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ABSTRACT

Unprecedented high-intensity flooding induced by extreme precipitation was reported over Chennai in

India during November–December of 2015, which led to extensive damage to human life and property. It is

of utmost importance to determine the odds of occurrence of such extreme floods in the future, and the

related climate phenomena, for planning and mitigation purposes. Here, a suite of simulations from GFDL

high-resolution coupled climate models are used to investigate the odds of occurrence of extreme floods

induced by extreme precipitation over Chennai and the role of radiative forcing and/or large-scale SST

forcing in enhancing the probability of such events in the future. The climate of twentieth-century exper-

iments with large ensembles suggest that the radiative forcing may not enhance the probability of extreme

floods over Chennai. Doubling of CO2 experiments also fails to show evidence for an increase of such events

in a global warming scenario. Further, this study explores the role of SST forcing from the Indian and Pacific

Oceans on the odds of occurrence of Chennai-like floods. Neither El Niño nor La Niña enhances the

probability of extreme floods over Chennai. However, a warm Bay of Bengal tends to increase the odds of

occurrence of extreme Chennai-like floods. In order to trigger a Chennai like-flood, a conducive weather

event, such as a tropical depression over the Bay of Bengal with strong transport of moisture from a moist

atmosphere over the warm Bay, is necessary for the intense precipitation.

1. Introduction

The city of Chennai in India experienced a catastrophic

flooding event in November–December of 2015. During

these months, Chennai received 1416.8mm of rainfall,

more than 3 times the rainfall climatology of 408.4mm

(Ray et al. 2016). It led to flooding in large areas and

displaced more than 1.8 million people (Selvaraj et al.

2016; Narasimhan et al. 2016). This event caused wide-

spread destruction of life and property, affecting 4million

people and leading to a monetary loss of 3 billion U.S.

dollars (Narasimhan et al. 2016; Mishra 2016; Ray et al.

2016). It was estimated to be the eighth most expensive

natural disaster in the world during 2015 (DNA 2015).

Therefore, it is important to understand the probability of

occurrence of such an event in the future and its causes,

for planning and mitigation purposes.

Unlike most of India, Chennai receives rainfall as

part of the northeast monsoon during the October–

December months. The northeast monsoon rainfall

(also referred to as winter monsoon) contributes 50%

of the annual rainfall over the southeastern coast of the

Indian Peninsula, significantly affecting the water re-

sources and agricultural production in the region

(Kumar et al. 2007). The northeast monsoon is associ-

ated with dry northeasterly winds from the Himalayas

and Indo-Gangetic Plain regaining moisture from the
Corresponding author: Lakshmi Krishnamurthy, lakshmi.

krishnamurthy@noaa.gov

15 MAY 2018 KR I SHNAMURTHY ET AL . 3831

DOI: 10.1175/JCLI-D-17-0302.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:lakshmi.krishnamurthy@noaa.gov
mailto:lakshmi.krishnamurthy@noaa.gov
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


Bay of Bengal, resulting in heavy rainfall over the

southern peninsular region.

The total northeast monsoon rainfall (though not

counting extreme events) is significantly correlated

with El Niño–Southern Oscillation (ENSO; Nayagam

et al. 2009; Kumar et al. 2007; Yadav 2012), and the

relationship has strengthened in recent decades

(Kumar et al. 2007; Zubair and Ropelewski 2006).

This may be attributed to the enhanced relationship

between ENSO and Bay of Bengal sea surface tem-

peratures (SSTs) after the 1970s, stronger easterly

anomalies and associated moisture convergence that

are favorable for the northeast monsoon rainfall

(Kumar et al. 2007), and intensified convection due to

warmer Indian Ocean SSTs and the strengthening of

the circulation associated with El Niño (Zubair and

Ropelewski 2006). Yadav (2013) has also highlighted

the role of Bay of Bengal SSTs in driving the in-

terannual variability of the northeast monsoon rain-

fall. The years with warm Bay of Bengal SSTs along

with a cold east equatorial Indian Ocean shift the

ITCZ northward, and the depressions formed in the

north Indian Ocean strike the southern peninsula,

leading to enhanced northeast monsoon rainfall. In

addition, the northeast monsoon rainfall is shown to be

associated with above-normal SSTs in the Arabian Sea

and Bay of Bengal (Kumar et al. 2007). The northeast

monsoon rainfall is also suggested to increase in re-

sponse to global warming (Naidu et al. 2012).

Thus, several studies have shown that ENSO, Indian

Ocean SSTs, and global warming may lead to enhanced

rainfall during the northeast monsoon. Hence, we in-

vestigate whether the probability of occurrence of

precipitation-induced extreme flood events (such as that

experienced in Chennai during November–December

of 2015) will increase in the future either because of

radiative forcing, large-scale SST forcing such as ENSO,

and/or warming in the Indian Ocean or Bay of Bengal.

Considering that it is difficult to reliably determine the

effects of climate on such a rare extreme event using

limited sample size in observations, we make use of a

suite of Geophysical Fluid Dynamics Laboratory

(GFDL) coupled simulations to investigate the proba-

bility of occurrence of extreme precipitation as mea-

sured by the 2015 precipitation-induced extreme

flooding event in Chennai. Hereafter, while we state

‘‘extremefloodevent,’’ we are referring to the precipitation

extreme that led to flooding, or a ‘‘precipitation-induced

extreme flood.’’ We carefully make this distinction, as

this paper focuses on the atmospheric component of

flooding without regard for land surface conditions

or the built environment (watermanagement). Data and

the models used are described in section 2. Results

from this study are presented in section 3, and conclu-

sions are in section 4.

2. Data and models

a. Observations

The SST data on a 18 3 18 spatial grid is derived from

the HADISST, version 1.1, from the Met Office Hadley

Centre for Climate Change (Rayner et al. 2003) for the

period 1870–2016. We make use of a high-resolution

observational precipitation dataset, APHRODITE

(Yatagai et al. 2012), to evaluate the ability of the

models to capture observed rainfall and its tele-

connections. APHRODITE rainfall data is created from

rain gauge observations and has been interpolated on a

0.258 3 0.258 grid spanning from 1951 to 2007. In addi-

tion, the GPCP rainfall dataset is used, which is on a

2.58 3 2.58 resolution for the period 1979–2014 [Adler

et al. 2003; GPCP data provided by the NOAA/OAR/

ESRL Physical Sciences Division (PSD), Boulder,

Colorado, from their website at http://www.esrl.noaa.

gov/psd/]. GPCP data is based on data from rain

gauge stations, satellites, and sounding observations

that have been merged to estimate monthly rainfall.

We also use satellite-based daily rainfall data from

the Tropical Rainfall Measuring Mission (TRMM;

Simpson et al. 1996) for November–December of 2015,

which is on a high-resolution grid of 0.258 3 0.258.
Another high-resolution gridded precipitation dataset

from the University of Delaware is used, which is

on 0.58 longitude 3 0.58 latitude for the period 1900–

2010 (Legates and Willmott 1990). Daily SLP for

November–December of 2015 is from a global atmo-

spheric reanalysis product, ERA-Interim (Dee et al.

2011), produced by the European Centre for Medium-

RangeWeather Forecasts (ECMWF). SLP data is on a

0.758 3 0.758 spatial grid.

b. Models

We use a suite of GFDLmodels for our investigation:

Climate Model, version 2.1 (CM2.1; Delworth et al.

2012), the Forecast-Oriented Low Ocean Resolution

model (FLOR; Vecchi et al. 2014), the flux-adjusted

version of FLOR (FLOR-FA; Vecchi et al. 2014), and a

high-resolution version of FLOR (HiFLOR; Murakami

et al. 2015a). FLOR comprises high-resolution atmo-

sphere and land components (0.58 3 0.58) and a

low-resolution ocean component at 18. FLOR-FA is the

flux-adjusted version of FLOR, which has been artifi-

cially bias-corrected to provide climatological SST and

wind stress close to observed estimates. FLOR and

FLOR-FA are known to have better climate simulation
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than CM2.1, which further leads to improved simula-

tion of teleconnections and predictions (Vecchi et al.

2014; Msadek et al. 2014; Winton et al. 2014; Jia et al.

2015; Yang et al. 2015; Krishnamurthy et al. 2015;

Delworth and Zeng 2016; Zhang and Delworth 2015;

Krishnamurthy et al. 2016). The high-resolution version

of FLOR, HiFLOR, has a resolution of atmosphere and

land at 25 km and the same ocean resolution as FLOR.

HiFLOR improves the simulation and prediction of

frequency and intensity of tropical cyclones (TCs)

compared to FLOR (Murakami et al. 2015a), and better

reproduces precipitation extremes over the United

States (van der Wiel et al. 2016) and surge events over

the Gulf of California (Pascale et al. 2016).

Weuse preindustrial (1860-control), present-day (1990-

control), climate of the twentieth century (20C3M), and

2xCO2 simulations from CM2.1, FLOR, FLOR-FA, and

HiFLOR to evaluate the model in simulating the north-

east monsoon and teleconnections, and investigate if the

probability of extreme flood events over Chennai in-

creases in the future . Preindustrial and present-day

control simulations have radiative forcing fixed at 1860

and 1990 levels, respectively. The number of years of

data used for our analysis is 200, 600, 500, and 300 for

present-day control simulations using CM2.1, FLOR,

FLOR-FA, and HiFLOR, which will be referred to

hereafter as CM2.1-1990, FLOR-1990, FLOR-FA-

1990, and HiFLOR-1990, respectively. To test the

ability of GFDLmodels to simulate the mean monsoon

and its teleconnections, we predominantly use the 1990

control runs, unless otherwise noted. For preindustrial

control simulations, we make use of 900, 900, and 2000

years of data from CM2.1, FLOR, and FLOR-FA,

which will be referred to hereafter as CM2.1-1860,

FLOR-1860, and FLOR-FA-1860, respectively.

In addition, in order to understand the future changes

in the probability of Chennai-like flood events, historical

forcing simulations are also utilized from FLOR and

FLOR-FA, which will be referred to as FLOR-20C3M

and FLOR-FA-20C3M, respectively. Both FLOR and

FLOR-FA have 5-member ensembles integrated from

1861 to 2040, where historical anthropogenic and aero-

sol forcing are prescribed from 1861 to 2005 and an

RCP4.5 scenario is prescribed from 2006 onward with no

volcanic forcing beyond 2006. A 35-member ensemble

of FLOR-FA is also used, which is integrated from 1941

to 2040 with a similar forcing scenario as the above

5-member ensemble. This large ensemble data from

FLOR and FLOR-FA has been successfully used in at-

tribution studies of hurricanes over Hawaii (Murakami

et al. 2015b), accumulated cyclone energy over the west

North Pacific Ocean (Zhang et al. 2016), winter storms

(Yang et al. 2015), heat waves (Jia et al. 2016), and

precipitation-induced extreme floods (van der Wiel

et al. 2017) over the United States.

To explore the effect of increasing greenhouse gases

on extreme flood events, we also analyze the 2xCO2 runs

based on the FLOR-FA-1990 simulation, which will be

referred to as FLOR-FA-1990.2CO2. It comprises a

2-member ensemble, which starts at year 101 of the

FLOR-FA-1990 run with CO2 increasing at the rate of

1% yr21, doubling after 70 yr and held constant there-

after. We use 210 yr of data for our analysis. This model

run has also been used in the study of precipitation ex-

tremes over the United States (van der Wiel et al.

2016, 2017).

3. Results

a. Simulation of the northeast monsoon

1) MEAN STATE AND VARIABILITY

We first investigate the ability of the suite of GFDL

models to simulate the mean state and variability of the

northeast monsoon rainfall. Since we are motivated to

understand the probability of occurrence of Chennai-

like flood events in the future, we show the results for

November–December, which coincide with the peak

rainfall over Chennai during 2015. The CM2.1 model

simulates weaker-than-observed mean rainfall over the

northeast monsoon region (Figs. 1a,c). The higher-

resolution FLOR model improves the simulation of

mean rainfall (Fig. 1e). FLOR-FA, the flux-adjusted

version of FLOR, shows further improvement in simu-

lation of mean rainfall (Fig. 1g), especially over coastal

regions, although the mean is slightly higher than in

observations. Similarly, FLOR and FLOR-FA have a

more realistic representation of observed variability of

the northeast monsoon rainfall compared to CM2.1

(Figs. 1b,d,f,h).

2) RELATION TO LARGE-SCALE CLIMATE: ENSO
AND BAY OF BENGAL SSTS

The northeast monsoon rainfall is significantly corre-

lated with ENSO (Nayagam et al. 2009; Kumar et al.

2007; Zubair and Ropelewski 2006). Considering that a

strong El Niño event in the tropical Pacific (Chen et al.

2016) coincidedwith the extremeChennai flood event of

2015, it is important to understand if ENSO might in-

crease the probability of occurrence of such an extreme

event. Before we investigate the effect of ENSO on

extreme floods, we first explore the ability of the GFDL

models to simulate the relationship between ENSO

and the northeast monsoon rainfall during November–

December. We define a rainfall index over the domain
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[88–178N, 708–828E] as a representative of the northeast

Indian monsoon rainfall (herein referred to as the NE-

IMR index.)1 Regression of rainfall and SST on NE-

IMR based on observations suggests that the enhanced

northeast monsoon rainfall is associated with El Niño in

the tropical Pacific and above-normal SSTs in the Bay of

Bengal (Figs. 2a,b). However, CM2.1 shows the opposite

relationship between ENSO and the northeast monsoon

rainfall, with enhanced rainfall associated with La Niña
in contrast to observations (Figs. 2c,d). The northeast

monsoon rainfall has no systematic multicentennial re-

lation with the tropical Pacific SSTs in FLOR and

FLOR-FA (Figs. 2e–h). We also show the long-term

FIG. 1. Climatology of rainfall for (a) observations, (c) CM2.1-1990, (e) FLOR-1990, and

(g) FLOR-FA-1990, and std dev of rainfall for (b) observations, (d) CM2.1-1990, (f) FLOR-

1990, and (h) FLOR-FA-1990 during November–December. Units of rainfall are in mmday21.

1 Index is defined over land for observations and includes data

over both land and ocean formodel.Analysis is repeated using only

land points for model and the results were robust.
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FIG. 2. Regression of November –December rainfall on November –December NE-IMR index for

(a) observations, (c) CM2.1-1990, (e) FLOR-1990, and (g) FLOR-FA-1990. Units are in millimeters per day per std

dev of the corresponding time series. Regression of November –December SST onNovember –DecemberNE-IMR

index for (b) observations, (d) CM2.1-1990, (f) FLOR-1990, and (h) FLOR-FA-1990. Units are in 8C per std dev of

corresponding time series. Dotted regions represent values significant at 5% significance level. Green box in

(c) represents the area over which theNE-IMR index is constructed. Correlation between theNiño-3.4 and theNE-

IMR is shown on top right side of (b), (d), (f), and (h).
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correlation between Niño-3.4 and NE-IMR (noted in

top corner of Figs. 2b,d,f,h). The long-term relationship

between ENSO and the northeast monsoon is negative

in CM2.1 compared to positive in observations, and is

close to zero in FLOR and FLOR-FA. We need to un-

derstand if this negative or weak relationship in GFDL

models is related to either the model’s inability to cap-

ture the observed relation or related to sampling vari-

ability, as we note that these model results are based on

200 years of CM2.1, 600 years of FLOR, and 500 years of

FLOR-FA, whereas the observational analysis is based

on 57 years.

FIG. 3. Histogram of correlations betweenNiño-3.4 andNE-IMR indices for 50-yr time slices

during November –December for (a) CM2.1-1990, (b) HiFLOR-1990, (c) FLOR-1990,

(d) FLOR-1860, (e) FLOR-FA-1990, and (f) FLOR-FA-1860. The red and green vertical lines

refer to correlation values based on obs data for GPCP andAPHRODITE, respectively. Black

vertical bars correspond to model. Correlation values greater than 0.27, 0.22, and 0.23 are

significant at 5% level for GPCP, APHRODITE, and models, respectively.
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Thus, in order to determine if the lack of ability of

GFDL models to simulate the apparent observed re-

lationship is due to sampling variability, the correlations

are calculated for every 40- or 50-yr time slices

(considering a sample size similar to observations). For

this purpose, we make use of long control simulations of

CM2.1 and several versions of FLOR runs such as the

preindustrial control run and present-day control run

from FLOR, the flux-adjusted version of FLOR and the

high-resolution version of FLOR, and the climate of

twentieth-century ensemble runs from FLOR and

FLOR-FA (only figures for FLOR-20C3M are shown;

FLOR-FA-20C3M shows similar results). The model

suite produces correlation values ranging from 20.6 to

0.4 (Figs. 3 and 4). CM2.1 shows predominantly negative

correlation values between Niño-3.4 and NE-IMR and

FIG. 4. Histogram of correlations between Niño-3.4 and NE-IMR indices for 40-yr time slices during November –December in FLOR-

20C3M for (a) ensemble member 1, (b) ensemble member 2, (c) ensemble member 3, (d) ensemble member 4, and (e) ensemble member 5.

The red and green vertical lines refer to correlation values based on obs data for GPCP and APHRODITE, respectively. Black vertical

bars correspond to model. Correlation values greater than 0.27, 0.22, and 0.26 are significant at 5% level for GPCP, APHRODITE, and

model, respectively.
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thus fails to capture the observed correlation (Fig. 3a).

Correlation analysis with the CM2.1-1860 control run

also yields a similar result (figure not shown). HiFLOR

shows values ranging from 20.3 to 0.1 and therefore

lacks in its ability in simulating the observed relationship

(Fig. 3b). The correlation values in FLOR and FLOR-

FA simulations range from20.4 to10.4 (Figs. 3c,d,e,f).

Hence, in FLOR and FLOR-FA, there are some time

FIG. 5. Histogram of correlations between the Bay of Bengal SST index and NE-IMR index for 50-yr time slices

during November –December for (a) CM2.1-1990, (b) HiFLOR-1990, (c) FLOR-1990, (d) FLOR-1860, (e) FLOR-

FA-1990, and (f) FLOR-FA-1860. The red and green vertical lines refer to correlation values based on obs data for

GPCP and APHRODITE, respectively. Black vertical bars correspond to model. Correlation values greater than

0.27, 0.22, and 0.23 are significant at 5% level for GPCP, APHRODITE, and models, respectively.
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slices in which the correlation value is close to obser-

vations, that is, 0.3, and the wide spectrum of correlation

values in the models falls within the range of the ob-

served correlation between ENSO and the northeast

monsoon rainfall. This is within the range of variability

of ENSO–monsoon relation in observations. Rajeevan

et al. (2012) and Yadav (2013) show that the ENSO–

monsoon relationship undergoes decadal variations with

correlations spanning from approximately 20.2 to 0.4.

Yadav (2013) has also suggested the significant role of

the Bay of Bengal SSTs on the northeast monsoon.

Thus, we perform a similar analysis as in Figs. 3 and 4 for

the relationship between the Bay of Bengal SSTs and the

northeast monsoon rainfall (Figs. 5 and 6). Although

CM2.1-1990 does not capture the observed relationship

between the northeast monsoon andBay of Bengal SSTs

FIG. 6. Histogram of correlations between the Bay of Bengal SST index andNE-IMR index for 40-yr time slices during November –December

in FLOR-20C3M for (a) ensemblemember 1, (b) ensemblemember 2, (c) ensemblemember 3, (d) ensemblemember 4, and (e) ensemble

member 5. The red and green vertical lines refer to correlation values based on obs data forGPCP andAPHRODITE, respectively. Black

vertical bars correspond to model. Correlation values greater than 0.27, 0.22, and 0.26 are significant at 5% level for GPCP, APHRODITE,

and model, respectively.
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(Fig. 6a), CM2.1-1860 does simulate this relationship

(figure not shown). FLOR models successfully capture

the observed range of correlation between the Bay of

Bengal SST and northeast monsoon rainfall. We have

also explored the probability distribution function of

rainfall anomalies at Chennai during El Niño and La

Niña years using the model simulations and gridded

rainfall data from the University of Delaware, and they

suggest similar conclusions as the correlation analysis

(figures not shown). Therefore, we conclude that the

FLOR and FLOR-FA models capture the variations in

the observed SST–monsoon relation and are suitable to

investigate if the probability of the extreme northeast

monsoon rainfall events increases during ENSO and

Bay of Bengal SST events.

b. Role of radiative forcing

Based on the results stated in section 3a(1) and 3a(2),

we conclude that the FLOR and FLOR-FA models

adequately simulate the mean state, variability, and

teleconnections associated with the northeast monsoon.

Thus, we make use of FLOR and FLOR-FA to in-

vestigate if the radiative forcing increases the odds of

occurrence of Chennai-like flood events in the future.

FIG. 7. Probability of aggregate rainfall greater than 1m in FLOR-FA-20C3M based on

(a) 35 ensemblemembers for 1941–2040 and (b) 5 ensemblemembers for 1861–2100 in a 30-yr

moving window. Shaded regions represent the std error calculated from a bootstrap sample.
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Since we are investigating the Chennai-flood event,

hereafter we analyze the rainfall at the grid point over

Chennai (13.088N, 80.278E). The accumulated rainfall

over Chennai was 1416.8mm during November–

December of 2015 (Ray et al. 2016); thus, we use the

criteria of 1m to investigate the probability of occur-

rence of a Chennai-like flood event and the factors that

may lead to such events. Based on the FLOR-FA-1860

run, 1m of rainfall corresponds to the 97.8th percentile.

The probability of aggregate rainfall greater than 1m in

FLOR-FA-20C3M based on 35 ensemble members

from 1941 to 2040 shows an increasing trend from 2000

onward (Fig. 7a), suggesting an increase in Chennai-like

flood events in the future consistent with the observed

increasing trend of the northeast monsoon rainfall

(Rajeevan et al. 2012). However, similar analysis of a

longer FLOR-FA-20C3M run based on five ensemble

members from 1871 to 2100 does not indicate any trend

in rainfall (Fig. 7b), and the trend from 2000 onward as

seen in Fig. 7a appears to be part of long-term vari-

ability. Thus, there is no indication that radiative forcing

increases the probability of Chennai-like flood events in

future. Similar analysis of long simulations using in-

creased ensemble size will enhance the confidence in

these results.

It has been shown in observations that extreme rain-

fall events during the northeast monsoon increase under

global warming (Naidu et al. 2012; Prakash et al. 2013).

Thus, we also explore the possibility of an increase in

Chennai-like flood events in a warming scenario. We

calculate the probability of aggregate rainfall greater

than 1m in the 2xCO2 run and compare these proba-

bilities to the preindustrial and present-day control

simulations (Fig. 8). Although the 1990-control run

shows a higher probability of Chennai-like floods rela-

tive to the 1860-control run, the probability of aggregate

rainfall greater than 1m over Chennai is not higher than

the 1990-control run when the CO2 concentration is

doubled. Thus, based on Fig. 8, it is inconclusive that the

probability of a Chennai-like flood event may increase

in a warming scenario. Therefore, we conclude that

there is no robust evidence to attribute the Chennai

flood event of 2015 to anthropogenic forcing and that

there is no evidence either to indicate that the odds of

occurrence of Chennai-like flood events may increase

in a future warming scenario.

c. Role of large-scale climate: Tropical SSTs

Further, another group of studies suggests that the

observations show an increasing trend of the northeast

monsoon rainfall, which is attributed to the increase in

the tropical Indo-Pacific SSTs (Yadav 2012; Naidu et al.

2012). Therefore, we explore the effect of large-scale

climate such as SSTs in increasing the odds of occur-

rence of extreme floods over Chennai. Considering

that a strong El Niño event was prevalent in the tropical

Pacific (L’Heureux et al. 2017) during the extreme

Chennai flood event of 2015 and studies suggesting the

role of Pacific SSTs in modulating the northeast mon-

soon (Nayagam et al. 2009; Kumar et al. 2007), we an-

alyzed the conditional probability of rainfall over

Chennai during El Niño and La Niña events based on

the standardized Niño-3.4 index. Figure 9a suggests that
the probability of occurrence of a Chennai-like flood

event does not favor either El Niño or La Niña in the

tropical Pacific. Thus, the conditional probability of

extreme floods during ENSO years suggests that ENSO

may not increase the odds of occurrence of extreme

flood events over Chennai (Fig. 9a). Further, in order to

understand if the SSTs from other oceanic basins might

play a role, we construct the composite of SST over

those years with aggregate rainfall over Chennai greater

than 1m and compare it to SSTs during 2015 (Fig. 10b).

Figure 10b does not show any signature in the tropical

Pacific consistent with Fig. 9a. However, comparing the

composite to SSTs in 2015, we notice that the warming

in the Bay of Bengal is a common signature between

Figs. 10a and 10b.

This suggests that the extreme rainfall events may be

related to warm Bay of Bengal SSTs. Observational

studies have also suggested a link between the northeast

monsoon and IndianOcean SSTs (e.g., Naidu et al. 2012;

Yadav 2013). Thus, we construct a Bay of Bengal SST

index to understand its effect on Chennai rainfall. The

Bay of Bengal SST index is defined as the area-averaged

SSTs over the domain [58–258N, 808–1008E]. The SST

FIG. 8. Probability of aggregate rainfall greater than 1m in

FLOR-FA-1860, FLOR-FA-1990, and FLOR-FA-1990.2CO2. For

FLOR-FA-1860 and FLOR-FA-1990, the sample size is 420 yr

each. For FLOR-FA-1990.2CO2, data is combined from 2 ensem-

ble members of each run for 210 yr, resulting in a total sample size

of 420 yr. Vertical lines within shaded bars represent the std error

calculated from a bootstrap sample.
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index is further detrended to remove any spurious

trends and calculated relative to tropical SSTs and

hereafter referred to as SST*. We use relative SSTs as

precipitation is shown to be sensitive to SST deviations

from tropical mean (Vecchi and Soden 2007; Xie et al.

2010). Conditional probability is calculated based on the

standardized Bay of Bengal SST* index greater than 1.0

standard deviation (SD) and less than 21.0 SD for

rainfall at Chennai greater than 1m (Fig. 9b). Results

suggest that the probability of occurrence of extreme

flood events over Chennai is higher when Bay of Bengal

SSTs are above normal compared to below normal. We

also explore if the probability of an extreme flood event

is sensitive to the strength of Bay of Bengal SSTs. Table 1

shows that the warmer the Bay of Bengal SSTs, the

higher the probability of occurrence of extreme flood

events over Chennai. It is to be noted that these results

are based on a single model and with a horizontal res-

olution of 50 km. These results need to be tested with

high-resolution models and with the availability of a

longer sample size of observations.

Finally, we investigate the circulation features that are

associated with extreme flood events over Chennai.

Composites of rainfall for years with aggregate rainfall

FIG. 9. Conditional probability for November –December based on (a) aggregate rainfall at

Chennai greater than 1m and Niño-3.4 greater than 1.0 SD (red), and aggregate rainfall

at Chennai greater than 1m and Niño-3.4 less than21.0 SD (blue), and (b) aggregate rainfall

at Chennai greater than 1m and Bay of Bengal SST* index greater than 1.0 SD (red), and

aggregate rainfall at Chennai greater than 1m and Bay of Bengal SST* index less than 21.0

SD (blue). Black solid line with circles represents the probability of aggregate rainfall greater

than 1m over Chennai in both (a) and (b).
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over Chennai greater than 1m in the model and ob-

served rainfall during November–December 2015 are

shown. Comparison of Figs. 11a and 11b indicates that

the model successfully captures the pattern of observed

rainfall that led to the extreme flood event in Chennai

during 2015. We explore the weather phenomenon that

might have contributed to this extreme flood event. For

this purpose, daily composites of rainfall and SLP

for daily rainfall greater than 100mmday21 are shown for

observation during November–December of 2015 and in

themodel.2 The observed daily composite of SLP shows a

low pressure over the Bay of Bengal, which is conducive

for enhanced rainfall over Chennai (Figs. 12a,b). Com-

posites of model-simulated daily rainfall and SLP also

indicate extreme rainfall over Chennai, which is accom-

panied by favorable weather conditions such as low SLP

near the coast over the Bay of Bengal (Figs. 12c,d). The

only caveat in the model is that the SLP shows a deeper

low and northward shift than observations. The differ-

ences between observations and the model may also be

related to sampling variability, as the observational

composite involves fewer days (3 days), whereas the

model composite includes a large sample size (786 days).

The relationship between Chennai rainfall and low

pressure as seen in observations and the model is con-

sistent with studies suggesting that extreme rainfall over

Chennai is a result of persistent depression over the warm

Bay of Bengal, which favors the transport of moisture

from the Bay of Bengal (Narasimhan et al. 2016; Ray

et al. 2016). The warm SSTs over the Bay of Bengal may

FIG. 10. (a) Obs SST for November –December of 2015 and (b) composite of SST for ag-

gregate rainfall greater than 1m for FLOR-FA-1860. Units are in 8C. Dotted regions represent

values significant at 5% significance level.

2 Criterion of 100mmday21 is based on daily time series of

rainfall shown in Ray et al. (2016), which indicates that the days

with extreme rainfall over Chennai exceeded 100mmday21 during

November –December of 2015.
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have also enhanced the possibility of occurrence of such

low-pressure systems. We explore this possibility by an-

alyzing the low SLP days during warm and cold Bay of

Bengal events. Figure 13 suggests that warm Bay of

Bengal SSTs tend to increase the number of days with low

SLP relative to cold Bay of Bengal SSTs.

4. Conclusions and discussion

Chennai received an unprecedented amount of rain-

fall of 1416.8mm during November–December of 2015,

which caused immense loss of life and property. It is of

utmost importance to understand if such events might

occur in the future for planning andmitigation purposes.

Thus, we investigate the probability of occurrence of

such an extreme flood event over Chennai. We also

explore the causes that might lead to such an intense

event. Annual rainfall over Chennai is derived pre-

dominantly from the northeast monsoon. Previous

studies highlight the role of SSTs in the Indian and Pa-

cific Oceans in addition to global warming in the en-

hancement of the northeast monsoon. Thus, the main

objective of this study is to determine the effect of

ENSO, Indian Ocean SSTs, and radiative forcing in

changing the odds of occurrence of extreme flood events

over Chennai, similar to the one that was reported

during November–December 2015.

Since there exists only a limited sample size in obser-

vations, to understand such rare extreme events, wemake

use of a suite of GFDL simulations to address our ob-

jective.We explored the ability ofGFDLmodels, CM2.1,

FLOR, FLOR-FA, and HiFLOR, to simulate the mean

state, variability, and associated teleconnections of the

northeast monsoon. FLOR and FLOR-FA have better

simulation of the above-mentioned observed features of

the northeast monsoon than CM2.1 and HiFLOR. Thus,

we employ series of model simulations from FLOR and

FLOR-FA to explore the probability of occurrence of

Chennai-like extreme flood events in the future. For this

purpose, we use the criterion of aggregate rainfall at

Chennai (at a grid point: 13.088N, 80.278E) greater than
1m to represent the Chennai flood event of 2015.

The probability of aggregate rainfall over Chennai

greater than 1m in a large 35-member ensemble run from

FLOR-FA-20C3M shows an increasing trend after the

2000s, thus suggesting an increase in the odds of occur-

rence of Chennai-like flood events in future, which is

consistent with observational studies (Rajeevan et al.

2012). However, a longer five-member ensemble run in-

dicates that the trend after the 2000s is part of long-

term variability. We also explore the probability of the

FIG. 11. (a) Obs rainfall during November –December of

2015 and (b) composite of rainfall for aggregate rainfall greater

than 1m for FLOR-FA-1860 during November –December. Units

are in mmday21. Dotted regions represent values significant at 5%

significance level.

TABLE 1. Probability of Bay of Bengal SSTs is listed in second row for criteria of Bay of Bengal SSTs shown in first row. Conditional

probability of aggregate rainfall over Chennai greater than 1m is listed in third row for the criteria of Bay of Bengal SSTs shown in

first row.

SST , 22s SST , 21s 21s . SST , 22s SST . 1s SST . 2s

Probability (SST) 2.2% 16% 67% 16% 1.7%

Conditional probability (P 5 1mjSST) 0% 0.94% 1.7% 5.3% 8.8%
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occurrence of Chennai-like flood events in a warming

scenario by comparing the probability in double CO2 runs

to 1860 and 1990 control runs. Although the probability of

extreme flood events increases from the 1860 to 1990

control run, the probability does not show a dramatic in-

crease when greenhouse gas forcing is doubled. There-

fore, there is no robust evidence indicating that the

radiative forcing increases the odds of occurrence of ex-

treme floods over Chennai. Van Oldenborgh et al. (2016)

also concluded that extreme 1-day rainfall over Chennai

does not show an increasing trend under global warming.

Several studies suggest that the large-scale SST forc-

ing from the Indian and Pacific Oceans determines the

variability of the northeast monsoon. Since a strong El

Niño event coincided with the extreme flood event over

Chennai during 2015, we determine the conditional

probability of extreme flooding over Chennai during

ENSO years. The probability of occurrence of intense

flooding over Chennai is not sensitive to the state of the

tropical Pacific, either to El Niño or La Niña. But the
probability of occurrence of extreme floods over

Chennai increases during the years when warm SSTs

FIG. 12. Composite of (a) daily rainfall and (b) daily SLP during November –December of 2015 in observations,

and (c) daily rainfall and (d) daily SLP based on daily rainfall greater than 100mmday21 in FLOR-FA-1860 during

November –December. Units for rainfall and SLP are in mmday21 and hPa. Dotted regions represent values

significant at 5% significance level.
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prevail over the Bay of Bengal. These results suggest that

the local SSTs, rather than remote forcing, play a domi-

nant role in changing the probability of floods over

Chennai. The warm Bay of Bengal is known to induce

more storms (Balaguru et al. 2014). In our analysis,

composites of daily SLP in observations during 2015 and

models indicate a low SLP over the Bay of Bengal col-

located with warm Bay of Bengal SSTs, which favors the

transport of moisture from warm oceanic regions to the

land. We also show that the warm SSTs over the Bay of

Bengal tend to increase the number of days with low SLP

relative to cold SSTs. These atmospheric and oceanic

conditions are conducive for an extreme flood event over

Chennai. This is consistent with the results ofNarasimhan

et al. (2016), which indicate that the intense rainfall over

Chennai was a result of enhanced moisture transported

by a depression over the Bay of Bengal.

In this study, we reviewed extreme precipitation-

induced flooding. Extreme precipitation alone does not

lead to floods; land surface conditions and lack of proper

stormmanagement can play a significant role in causing or

mitigating floods. It is suggested that the lack of proper

urban infrastructure planning made the impacts of the

Chennai flood worse (Jayaraman 2015); we hope the re-

sults of this study, which quantify the risk of Chennai

precipitation extremes in the present and future climate,

can help guide the planning of, for example, infrastructure

and housing projects for future events. Thus, the results

from this study that show that the years with warmBay of

Bengal SSTs may increase the odds of occurrence of a

Chennai-like flood event are crucial for decision-makers

for adaptation and mitigation purposes. This information

will help them plan for any future risks that may be posed

by extreme flooding over Chennai and in disaster pre-

paredness and management. While this study provides

insights on an individual event and its likelihood for

change in the future, the methodologies and framework

used in this investigation can be applied elsewhere.
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