenes are
poorly understood. In particular, yields of SOA and organo-
nitrates from α-pinene + NO3 are low, while those from Δ3-
carene + NO3 are high. Using computational methods, we
suggest that bond scission of the nitrooxy alkoxy radicals from
Δ3-carene lead to the formation of reactive keto-nitrooxy-alkyl
radicals, which retain the nitrooxy moiety and can undergo
further reactions to form SOA. By contrast, bond scissions of
the nitrooxy alkoxy radicals from α-pinene lead almost
exclusively to the formation of the relatively unreactive and volatile product pinonaldehyde (C10H16O2), thereby limiting
organonitrate and SOA formation. This hypothesis is supported by laboratory experiments that quantify products of the reaction
of α-pinene + NO3 under atmospherically relevant conditions.

Plants emit enormous quantities of highly reactive biogenic
alkenes to the atmosphere. Monoterpenes (C10H16),

1

contribute approximately 11% of these emissions, with α-
pinene as the dominant (35%) contributor.2 The subsequent
oxidation of these compounds in the atmosphere impacts both
aerosol and ozone levels.
Atmospheric aerosol particles play a key role in regulating

our climate,3 and are responsible for most air pollution-related
mortality.4 A large fraction of these particles consists of
secondary organic aerosol (SOA) material formed by oxidation
of large organic molecules such as monoterpenes. It is this
chemistry, for example, that is responsible for the haze that
makes the US Smoky Mountains “smoky”.5 Despite its
importance, the mechanisms for SOA formation from biogeni-
cally produced alkenes are poorly understood.

Ozone is a significant component of photochemical smog
and is associated with pulmonary impacts in humans as well as
being an antagonist for plants. Formation of ozone occurs in
the troposphere via the oxidation of organic hydrocarbons in
the presence of nitric oxide (NO). The highly reactive
monoterpenes can contribute significantly to this process.
However, oxidation of these biogenic compounds can also
reduce ozone formation via production of organonitrates that
serves to reduce the level of rapidly interconverting nitrogen
oxide free radicals (NOx) here defined as the sum of NO, NO2,
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and NO3. The impact on NO, and thus ozone formation,
therefore depends on the yield of the organonitrates and
whether during their subsequent degradation the NOx is
recycled.6

Recent global modeling studies of organic aerosol7−9 suggest
that a large contribution to SOA production arises from the
oxidation of biogenic organic compounds by the nitrate radical
(NO3). This contribution is potentially larger than that
following their oxidation by ozone or OH.10 Though typically
thought of as a nighttime process, NO3 oxidation has recently
been shown to play a role also during the day.11,12 In addition,
field analyses of organonitrate diurnal variation13−16 illustrate
that NO3 oxidation chemistry is a major pathway for the
production of organonitrates.17 Depending on their subsequent
photochemistry, these nitrates constitute a large NOx reservoir
or sink. Improved understanding of the mechanistic basis for
the differing yields of SOA and organonitrates from oxidation
of biogenic compounds following their oxidation by NO3 is
thus essential.
SOA levels are typically underestimated by current

atmospheric chemistry models.18,19 Recent research20−22

indicates that peroxy radical (RO2) hydrogen shift rearrange-
ments (H-shifts)particularly important in monoterpene
chemistrymay be responsible for part of the underestimate.
According to these studies, sequential RO2 H-shifts and O2
addition reactions (often termed autoxidation) rapidly lead to
highly oxidized multifunctional products (HOMs) that end up
in the aerosol phase via equilibrium partitioning. The
prerequisite for atmospheric autoxidation is that the initial
oxidant-hydrocarbon reaction leads to an RO2 radical that can
access C−H bonds weak enough to allow H-shifts to compete
with bimolecular reactions.23−25

Much research on monoterpene oxidation in the context of
SOA and organonitrate formation has focused on α-pinene, as
it accounts for about 35% of total global monoterpene
emissions.2,26 The organonitrate and SOA yield varies with
both the monoterpene and the oxidant. These variations are
reasonably well understood for OH- and O3-initiated oxidation.
For example, exocyclic alkenes often have lower HOM or SOA
yields from ozonolysis than analogous endocyclic alkenes.27

The variations in yields in the NO3-initiated oxidation of
different monoterpenes are less well understood. For example,
the NO3 + α-pinene reaction has a low organonitrate yield and
leads to little or no SOA formation.28−31 By contrast, the yields
of both organonitrates and SOA from NO3-initiated oxidation
of every other monoterpene studied are considerably higher.10

For example, both the organonitrate and SOA yields from Δ3-
carene have been measured to be larger than 50%, despite the
similar structures of Δ3-carene and α-pinene (see Schemes 1
and 2).28 Previous laboratory studies of the reaction of α-
pinene + NO3 have found high yields of carbonyls and low
yields of organonitrates.29 The opposite has been shown to
apply to the Δ3-carene + NO3 reaction.

10,28

Here we show that the key to understanding the disparate
organonitrate and SOA yields in these very similar mono-
terpenes arises from a bifurcation in the fragmentation of the β-
nitrooxy-alkoxy radicals (nitrooxy and alkoxy groups on
neighboring carbon atoms) produced following addition of
NO3. In the case of α-pinene, scission of the bond between
these groups releases NO2 and yields the highly volatile
pinonaldehyde. In Δ3-carene, by contrast, this bond is more
likely to remain intact, yielding a nitrooxy-peroxy radical that is
able to undergo further reactions. We use computational
methods (see section S1 in the Supporting Information (SI) for

Scheme 1. Reaction Pathways for the α-Pinene + NO3 System
a

aReactions studied here are labeled, while likely subsequent reactions not investigated in this study are indicated by dashed arrows. To evaluate the
calculated branching ratios, the yields of the hydroperoxy nitrates and pinonaldehyde (shown in dashed boxes) are quantified experimentally. The
key β-nitrooxy-alkoxy radical is shown in the solid box with the bifurcating reactions highlighted with red arrows.
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full details), to investigate the reason for the vast difference in
SOA, nitrate, and carbonyl yields between the NO3-initiated
oxidation of α-pinene and Δ3-carene (the “+” enantiomers).
We test the hypotheses arising from these computations with
experimental data on the α-pinene + NO3 reaction under
simulated atmospheric conditions.
The reaction pathways for α-pinene + NO3 and Δ3-carene +

NO3 are illustrated in Schemes 1 and 2, respectively. The most
likely first step of both reactions is the addition of nitrate to the
double bond to form a nitrooxy-alkyl radical, with the major
addition pathway forming the tertiary alkyl radical with a
greater degree of substitution (reaction R1a in Schemes 1 and
2). The branching ratios for the two addition pathways in the
α-pinene + NO3 system have been recommended to be 0.65
and 0.35.32,33 See section S2 in the SI for thermodynamics of
the addition reactions, and section S3 for a discussion of key
reactions along the minor addition pathway (R1b).
Under atmospheric conditions, alkyl radicals will usually

undergo O2 addition reactions (reaction R2 in Schemes 1 and
2), to form peroxy radicals, at pseudounimolecular rates on the
order of 107 s−1.34 Each nitrooxy-peroxy radical has four
isomers, as illustrated in Figure 1 for α-pinene, and in Figure S1
for Δ3-carene. For both monoterpenes, the most thermody-
namically favorable NO3 and O2 addition channels are those
forming the S,S isomer.

Scheme 2. Reaction Pathways for the Δ3-Carene + NO3 System
a

aReactions studied here are labeled, while likely subsequent reactions not investigated in this study are indicated by dashed arrows. The reaction
equivalent to R3 in Scheme 1 is not possible for Δ3-carene. The key β-nitrooxy-alkoxy radical is shown in the solid box with the bifurcating reactions
highlighted with red arrows.

Figure 1. Structures of the four different isomers of the nitrooxy-
peroxy radical formed in the oxidation of α-pinene by NO3, assuming
initial radical addition to the secondary carbon atom. Color coding:
gray = C, white = H, red = O, blue = N.
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For the hydroxyl-alkyl radical formed by OH addition to α-
pinene at the secondary carbon, a ring-breaking bond scission
pathway leading to a hydroxyl-alkenyl radical has also been
proposed.35,36 This bond scission has a barrier of about 12
kcal/mol, making its thermal rate uncompetitive with O2
addition, but excess energy from the OH addition (around
30 kcal/mol) may facilitate the reaction.35 We have identified
an analogous reaction in the α-pinene + NO3 system (reaction
R3 in Scheme 1). Due to the slightly higher barrier (around 14
kcal/mol), and the significantly lower exothermicity of the NO3
addition reaction (around 20 kcal/mol), our modeling (SI,
section S5) indicates that this reaction is not competitive with
O2 addition. A corresponding channel does not exist for the Δ3-
carene + NO3 adduct. Nitrooxy-alkyl radical bond scissions can
thus not explain the differences in SOA, nitrate, or carbonyl
yields following addition of NO3 to either α-pinene or Δ3-
carene.
We considered possible H-shift reactions of the first-

generation nitrooxy-peroxy radicals. The constraints imposed
by the two rings in each system prevent the OO group from
reaching most hydrogens, as can be seen from Figure 1. The
remaining H atoms are all difficult to abstract due to steric
strain in the transition states and/or high C−H bond strengths.
We investigated all accessible H-shifts for each peroxy radical
(see section S6 in the SI for details). All calculated H-shift rate
coefficients were below 10−4 s−1 for both monoterpenes. As the
computational method employed likely overestimates the H-
shift rates,37 the peroxy radicals thus almost certainly have
lifetimes long enough to undergo bimolecular reactions, which
occur on a time scale of between 0.01 and 100 s under most
atmospheric conditions.38

In the atmosphere, the peroxy radicals produced at night
from NO3 chemistry will typically react with HO2 or other RO2
radicals,39 and during daytime the reaction with NO will
contribute significantly. Understanding the products of this
nitrooxy-peroxy radical chemistry is important, as it will
determine the subsequent pathways. Alkoxy radicals will be
produced by reactions of RO2 with NO or other radicals (R4a),
while hydroperoxides are typically major products of the
reaction with HO2 (R4b).
Due to the large radical concentrations in most laboratory

investigations of the oxidation of hydrocarbons by NO3, the
peroxy radicals typically react with NO3 or themselves, leading
primarily to the production of alkoxy radicals.38 It is thus
unclear to what extent these previous investigations are relevant
for the atmosphere, where HO2 radicals play such an important

role. An α-pinene + NO3 experiment conducted as part of the
FIXCIT chamber study40 and analyzed here for the first time
(see section S11) provides evidence for large production of RO
from the reaction of HO2 with the RO2 radicals produced via α-
pinene + NO3. We find that the hydroperoxy nitrate yield is
only ∼30%much lower than, for example, in the equivalent
chemistry of isoprene.41 The carbon budget is balanced by
formation of pinonaldehyde (∼70%), with essentially no SOA
being observed (molar yield of less than 1%). Together, these
yields suggest that the majority of the atmospheric bimolecular
chemistry following addition of the nitrate radical to α-pinene
leads to the formation of the nitrooxy-alkoxy radicals even
under atmospherically relevant HO2 dominated conditions
(R4a). To our knowledge, however, there is no equivalent
HO2-dominated laboratory study for Δ3-carene + NO3.
By analogy with the OH-initiated oxidation of α-pinene,42

perhaps it is not too surprising that the reaction of the tertiary
peroxy radicals with HO2 has such a large yield of alkoxy
radicals (R4a). The computed Gibbs free energy (at 298.15 K
and 1 atm reference pressure) for the RO2 + HO2 → RO + OH
+ O2 reaction (SI section S7) varies between −1.4 kcal/mol
and −5.2 kcal/mol for the four NO3-RO2 isomers from the α-
pinene + NO3 reaction, and −2.3 kcal/mol and −6.4 kcal/mol
for those from Δ3-carene + NO3. The alkoxy-forming pathway
is thus thermodynamically favorable for all RO2 radicals studied
here.
A recent review of organic peroxy radical chemistry noted

that, while chain-terminating formation of hydroperoxides
(ROOH) is dominant for simple alkylperoxy radicals, greater
substitution favors alkoxy-forming channels.38 Consistent with
this suggestion, it would be expected that the hydroperoxide
yield from the less substituted peroxy radical from R1b is
higher than that from R1a. We note that the measured yield of
hydroperoxy nitrate in the α-pinene + NO3 system is very close
to the estimate of the branching ratio (R1a vs R1b), suggesting
that perhaps R1b is the route to most of the observed
hydroperoxide.
The retention of the nitrate group and the high yields of

SOA produced following formation of the alkoxy radical in Δ3-
carene + NO3 system compared to α-pinene results from
differences in the alkoxy radical scissions. Alkoxy radicals
located on ring systems are known to undergo rapid ring-
breaking reactions (C−C bond scissions).23,35,36,43 Each alkoxy
radical studied here has two possible bond scission pathways
that lead to ring breaking. Breaking the bond to the nitrooxy
carbon (β-nitrooxy-alkoxy scission, R5a in Schemes 1 and 2)

Table 1. Barriers (Zero-Point Corrected Transition State - Reactant Electronic Energy Differences) and Multi-Conformer
Transition State Theory (MC-TST) Reaction Rate Coefficients (298.15 K) Computed at the ωB97X-D/aug-cc-pVTZ Level for
the Bond Scission Reactions R5a and R5b of the Nitrooxy-Alkoxy Radicals Formed in the α-Pinene + NO3 and Δ3-Carene +
NO3 Systemsa

alkoxy radical isomer barrier for R5ab (kcal/mol) rate coefficient for R5a (s−1) barrier for R5bc (kcal/mol) rate coefficient for R5b (s−1)

α-pinene, R-alkoxy, S-nitrooxy 4.8 1.5 × 109 9.4 3.6 × 106

α-pinene, S-alkoxy, S-nitrooxy 8.6 2.2 × 106 10.5 1.0 × 105

α-pinene, R-alkoxy, R-nitrooxy 6.1 1.7 × 108 10.6 1.3 × 105

α-pinene, S-alkoxy, R-nitrooxy 6.7 7.3 × 107 10.4 3.7 × 105

Δ3-carene, R-alkoxy, S-nitrooxy 9.2 1.7 × 106 8.3 8.4 × 106

Δ3-carene, S-alkoxy, S-nitrooxy 8.6 2.6 × 106 8.1 9.0 × 106

Δ3-carene, R-alkoxy, R-nitrooxy 8.4 8.2 × 106 7.4 2.7 × 107

Δ3-carene, S-alkoxy, R-nitrooxy 8.4 3.3 × 106 8.4 6.2 × 106

aSee Figure 2 for lowest-energy transition state structures for the lowest-energy S,S isomers. bC−C(ONO2) bond scission. cC−C(H) bond scission
in α-pinene and C−C(H2) bond scission in Δ3-carene.
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leads to the formation of keto aldehydes (pinonaldehyde for α-
pinene and caronaldehyde for Δ3-carene) and recycling of
NO2.

44 The alternative scission (R5b) leads to a keto-nitrooxy-
alkyl radical. A pathway similar to R5a but involving O2
addition and subsequent prompt HO2 loss exists in the OH
oxidation system.35,36

The barriers and estimated rate coefficients for reactions R5a
and R5b are given in Table 1, with the lowest-energy transition
states for the thermodynamically most favorable isomers
illustrated in Figure 2. See SI section S8 for other isomers,

and section S9 for data on the α-pinene + OH and Δ3-carene +
OH systems. Alkoxy bond scission pathways typically compete
with H-shift reactions.45,46 For the nitrooxy-alkoxy radicals
studied here, steric strain prevents most of these H-shifts from
occurring. However, in the S-alkoxy isomers, the hydrogens on
one of the methyl groups attached to the C3/C4 ring are
accessible. Alkoxy H-shifts from primary hydrogen atoms
typically have rate coefficients of around 104−106 s−1 at room
temperature,45,46 which suggests that these are not dominating.
If these alkoxy H-shifts are faster than suggested they could be
competitive for the S,S isomer leading to additional minor
products.
The α-pinene + NO3 system shows a strong preference for

C−C(ONO2) scission (R5a), with differences in barrier heights
between the two scission pathways varying between 1.9 and 4.6
kcal/mol, depending on the isomer, which corresponds to a

difference of at least a factor of 20 in the reaction rates. By
contrast, the relative barriers for the two pathways are within 1
kcal/mol of each other for the Δ3-carene + NO3 system, with a
slight preference for C−C(H2) scission (R5b). This leads to a
significantly different product distribution for the two
monoterpenes. Our prediction for α-pinene + NO3 is in
qualitative agreement with the structure−activity relationship
(SAR) of Vereecken and Peeters,47 which also predicts a lower
barrier for R5a compared to R5b. For Δ3-carene + NO3, naive
application of the SAR would predict R5a to be faster than
R5b, but this is likely due to the treatment of the complex
substituent on the β-carbon atom of the product alkyl radical (γ
to the original alkoxy carbon) as a simple alkyl group. For the
OH oxidation systems (SI section S9) we find, as also predicted
by the SAR,47 a preference for C−C(OH) scission in both α-
pinene and Δ3-carene systems; however, more pronounced in
the α-pinene + OH system. Our theoretical results on α-pinene
+ OH agree with previous investigations.35,36

Because of the large difference between the bond scission
rates, we find, consistent with laboratory data, that the nitrooxy-
alkoxy radicals formed in the α-pinene + NO3 system will
almost exclusively form pinonaldehyde. By contrast, both the
formation pathways of caronaldehyde and the keto-nitrooxy-
alkyl radical are accessible in high yield in the Δ3-carene + NO3
system. The keto-nitrooxy-alkyl radical can undergo further
reactions to form HOM that can partition to SOA.
Subtle differences in the stabilities of the radicals formed by

the C−C scission reactions determine the fate of the nitrooxy
alkoxy radicals formed in the NO3-initiated oxidation of
monoterpenes. In the α-pinene case, the unfavorable formation
of a radical center on the C4 ring

48−50 in reaction R5b drives
the NO2 loss and pinonaldehyde formation (R5a). In the Δ3-
carene case, our results indicate that both scission pathways are
competitive, likely due to the added stabilization of the primary
alkyl radical formed in reaction R5b by the cyclopropyl derived
substituent. Of the other atmospherically relevant mono-
terpenes2 with cyclic structures, β-pinene and sabinene contain
exocyclic double bonds, and their NO3 oxidation will likely lead
predominantly to nitrooxy alkoxy radicals where the nitrooxy
group is not located on the ring. Their scission reactions will
thus lead almost exclusively to products retaining the nitrooxy
group.47 Limonene contains both an endo- and an exocyclic
double bond. NO3 attack on the former would lead to nitrooxy
alkoxy radicals similar to those formed in the Δ3-carene + NO3
reaction. However, due to the lack of the extra stabilization of
the primary alkyl radical formed in the analogue of reaction
R5b, the branching ratio of the two bond scission pathways
may be more weighted toward the NO2 loss pathway. In
comparison, the observed organic nitrate molar yield for
limonene was 30%,51 compared to 70% for Δ3-carene.28,29

Analogous bifurcation in β nitrooxy-alkoxy radical scission
occurs in the oxidation of the two major organonitrates
produced in the oxidation of isoprene by OH in the presence of
NO. In this system, experiments show that decomposition of
the nitrooxy-alkoxy radical leads to minimal NOx recycling for a
secondary nitrooxy group.52 We present calculations (SI section
S12) that show, however, that the NOx recycling is likely much
higher for the structurally similar tertiary nitrooxy-alkoxy
radical. Again, this illustrates that the competition between β
scission of the nitrooxy-alkoxy radical and alternative
fragmentation pathways that retain this bond is sensitive to
subtle structural differences.

Figure 2. Transition states for the bond scission reactions of the S,S
isomers of the nitrooxy-alkoxy radicals formed in the oxidation of α-
pinene (top) and Δ3-carene (bottom) by NO3, assuming initial radical
addition to the secondary carbon atom. The reaction barriers (zero-
point corrected ωB97X-D/aug-cc-pVTZ electronic energy differences
between the lowest-energy transition states and reactants) in kcal/mol
are given under each structure. See Table 1 for details. Left column:
transition states for reaction R5a. Right column: transition states for
reaction R5b. Color coding as in Figure 1.
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As established previously for α-pinene + OH,23,35,36 we
predict that the hydroxy alkoxy radicals formed in the α-pinene
+ OH and Δ3-carene + OH systems will almost exclusively
form pinonaldehyde and caronaldehyde, respectively (SI
section S9). The reported SOA formation in these systems
therefore likely involves either further OH reactions of the
aldehydes with oxidation products undergoing for example
oligomerization, or competing reaction steps earlier in the
oxidation mechanism, such as alkyl radical bond scission, or H-
abstraction by OH rather than addition.53 Since alkyl radical
bond scission is not available to the Δ3-carene + OH system, it
could therefore be expected to have a smaller SOA yield than α-
pinene + OH. This is consistent with the generally higher SOA
yields reported for α-pinene + OH (e.g., 24−28% for 60−70 μg
m−3 of total OA)54 compared to those for Δ3-carene + OH
(e.g., 14−16% for 55−65 μg m−3 of total OA).55

The observed28 high SOA and nitrate yields, and low keto
aldehyde (caronaldehyde) yields, from NO3-initiated Δ3-carene
oxidation are likely explained by further reactions of the keto-
nitrooxy-alkyl radical formed by reaction R5b. This radical may
add O2 either directly, or after a second ring-breaking reaction
forming a more highly substituted alkyl radical (reaction R6 in
Scheme 2). We find a barrier of around 6 kcal/mol for R6 (SI,
section S10), implying that R6 and direct O2 addition may both
be competitive. Due to their greater flexibility, both keto-
nitrooxy-peroxy radicals may undergo H-shifts much faster than
the first-generation nitrooxy-peroxy radicals. Alternatively,
bimolecular reactions could form reactive keto-nitrooxy-alkoxy
radicalsin both cases ultimately leading to more oxidized and
less volatile organonitrate products.
Our results illustrate how minor structural differences

between monoterpenes can lead to very different reaction
mechanisms, product distributions, and atmospheric impacts.
Extrapolating or generalizing measurement results from a single
terpene to all monoterpenes can thus lead to serious errors in
predicted SOA and organonitrate yields in model simulations,
especially if the terpene used is α-pinene, as its reaction
mechanism is likely unique among the monoterpenes.

■ METHODS
Computational. To calculate reaction rates, we applied a
modified version our recently published approach using both
multiconformer transition state theory (MC-TST) and the
lowest energy conformer TST (LC-TST) methods.37 This
involves an initial systematic conformational search using the
MMFF force field56 in the Spartan’14 program,57 followed by
B3LYP/6-31+G(d) optimizations,58,59 and finally ωB97X-D/
aug-cc-pVTZ60−62 optimizations using Gaussian 0963 and
adding Eckart tunneling64 corrections. We investigated all
conformers and calculated LC-TST rates for most reactions,
while for the central reactions (R5a and R5b in Schemes 1 and
2) we calculated MC-TST rates. ROHF-ROCCSD(T)-F12a/
VDZ-F12 single-point calculations65 on reaction R3 were
performed using Molpro 2012.1.66 Reaction dynamic modeling
for R3 was performed using the MESMER program (see SI
section S5).67 Details on the computational approach are given
in SI section S1.
Experimental. In the FIXCIT chamber experiment,40 α-

pinene was added to a darkened 24 m3 chamber containing
NO2, O3 (and consequently NO3 and N2O5), and H2CO (and
consequently HO2). The chamber was first filled with NO3 and
HO2 radicals produced via addition of ∼75 ppb O3, ∼ 150 ppb
NO2, and ∼8 ppm formaldehyde, into which a volume of α-

pinene was gradually injected equivalent to ∼35 ppb. The
consumption of α-pinene and production of pinonaldehyde was
monitored by a switchable reagent ion high-resolution time-of-
flight mass spectrometer (SRI-ToF-MS) using H3O

+ reagent.
The hydroperoxynitrate production was monitored by a time-
of-flight chemical ionization mass spectrometer (ToF-CIMS)
using CF3O

− reagent, and the organic aerosol production was
monitored by an aerosol mass spectrometer (AMS). After 3 h
of reaction, ∼ 20 ppb of α-pinene had been depleted and ∼4
ppb of hydroperoxynitrate formed. The branching ratio for the
NO3-RO2 + HO2 → NO3-ROOH + O2 channel was 30% (15−
45%), which includes a correction for the fraction of α-pinene
reaction that reacted with O3 (see SI section S11 for more
experimental details and description of uncertainties). Approx-
imately 17 ppb of pinonaldehyde is produced during the same
period. Minimal SOA production is observed (∼1.5 μg m−3

organic aerosol, unseeded).
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Nemitz, E.; Prevot, A. S. H.; Äijal̈a,̈ M.; Allan, J.; Canonaco, F.;
Canagaratna, M.; Carbone, S.; Crippa, M.; Dall Osto, M.; Day, D. A.;
De Carlo, P.; Di Marco, C. F.; Elbern, H.; Eriksson, A.; Freney, E.;
Hao, L.; Herrmann, H.; Hildebrandt, L.; Hillamo, R.; Jimenez, J. L.;
Laaksonen, A.; McFiggans, G.; Mohr, C.; O’Dowd, C.; Otjes, R.;
Ovadnevaite, J.; Pandis, S. N.; Poulain, L.; Schlag, P.; Sellegri, K.;
Swietlicki, E.; Tiitta, P.; Vermeulen, A.; Wahner, A.; Worsnop, D.; Wu,
H. C. Ubiquity of Organic Nitrates from Nighttime Chemistry in the
European Submicron Aerosol. Geophys. Res. Lett. 2016, 43, 7735−
7744.
(17) Horowitz, L. W.; Fiore, A. M.; Milly, G. P.; Cohen, R. C.;
Perring, A.; Wooldridge, P. J.; Hess, P. G.; Emmons, L. K.; Lamarque,
J.-F. Observational Constraints on the Chemistry of Isoprene Nitrates
over the Eastern United States. J. Geophys. Res. 2007, 112, D12S08.
(18) Pierce, J. R.; Riipinen, I.; Kulmala, M.; Ehn, M.; Petaj̈a,̈ T.;
Junninen, H.; Worsnop, D. R.; Donahue, N. M. Quantification of the

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.7b01038
J. Phys. Chem. Lett. 2017, 8, 2826−2834

2832

http://dx.doi.org/10.1021/acs.jpclett.7b01038


Volatility of Secondary Organic Compounds in Ultrafine Particles
During Nucleation Events. Atmos. Chem. Phys. 2011, 11, 9019−9036.
(19) Hallquist, M.; Wenger, J. C.; Baltensperger, U.; Rudich, Y.;
Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N. M.; George, C.;
Goldstein, A. H.; Hamilton, J. F.; Herrmann, H.; Hoffmann, T.;
Iinuma, Y.; Jang, M.; Jenkin, M. E.; Jimenez, J. L.; Kiendler-Scharr, A.;
Maenhaut, W.; McFiggans, G.; Mentel, T. F.; Monod, A.; Prev́ôt, A. S.
H.; Seinfeld, J. H.; Surratt, J. D.; Szmigielski, R.; Wildt, J. The
Formation, Properties and Impact of Secondary Organic Aerosol:
Current and Emerging Issues. Atmos. Chem. Phys. 2009, 9, 5155−5236.
(20) Crounse, J. D.; Nielsen, L. B.; Jørgensen, S.; Kjaergaard, H. G.;
Wennberg, P. O. Autoxidation of Organic Compounds in the
Atmosphere. J. Phys. Chem. Lett. 2013, 4, 3513−3520.
(21) Ehn, M.; Thornton, J. A.; Kleist, E.; Sipila,̈ M.; Junninen, H.;
Pullinen, I.; Springer, M.; Rubach, F.; Tillmann, R.; Lee, B.; Lopez-
Hilfiker, F.; Andres, S.; Acir, I.-H.; Rissanen, M.; Jokinen, T.;
Schobesberger, S.; Kangasluoma, J.; Kontkanen, J.; Nieminen, T.;
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