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ABSTRACT

Numerical weather, climate, or Earth system models involve the coupling of components. At a broad level, these

components canbe classified as the resolvedfluiddynamics, unresolvedfluiddynamical aspects (i.e., those representedby

physical parameterizations such as subgrid-scale mixing), and nonfluid dynamical aspects such as radiation and micro-

physical processes.Typically, each component is developed, at least initially, independently.Oncedevelopment ismature,

the components are coupled to deliver a model of the required complexity. The implementation of the coupling can

have a significant impact on themodel. As the error associatedwith each component decreases, the errors introduced by

the coupling will eventually dominate. Hence, any improvement in one of the components is unlikely to improve the

performanceof theoverall system.The challenges associatedwith combining the components to create a coherentmodel

are here termed physics–dynamics coupling. The issue goes beyond the coupling between the parameterizations and the

resolved fluid dynamics. This paper highlights recent progress and some of the current challenges. It focuses on three

objectives: to illustrate the phenomenologyof the coupling problemwith references to examples in the literature, to show

howtheproblemcanbeanalyzed,and tocreateawarenessof the issueacross thedisciplinesandspecializations.The topics

addressed are different ways of advancing full models in time, approaches to understanding the role of the coupling and

evaluation of approaches, coupling ocean and atmosphere models, thermodynamic compatibility between model com-

ponents, andemerging issues suchas those that arise asmodel resolutions increase and/ormodels use variable resolutions.

1. Introduction

Weather, climate, and Earth system models approxi-

mate the solutions to sets of equations that describe the

relevant physics and chemistry. These equations repre-

sent, for example, balances of momentum, energy, and
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mass of the appropriate system. Discrete approxima-

tions in space and time to these continuous equations

are necessary to solve these equations numerically. Cre-

ating a single, coherent, and consistent discretization of

an entire system of equations covering the entire range of

spatial and temporal scales, even for one component such

as the atmosphere, is indeed challenging, if not an im-

possible task. Even if it is possible, the numerical solution

of such a system (spanning all possible scales) is currently

beyond the reach of even the most powerful computers.

Therefore, the system is separated into components that

are discretized mostly independently of each other and

then coupled together in some manner. These compo-

nents can broadly be classified as comprising the resolved

fluid dynamical aspects of the atmosphere or the ocean,

unresolved fluid dynamical aspects (e.g., those repre-

sented by physical parameterizations such as subgrid-

scale mixing), and nonfluid dynamical elements such as

radiation and microphysical processes.

The challenges associated with bringing together all

the various discretized components to create a coher-

ent model will be referred to here as physics–dynamics

coupling. The term physics–dynamics coupling has

evolved from the fact that the resolved fluid dynamics

components are commonly known as the dynamical

cores or simply ‘‘dynamics,’’ and the physical parame-

terizations that represent the unresolved and under-

resolved processes and the nonfluid dynamical processes

are collectively referred to as ‘‘physics.’’ The weather,

climate, and Earth system modeling communities have

relatively recently started to make focused efforts on

addressing physics–dynamics coupling in the broader

sense as a topic by itself (Gross et al. 2016a).

Figure 1a schematically shows the variety of model

components and the different aspects of discretizing them

in both space and time, as well as the coupling between

them. For simplicity, Fig. 1a includes only two component

models: the atmosphere and the ocean. However, mod-

eling systems often include a large number of other

components, such as land, glacier, sea ice, atmospheric

chemistry, and ocean biogeochemistry models. These

components are inherently coupled to each other through

the momentum, mass, and energy exchanges at their

interfaces.

The parameterizations are typically organized by pro-

cesses: for example, cumulus convection and cloud mi-

crophysics in the atmosphere and lateral and vertical

mixing in the ocean. Some of these processes are sym-

bolized in Fig. 1a by clip art icons. Processes reside at

different locations in the time–space domain. For ex-

ample, the characteristic time scales associated with

cloud microphysics and planetary-scale advection are

vastly different. It can also be shown that the model

performance can be improved by grouping specific pa-

rameterizations together and using predictors to adjust

the input from the dynamics into the parameterizations

(Wedi 1999), sampling different times on the time axis.

The wide ranges of spatial and temporal scales that

are associated with the different components of weather,

climate, and Earth system models have naturally

resulted in different focuses in research. The continual

increase of resolution means that increasing speciali-

zation is needed to address the physical processes that

emerge on smaller and smaller scales as the grid size

decreases. This specialization inevitably leads to the

compartmentalization of the model codes and devel-

opment teams. This compartmentalization and sepa-

ration is necessary to understand and gain insights into

the complex system and to render the model develop-

ment manageable and tractable, but they are also in

direct conflict with the desirability of unifying pro-

cesses to allow tighter coupling and to eliminate cou-

pling errors. This conflict is one of the most significant

challenges for physics–dynamics coupling.

The compartmentalization leads to what is known as

splitting, in which the impact of a process on the evo-

lution of a model state is evaluated in isolation. Splitting

assumes that the processes are either evaluated based on

the same state and, hence, do not see the impact of other

processes on that state, or they are evaluated sequen-

tially (Donahue and Caldwell 2018). Both approaches

are inaccurate reflections of reality. While splitting is

useful and often unavoidable, it can lead to undesirable

features in the numerical solutions. For example, pro-

cess splitting can impact the model performance when

processes compete for limited resources (such as the

total water content of a parcel of air). This competition

is particularly acute if processes are allowed to operate

in isolation for a discrete time that is longer than their

appropriate physical time scale. The modeling errors

inevitably introduced by splitting are a core theme of the

present paper.

Related to weather forecasting models are the ex-

amples presented below, such as the negative bias in the

24-h wind forecast noted by Beljaars et al. (2004); the

accumulation of convective available potential energy

(CAPE), allowing convection to initiate farther from the

equator (Williamson and Olson 2003); impacts on the

intertropical convergence zone (ITCZ), which may be

relevant to forecasting in areas close to the equator; the

coupling between the atmosphere and the ocean, which,

despite the slowly changing ocean state, has been shown

to be vital for forecasting on time scales of hours to

weeks (Smith et al. 2018); and examples of the coupling

of a weather forecasting model coupled to a regional

oceanic model for a realistic simulation of a tropical
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cyclone. The gray zone topic features examples of grid-

point storms and operational forecasting of downbursts

and scale implications on the forecast error growth.

The illustrations made using examples of climate models

apply directly to both the Earth system models and

weather models, though the shorter forecast period may

mean that some errors do not manifest themselves

directly.

FIG. 1. Schematic representation of physics–dynamics coupling. (a) Two models: an ocean

model and an atmosphere model. Both of these have spatial scales (here indicated by the

plane with red lines) and temporal scales (indicated by the blue axis). These are coupled

(thick lines); that means one domain in the spatial plane maps into the spatial plane of the

other model (thick red line) and similarly in the temporal axis (thick blue line). In the spatial

plane, aspects such as grid type, fixedvs variable resolution, one-dimensional vs three-dimensional,

and fine vs coarse are shown as some of the aspects of the spatial resolution that can vary between

models and do not necessarily have a straightforwardmapping. Then, each of these models has its

ecosystem of parameterizations (an arbitrary set of processes was chosen here for illustration

only), which interact with the model and themselves via coupling. These parameterizations also

occupy potentially—or almost certainly—different areas on the spatial plane and temporal axis.

All of this exists in front of a background problem of thermodynamics, which ultimately governs

them all (or ought to, anyhow). (b) Four-tier scheme of investigation, ranging from (by necessity)

abstract analysis via reduced equation sets (with less necessity for abstraction) to simplified physics

tests and finally full model runs. The complexity of the analysis increases from one to the other.

The manner in which the results and conclusions from the experimentation can inform the pro-

duction runs ranges from ‘‘difficult’’ (results are expected in the form of guidance or informing

a choice that needs to be made in the design phase) to ‘‘direct’’ (a benefit can be demonstrated

straightaway by producing an improved forecast).
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In early coupled climate models, such as the simulations

of the global atmospheric circulation coupled to ocean

processes presented in the late 1960s by Manabe and

Bryan (1969), the much lower spatial resolution and much

simpler model formulation were the dominant sources of

model error. However, the rapid enhancement of com-

puting capabilities has allowed for a substantial increase in

model resolution as well as the incorporation of a much

more comprehensive description of subgrid-scale phe-

nomena, such as a more detailed description of micro-

physical processes. These advances have led to reduced

errors in the individual model components. However, the

benefits of this reduction in errorwill not be fully realized if

the errors introducedby the coupling between components

are not also reduced. Thus, numerical issues in coupling

can be a bottleneck in the reduction of overallmodel error.

Therefore, the formulation and implementation of the

coupling—ideally, as a minimum—should

d represent correct asymptotic behavior (see sections 2

and 3);
d not introduce additional errors between different

components, such as atmosphere and ocean (or at

least the errors introduced should be smaller than the

errors of each of the components; see section 5);
d respect the physical laws such as conservation of mass,

momentum, and energy and the laws of thermody-

namics (see section 6);
d represent accurately the interaction between compo-

nents that represent a possibly vast range of time and

space scales (see section 7);
d accommodate different types of discretization methods

(e.g., spectral transform vs finite difference or finite ele-

ment methods; see section 8a); and
d allow the possible use of different resolutions between

components including variable and uniform resolu-

tions (see section 8b).

Therefore, as Fig. 1a illustrates, physics–dynamics cou-

pling is not limited only to the interaction between

physics and dynamics. A key challenge is the design of

time–space integration schemes for the different com-

ponents that, when combined, reproduce the time–

space-averaged behavior of the whole system being

modeled.

The remainder of the paper is organized as follows.

Section 2 focuses on issues related to process splitting in

the time-stepping algorithm. The time–space conver-

gence behavior of current models is also discussed.

Section 3 then proceeds to illustrate convergence from

the perspective of time–space averaging and the as-

sumption of separation of scales, as well as how to ac-

curately reproduce the asymptotic limits when subgrid

transports play a crucial role. Section 4 emphasizes that

ideally, there would be a standard test procedure and

established benchmark results across a whole range of

models, with tests that isolate the components while still

reflecting the model complexity and hence maintaining

relevance. Section 5 focuses on the coupling between

different models, such as atmosphere and ocean. Section

6 highlights the need for thermodynamic compatibility

with the laws of thermodynamics. Sections 7 and 8 dis-

cuss the complexity of the interaction of parameteriza-

tions with increased model resolution, with that increase

being either throughout the model domain or through

the use of variable resolution within a model domain.

Section 8 discusses new and emerging modeling strate-

gies of separating physics and dynamics grids (section

8a) and how time stepping/process splitting (section 2)

and scale awareness of deep convection (section 7) can

interact and pose a challenge to models using spatially

varying horizontal resolution (section 8b). The paper

finishes with conclusions and an outlook (section 9).

2. Time-stepping errors introduced by splitting

Models rely on discretizing time and space dimensions

to solve their equations numerically. These discrete time

steps and grid spacings need to be relatively large to

make calculations computationally affordable. Numer-

ical errors arise from both the spatial and temporal

discretizations. In this section, the focus is exclusively on

time discretization by discussing model behaviors with

fixed spatial resolution and different time steps.

a. Impact of time-stepping errors

Time step size can have a substantial impact on the

behavior of weather and climate models. For example,

one metric of interest for future climate prediction is the

change in global-mean surface temperature resulting

from a doubling of carbon dioxide (CO2) concentration

in the atmosphere. This temperature change was shown

to vary by a factor of 2 in one version of the ECHAM5

climate model (Roeckner et al. 2003, 2006) when the

model’s time step size was varied between 5 and 40min

(Fig. 2). While solution sensitivity to time step size is not

at all surprising from a mathematical perspective, such

large discrepancies are undesirable numerical artifacts

for model users who assume the models reflect the state-

of-the-art understanding of the workings of the real-

world system.

Sensitivity experiments like the one shown in Fig. 2

are rarely conducted with weather and climate models.

Hence, the magnitude of the numerical artifacts is un-

clear in most models. In practice, model developers of-

ten tend to use the longest possible step size and then

go through a time-consuming tuning process in which
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uncertain model parameters are adjusted to match

the model output with a chosen set of observations

(Hourdin et al. 2017). One can argue that it might be

possible to ‘‘tune away’’ the time step sensitivity by us-

ing different parameter values for different step sizes;

however, there exists the danger that such tuning might

result in error compensation that cannot be guaranteed

for simulations under different forcing scenarios. Re-

vision of themodel and subsequent reduction of the time

step sensitivity can provide confidence that results from

the numerical models are reasonably accurate solutions

of the underlying continuous physics equations, hence

improving the credibility of future climate projections.

Strong sensitivities to model time step have been seen

in other models as well. Wan et al. (2014) showed that

when the physics time step was reduced from the default

30 to 4min in the Community Atmosphere Model

(CAM) version 5, the simulated December–February

mean, globally averaged large-scale precipitation rate,

liquid water path, and ice water path increased by about

10%, 20%, and 30%, respectively. Zhang et al. (2012)

found that the impact of swapping aerosol nucleation

parameterizations on sulfuric acid gas and aerosol con-

centrations was overwhelmed by the effect of chang-

ing the time-stepping scheme used for solving the

sulfuric acid gas equation in the aerosol–climate model

(ECHAM-HAM). For the Integrated Forecast System

(IFS), Beljaars et al. (2004) showed that the root-mean-

square difference in 10-m wind speed between two 24-h

weather forecasts conducted with 10- and 5-min step

sizes was 1.39m s21. They also showed that this root-

mean-square difference could be reduced by about 1/2

when the numerical coupling between the dynamical

core and turbulent momentum diffusion was revised to

ensure a proper balance between the two processes.

Williamson (2002) mentioned that when the splitting

method within the parameterization suite was modified,

the National Center for Atmospheric Research (NCAR)

Community Climate Model (CCM) version 3 (CCM3)

produced a climate equilibrium that was substantially

different from the default model in some small contigu-

ous areas. In other areas, the climates were similar, but

the balances producing them were different. Most of the

studies cited above and the additional examples men-

tioned below indicate that it is often the combination of

coupling between processes and long time steps that cause

time-stepping problems in contemporary models. The re-

mainder of this section is focused on coupling issues,

though it is acknowledged that long time steps can cause

issues within individual processes as well.

b. Splitting in the solution procedure

The process coupling discussed in this section includes

the relationship between different parameterizations,

the connection between a parameterization and the host

model or between different physical phenomena within

an individual parameterization. Splitting is employed to

evaluate the tendency terms for each process and to

combine their effects to advance the discrete solution

in time.

The two most popular methods of splitting in opera-

tional models are sequential and parallel splitting. In

sequential splitting, tendencies of the explicit processes

are computed first and are used as input to the sub-

sequent implicit fast process. Sequential splitting is in

contrast to parallel splitting, where tendencies of all the

parameterized processes are computed independently

of each other, using the same fixed state from the be-

ginning of the time step. In other words, in parallel

splitting, the individual process can only react to the

tendencies from the other processes in the subsequent

time step.

Beljaars et al. (2004) advocate sequential splitting

with processes ordered from slowest to fastest to allow

processes to feed and balance each other within each

FIG. 2. Global-mean surface temperature change (K) resulting

from a doubling of CO2 in simulations conducted with the

ECHAM5 atmospheremodel (Roeckner et al. 2003, 2006) coupled

with a slab ocean. Red and blue markers indicate high- and low-

sensitivity models, which differ only in a few uncertain parameters

in the physics parameterizations (Klocke et al. 2011). For each time

step size listed on the x axis, the global-mean surface temperature

change is computed as the difference between a 10-yr present-day

simulation and the last 10 years of a 50-yr simulation with dou-

bledCO2. The spatial resolution of the atmosphere model is T31

with 19 layers. Error bars indicate interannual variability of global-

and annual-mean surface temperature.
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model step. The benefits of sequential splitting depend

on what information from an already-calculated process

is used in subsequent process calculations. The IFS uses

both state information and tendencies from previous

processes in some subsequent process calculations

(hereafter referred to as sequential tendency splitting).

Therefore, processes see the tendencies of some of the

prior processes, but the model state is updated at the

end of the time step. CAM physics uses sequential

update splitting, where a process operates solely on the

model state updated by the immediately preceding

process. Since sequential tendency splitting shares

more information than sequential update splitting or

parallel splitting, it unsurprisingly performs better.

More sophisticated coupling has also been shown to be

beneficial for specific processes. For example, in the

Semi-Lagrangian Averaging of Physical Parameteri-

zations (SLAVEPP) algorithm of Wedi (1999), the

tendencies are evaluated at both the departure and

arrival points of the semi-Lagrangian trajectory and

then averaged.

c. Issues with splitting

Splitting causes an error when interacting processes

are considered in isolation. The errors can be large—and

the numerical solutions can depend strongly on process

ordering—when splitting is used in combination with

time steps on the order of, or longer than, the inherent

process time scales. Two types of process interactions

are commonly seen in the atmosphere: competition and

compensation. Competition refers to cases where mul-

tiple processes consume the same resources (e.g., cloud

water or CAPE), whereas compensation relates to cases

where one process is a source for something the other

process consumes. A situation for competition arises

in the consumption of CAPE, which can be removed

by shallow convection, deep convection, or resolved-

scale motions. Williamson (2013) provides an example

of competition for CAPE in a sequential update split

model. Explicit stratiform condensation is considered a

fast process in CAM4, and the associated latent heating

is applied in a single time step as a hard adjustment,

while CAM4’s deep convection parameterization has a

fixed time scale of 30min for CAPE removal. When the

model time step is shortened, the ability of these pro-

cesses to consume convective instability is altered: the

fixed time scale process does less, and the hard adjust-

ment does more, resulting in extreme vertical motion

and heavy precipitation due to the interaction between

the dynamics and the parameterizations. While this

might be described as a time step sensitivity, it is

instead a sensitivity to the ratio of parameterization time

scales, which changes with time step.

Less severe sensitivities have been observed by other

investigators in scenarios of competition between pro-

cesses. Mishra and Sahany (2011) found sensitivity to

time step in the average tropical rainfall amount in

CAM3 multiyear simulations, noting it was associated

with the change in partitioning between convective and

large-scale precipitation. Reed et al. (2012) showed

sensitivity in the strength of idealized tropical cyclones

in high-resolution CAM5 to time step, relating it to the

accompanying change to the partitioning between con-

vective and large-scale precipitation. In both studies, the

time scale of the convection was not changed, and thus,

the ratio of time scales changed. This issue of parti-

tioning is a typical symptom observed in models that use

spatial resolutions in the gray zone of cumulus convec-

tion (section 7). Although the examples cited above are

all from models that use sequential splitting, competi-

tion for resources is also a problem for parallel splitting

because it can result in unrealistically strong removal of

resources. The most egregious cases of this are, for ex-

ample, negative concentrations of water vapor, hydro-

meteors, or other tracer species. These are typically

resolved by rescaling tendencies to prevent over-

consumption. This approach may leave more subtle ca-

ses untreated and, where applied, results in transport

that does not locally satisfy the transport equations of

the model.

Another example of the competition problem was

shown by Wan et al. (2013), in which the sulfuric acid

condensation and aerosol nucleation acted as two

sink processes in the sulfuric acid gas budget in the

ECHAM-HAMmodel. They argued that more accurate

simulations of the process rates—and consequently,

more accurate near-surface concentrations of aerosol

particles and cloud condensation nuclei—can be ob-

tained when a solver handles the competing processes

simultaneously without splitting.

The second type of process interaction that can

cause a potential splitting problem is the cases of com-

pensation; that is, one process acts as a source for

something, whereas the other process acts as a sink. If

these processes are coupled by sequential update split-

ting, the first process might push the quantity of interest

to unreasonably high levels, while the second process

might pull it to unreasonably low levels. With parallel

splitting, the consuming process does not see a state

immediately influenced by the source process until the

following time step, by which time the excess may have

been modified by some other process. An example of

such a push/pull problem with sequential update split-

ting in CAM5 was presented by Gettelman et al. (2015),

who note that macrophysics, the interplay of conden-

sation/evaporation and cloud fraction, is the primary
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source of cloud water, which is subsequently depleted by

microphysical processes. By substepping macro- and

microphysics together two times during the typical

5–30-min time step, they were able to obtain more re-

alistic model behavior. Wan et al. (2013) describe an-

other push/pull problem related to the sulfuric acid gas

budget in ECHAM-HAM. The study compared multi-

ple time-stepping schemes for the coupling of sulfuric

acid gas production and condensation. Results show that

when the discrete time step is long, compared to the

characteristic condensation time scale, sequential split-

ting between production and condensation leads to a

substantial overestimate of the condensation rate, even

when the individual processes are represented with ac-

curate solutions of the split equations. When practical to

do so, the strongly interacting sources and sinks should

be solved simultaneously. A third example is presented

by Beljaars et al. (2004) for the IFS. The near-surface

wind speed is mainly affected by the pressure gradient

force, the Coriolis force, and the turbulent friction.

Sensitivity tests showed that if the turbulent diffusion

coefficients are computed after themodel state variables

have been updated by the dynamics-induced tendencies,

positive biases in the intermediate wind speeds will lead

to overestimation of turbulent friction and thus negative

bias in the 24-h wind forecast. These results underline fur-

ther the relevance of coupling aspects, not only for climate,

but also for short- and medium-term weather forecasts.

Splitting would not cause severe problems in the cases

of process competition or compensation if themodel time

step were sufficiently short to resolve the time scales as-

sociated with the individual processes and their in-

teractions. In that scenario, the processes—although

isolated during a single short time step—could interact

indirectly with each other at the next time step via the

updated model state. However, many of the parameter-

ized processes are fast, and long model time steps are not

uncommon in operational models where the time step

correlates with computational cost. Gettelman et al.

(2015) note that sequential update splitting with forward

Euler time stepping in CAM5 microphysics creates neg-

ative cloud water when computed tendencies are multi-

plied by inappropriately long time steps. This negative

cloud water then needs to be removed by schemes that

are not physically motivated by the underlying transport

equations, such as rescaling, as noted above. Williamson

and Olson (2003) found that aquaplanet simulations

conducted with the NCAR CCM3 model had a single

narrow peak of zonal-mean precipitation at the equator

when the Eulerian dynamical core was used, while sim-

ulations using the semi-Lagrangian dynamical core had a

double ITCZ. A double ITCZ is characterized by a pre-

cipitation minimum at the equator and two maxima that

are straddling the equator. This sensitivity was attributed

to the different time step sizes used for the physics pa-

rameterizations in the two model configurations (20min

for Eulerian, 60min for semi-Lagrangian) rather than the

dynamical cores themselves. The explanation the authors

provided was that with sequential splitting, longer time

steps lead to the accumulation of more CAPE, allowing

convection to initiate farther from the equator. The re-

sulting condensational heating and secondary circula-

tion further reinforce convection away from the equator.

Similar changes to ITCZ shape in aquaplanet simula-

tions with the CAM3 model have also been reported by

Li et al. (2011).

d. Addressing the splitting problem

Tighter coupling between processes is necessary to

alleviate the splitting problems noted in sections 2a–c.

From the perspective of time discretization alone, three

strategies have been seen in the literature. The first

strategy is the use of shorter time steps to subcycle

clusters of strongly interacting processes while keeping

the step size of the rest of the model unchanged. Such

treatment is applied to large-scale condensation and

cloud macrophysics in some versions of CAM5 and its

successors (e.g., Gettelman et al. 2015). The second

strategy uses sequential tendency splitting to allow

faster processes to better react to the effects of slower

processes, like the IFS example of dynamics–turbulence

coupling in weather forecasts (Beljaars et al. 2004),

mentioned earlier in this section. The third strategy is

the use of specially designed solvers to handle multiple

processes simultaneously, such as the sulfuric acid gas

equation example by Wan et al. (2013) discussed in

section 2c. Methods of the second and third strategies

can be somewhat involved, and their feasibility will de-

pend on the design of the specific parameterizations.

Since it can be challenging to formulate a coherent nu-

merical coupling for complex parameterizations that

might have been designed with different concepts and

use different prognostic variables, attempts to account

for process interactions in the continuous or semi-

discrete formulation of the equations could also be

helpful. For example, thermal instability diagnosed di-

rectly from radiative heating profiles is considered in the

calculation of entrainment at the top of the cloudy

boundary layer in the turbulence schemes by Lock et al.

(2000) and Bretherton and Park (2009), which improves

the radiation–turbulence coupling from the perspective

of time stepping. Some modern parameterizations are

designed to handle multiple atmospheric processes in a

unified way. Examples include the eddy diffusivity–mass

flux (EDMF) scheme of Siebesma et al. (2007) and the

Cloud Layers Unified by Binormals (CLUBB) scheme

NOVEMBER 2018 REV IEW 3511



of Golaz et al. (2002a), both of which combine the rep-

resentations of turbulence and shallow convection.

Another example is the parameterization of Park (2014)

that represents both shallow and deep convection. Such

unified parameterizations provide an opportunity to han-

dle better the interactions between the processes they

unify, although those parameterizations can still have

strong interactions with other parameterizations, and the

time stepping has to be implemented carefully. For in-

stance, CLUBB and cloud microphysics are subcycled

together in recent versions of CAM to achieve a tighter

coupling.

e. Assessment of time step convergence

Complementary to the design of tighter coupling

methods, an assessment of solution behavior in the re-

gime of very short step sizes may provide information to

help achieve the ultimate goal of higher accuracy at

longer step sizes. In the development of time integration

methods for differential equations, convergence ana-

lyses that examine whether the numerical error de-

creases with step size at the expected rate are one of

the standard ways for verifying whether the discrete

methods and code implementation lead to the intended

outcome. Applications of such analysis to the physics

parameterizations or full complexity models are rarely

seen in the literature. The lack of interest is partly at-

tributable to the concern that physical parameteriza-

tions are often designed to work within a particular

range of time step sizes, and to use the parameteriza-

tions outside of that range may violate physical as-

sumptions, resulting in the model state converging to an

unintended or unphysical state. We argue that ideally,

the physical assumptions and numerical methods should

be clearly separated; the purpose of a time step con-

vergence analysis should be the identification of issues in

the numerical methods.

In the absence of analytic solutions, a ‘‘proxy ground

truth’’ is needed in a convergence analysis. Recent

studies by Teixeira et al. (2007) and Wan et al. (2015)

attempted to establish a ‘‘proxy ground truth’’ by run-

ning the Navy Operational Global Atmospheric Pre-

diction System (NOGAPS) and CAM5 models with

small time step sizes. Wan et al. (2015, p. 216) argued

that ‘‘convergence toward this proxy [ground truth] is a

necessary but insufficient condition for the convergence

toward the true solution.’’ In Teixeira et al. (2007),

NOGAPS was found to converge at a first-order rate

near the start of the simulations, but the chaotic nature

of nonlinear dynamical systems eventually caused sim-

ulations with different step sizes to diverge into un-

correlated sequences of weather events, hence loss of

convergence. Hodyss et al. (2013) demonstrated with

simplified models that when the time stepping scheme

does not resolve the parameterized physical processes,

the numerical solutions will behave as predicted by the

theory of stochastic differential equations. The 1-h

simulations that Wan et al. (2015) conducted with the

CAM5 model converged at a rate of 0.4 instead of the

expected value of 1.0, and the cause was unclear. Given

the rare application of such analyses, the understanding

of time step convergence in weather, climate, and Earth

system models is very limited. Nevertheless, Wan et al.

(2015) showed that convergence analysis conducted

with individual components of a model could indicate

which parts have stronger time step sensitivity and thus

require more attention in future development.

With these real-world issues and examples in mind,

the paper now proceeds into a more theoretical area, a

mathematical analysis approach to the coupling, moving

toward the bottom-left of the graph in Fig. 1b.

3. Insights from models with simplified
equation sets

In the following two examples, the resolved scale be-

havior is strongly dependent on the subgrid-scale dy-

namics. First, the interaction of convection with dynamics

is examined, followed by the boundary layer with dy-

namics. This discussion highlights situations where the

combination of resolved and subgrid terms is critical (e.g.,

in representing the total transport as the sum of resolved

and subgrid transport). As the averaging scales such as

time step and grid resolution are reduced, the subgrid

contribution will diminish and be taken over by the re-

solved contribution.

a. Interaction of convection with balanced dynamics

In the interaction of convection with balanced dy-

namics, the spatial averaging scale is assumed suffi-

ciently large, and therefore the semigeostrophic model,

which is an accurate approximation to the governing

equations on large scales (Cullen 2006), can be used as a

proxy for the evolution of the spatially averaged equa-

tions. This analysis has the advantage that the ‘‘proxy

ground truth’’ (section 2e) is known. The behavior of

this model can then be compared with solutions of the

exact governing equations with a much finer averaging

scale, which consequently resolve convection explicitly.

The observed behavior then has implications for the

design of models with parameterized convection.

The semigeostrophic model includes the effects of

large static stability variations, which are essential in

considering interactions with convection. For illustra-

tion, the incompressible Boussinesq form of the equa-

tions in Cartesian geometry is used. This form uses the
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ageostrophic wind equation [Eq. (A1)] with the ‘‘po-

tential vorticity’’ matrixQ [Eq. (A2)] and forcingH [Eq.

(A3)]. This forcing includes momentum and thermody-

namic forcing terms.

Under semigeostrophic dynamics, the ageostrophic

flow is determined diagnostically and includes subgrid as

well as resolved fluxes. The ageostrophic motion thus

represents a response to the dynamical and physical

forcing represented in Eq. (A1). The strength of the re-

sponse is determined by the eigenvalues of Q, which

represent the inertial and static stability of the atmo-

spheric state. The geostrophic state would be expected to

be described by the resolved flow in numerical models.

However, the ageostrophic circulation required to main-

tain geostrophic balance would include subgrid-scale

transports as well as resolved ageostrophic transport.

In the presence of moisture, the static stability is re-

duced by latent heating. This reduction of stability could

be expressed, neglecting the condensate loading term in

the buoyancy, by replacing the potential temperature

u with the equivalent potential temperature in saturated

regions. In the presence of moist instability, Q would

then have a negative eigenvalue. As illustrated by Holt

(1989), this will generally result in convective transport

rather than continuous vertical motion. The effect is that

convective updrafts with any associated convective

downdrafts would replace the ascending part of the

ageostrophic circulation, while the compensating circu-

lation would be a smooth transport.

The semigeostrophic formulation identifies the con-

vective locations by a negative eigenvalue of the Q

matrix and generates the upward mass transport as

modeled by a convection scheme. The downward branch

would be determined bymass continuity and the need to

maintain balance in the environment. In the tropics,

this leads to spreading of the response over a wide area.

This process is illustrated using a convection-permitting

simulation performed as part of the Earth SystemModel

Bias Reduction and Assessing Abrupt Climate Change

project (EMBRACE; http://cordis.europa.eu/project/

rcn/99891_en.html). The simulation uses a configuration

similar to that used operationally at the Met Office for

the United Kingdom–area short-range weather pre-

diction [see Holloway et al. (2012) for details] but with

changes made to improve the representation of tropical

convection and gravity waves. In this configuration, the

model has a horizontal grid spacing of 2.2 km with an

8800km 3 5700km domain centered on the tropical

Indian Ocean and 118 vertical levels with a 78-km lid.

Within its domain, the convection-permitting simula-

tion was run freely after being initialized from the op-

erational Met Office global model analysis valid

at 0000 UTC 18 August 2011. The lateral boundary

conditions were provided every time step by a global

model that was reinitialized fromMet Office operational

analyses every 6h. The data presented here were taken

from 0000 UTC 30 August 2011 after the convection-

permitting simulation was fully spun up.

The grid points are classified as cloudy or dry,

depending on the presence or not of cloud condensate: the

cloudy areas are further subdivided into ascending and

descending. The grid points are then aggregated onto a

coarser, 24-km grid. This 24-km grid represents a typical

resolution at which a convective parameterization is used.

Then, for each 24-km grid point, cloudy and drymass flux,

cloudy updrafts and downdrafts, and the total large-scale

mass flux are obtained by summing the verticalmass fluxes

rw in the respectively partitioned grid points.

Figure 3 shows that for 24-kmgrid points that have some

cloud, there is a close match between the total large-scale

mass flux and the cloudy mass flux, the sum of up- and

downdraft; hence, most of the vertical motion happens

within the cloudy areas (section 7b). The values of the dry

mass flux are unrelated to the cloudy updraft mass flux.

Hence, the local compensating subsidence within the

24-km grid box does not match the net upward cloudy

mass flux, as is usually assumed in convective parameter-

izations. The subsidence is instead spread over the whole

domain. This spreading is in agreement with the idea

that the ascent is represented by convective updrafts,

while the subsidence is spread over amuch broader region

(Bretherton and Smolarkiewicz 1989). This exposition

suggests that a radical rethink of convective parameteri-

zation strategy is required. An example for convection is

the parameterization of Grell and Freitas (2014) or the

even more radical approach of Kuell et al. (2007).

b. Interaction of the boundary layer with
balanced dynamics

Shifting the focus from convection to the boundary

layer, the effectiveness of different coupling strategies is

compared using a simple model as the asymptotic limit

of the full equations. A large-scale balance is defined,

which should be represented in the resolved numerical

solutions, while the circulation required to maintain it

will be described by both resolved and subgrid-scale

transports. The inclusion of the boundary layer makes a

fundamental change to the large-scale balance because

of the need to satisfy the no-slip boundary condition.

Thus, the balance is defined by the Ekman relations
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where ue 5 (ue, ye) are the components of the Ekman

velocity, and F 1 and F 2, subcomponents of the F1 and F2
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introduced above, represent the parameterized friction

terms, which will depend on the horizontal momentum

as indicated, as well as the thermodynamic structure.

These equations can be solved for ue, given that

ue 5 ug at the top of the boundary layer and is zero at

the ground.

Beare and Cullen (2013) derive equations analogous

to Eq. (A1) for the circulation required to maintain

Ekman balance in time in the presence of dynamical and

physical forcing. The ageostrophic circulation in semi-

geostrophic theory is an accurate second-order approx-

imation in Rossby number to the velocity in the Euler

equations. However, the equivalent circulation in the

boundary layer is only first-order accurate, as is the

Ekman balance itself.

The effectiveness of schemes to couple the boundary

layer with the balanced dynamics is demonstrated by

following the method of Cullen (2007). This experiment

is described in detail by Beare and Cullen (2016). A

vertical slice model is used to construct a sequence of

solutions of the boundary layer driven by a baroclinic

wave where the Rossby number U/fL, with U and L

denoting horizontal velocity and length scales, re-

spectively, is progressively reduced. This reduction is

achieved by maintaining the same initial structure in

the pressure and potential temperature while simulta-

neously increasing the Coriolis parameter and de-

creasing the wind speed. The difference between the

circulation predicted by the balanced Eq. (1) and the

solution of the hydrostatic equations is then calculated.

The convergence behavior of the balanced solution to

the solution of the hydrostatic primitive equations is as

expected. The convergence is of second order outside

the boundary layer and first order inside. However, the

boundary layer becomes shallower as the Rossby

number (Ro) is reduced, giving an overall convergence

rate ofRo1.7.

Results are compared using three numerical imple-

mentations: standard implicit time stepping, the Wood

et al. (2007) scheme, and the K-update scheme. The

control simulation uses standard implicit time step-

ping, but themixing coefficients F 1 and F 2 are evaluated

only at the beginning of the time step. The Wood et al.

(2007) scheme is a stable single step scheme that is un-

conditionally stable and second-order accurate. This

stability and accuracy is achieved by assuming a poly-

nomial dependence of F 1, F 2 on wind speed. The

K-update scheme includes the updated value of the

boundary layer mixing coefficient at the new time level

in each time step as described by Cullen and Salmond

(2003), as well as the more accurate representation of

the diffusion process in Wood et al. (2007). This in-

clusion allows the scheme to represent the balanced

solution more accurately.

Figure 4 shows the difference between primitive

equation simulations using different boundary layer

time-stepping schemes and the balanced model. At

smaller Rossby numbers, all primitive equation models

follow the ideal Ro1.7 line. However, above Ro 5 0.08,

the primitive equation model using the implicit scheme

FIG. 3. (a) Scatterplots of cloudymass flux against large-scalemass flux and (b)minus drymass flux against cloudy

updraft mass flux. Themass fluxes have been converted to velocities in units of m s21 by normalization with density.

The data are taken from a height of 3195m and are averaged in the horizontal to scale of 24 km. Met Office

Unified Model.
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starts to deviate significantly above the ideal line and no

longer converges at the required rate. The primitive

equation model using the K-update scheme deviates

slightly above the ideal line at Ro5 0.1. The hydrostatic

primitive equation (HPE) model using the Wood et al.

(2007) scheme follows the idealRo1.7 line for the range

of Ro shown. Both theK-update andWood et al. (2007)

schemes account for the variation of the boundary layer

diffusion across the time step, giving the improved con-

vergence properties compared to the implicit scheme.

The deviation from the Ekman-balanced models thus

exposes differences in the numerical methods employed.

This and the previous subsection demonstrated two

validation approaches of physics–dynamics coupling

methods. This validation is possible even though the

required averaged solution of the full equations cannot

be described exactly by the solution of a set of partial

differential equations. The above has shown that subgrid

models can be validated by the accurate reproduction of

asymptotic limits where subgrid transports are a crucial

part of the limit solution.

4. Analyzing the coupling of dynamical cores with
a hierarchy of GCM test cases

One of the recurring questions is this: Which physics–

dynamics coupling scheme is better? The answer de-

pends crucially on the objective of the model run. Is

it a climate run or a weather forecast? Is the model

already severely time step restricted, such as Eulerian

formulations, or are long time steps permitted, as

in semi-implicit semi-Lagrangian models? Eulerian

formulations may be less susceptible to coupling errors,

assuming the physics and dynamics time steps are not

too disparate, due to the higher temporal resolution and

less scope for splitting errors to evolve during a time

step. But even when these questions have been an-

swered, in the full model context, it is far from trivial to

say which is better. Therefore, testing is essential, and, in

this present publication, it is proposed that a hierarchy

of idealized general circulation model (GCM) and

weather model test cases facilitate an improved un-

derstanding of the coupling mechanisms, compared to

analyzing outputs of full model runs.

a. Idealized testing of global circulation and
weather models

Full model testing has been discussed above, and, for

example, Wan et al. (2015) proposed various analysis

techniques to better understand the impact of the

physics time step on the model behavior. In their work,

the numerical convergence of 1-h simulations was ana-

lyzed with fixed horizontal grid spacing. The conver-

gence rate was derived by varying the process-coupling

time step between 1800 and 1 s. The discrepancy be-

tween the expected and realized convergence rates

pointed to the stratiform cloud schemes as the primary

cause of slow time step convergence. The general test

procedure applies to any atmospheric model and can

help quantify the time stepping errors and identify the

related model sensitivities. From a physics–dynamics

coupling point of view, however, these results are

still difficult to translate into improvements of, or to

highlight deficiencies in, the coupling schemes. In an

idealized framework, the parameterizations and lower

boundary conditions are more constrained, which ex-

poses the impact of physics–dynamics coupling on the

simulation in a more transparent way.

1) THE DIFFERENT NATURE AND SOURCES OF ERROR

As with new parameterizations, when a novel cou-

pling scheme is implemented in a tunedmodel (Hourdin

et al. 2017), the solution is likely to be worse for the new

couplingmethod if themodel is then not retuned, even if

the new coupling scheme would lead to a superior so-

lution in the absence of tuning. Model tuning inevitably

tunes against errors that are independent of the pa-

rameters tweaked in the tuning process (i.e., compen-

sating errors). In this case, multiple errors may exist, but

the superposition of errors introduced tominimize other

errors may result in ‘‘shadowing of errors’’ if only the

final solution is taken into account during tuning pro-

cesses. Remove one of these errors, and the result will be

worse, despite having eliminated an error. For exam-

ple, removing (or reducing) errors in the coupling of a

FIG. 4. Convergence to circulation required to maintain Ekman

balance of the vertical slice primitive equation simulations (Beare

and Cullen 2016) for different time-stepping schemes: implicit,

K-update, and Wood et al. (2007). Ro1.7 is shown in gray for ref-

erence of the slope (y-axis intercept is arbitrary).
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mature model may result in a degraded final solution

for these reasons. A key challenge in physics–dynamics

coupling is that no one single experiment will distinguish

a superior coupling method from the inferior. The dif-

ferent techniques presented here have to be taken as a

cohort of interrogation. Each has to be interpreted un-

der their limitations. It should be possible to derivemore

explicit guidelines and understanding of the complex

interactions when the experiments are combined in a

logical structure, a hierarchy, with an associated analysis

protocol.

2) THE TEST CASE HIERARCHY

Because of the interconnected sources of error illus-

trated above, it seems reasonable to implement and

standardize an idealized testing protocol. This protocol

should be idealized in such a way that the complexity of

physical parameterizations is present in the forcing, but

not in the implementation. The implementation has to

be simplified. This simplification will come at a cost, and

it will probably not verify as well with observations as a

state-of-the-art parameterization would. This lack of

performance, however, is not a problem here as it is

meant to be a test bed, not a forecasting model. This

simplification then allows a generalization, meaning that

in everymodel where it is added, it is generally the same.

This generalization then allows for direct comparisons

between models. Ideally, a set of tests would be avail-

able, evenly distributed along the graph of Fig. 1b,

covering all levels of complexity. Ideally, in between the

two well-observed and understood boundary condi-

tions—sea surface temperature (SST) and incoming

shortwave radiation at the top of the atmosphere—as

much as possible should be left to the model. Vari-

ables should be allowed to propagate freely and not be

prescribed or constrained to reference profiles or back-

ground states. For the dynamical core, tests with ideal-

ized forcing exist, such as the Held–Suarez test case

(Held and Suarez 1994). The Held–Suarez forcing was

formulated for a dry and flat planet and includes a

thermal relaxation mechanism and low-level Rayleigh

friction. These mimic the effects of radiation and bound-

ary layer mixing, respectively. However, the adjustment

processes in theHeld–Suarez test case are rather slow and

do not challenge the physics–dynamics coupling suffi-

ciently. A missing ingredient is moisture. The latent heat

exchanges due to water phase transitions are desirable to

stress the coupling mechanisms.

The ‘‘simple physics’’ package byReed and Jablonowski

(2012) incorporates bulk aerodynamic surface fluxes

and diffusive boundary layer mixing processes of heat,

moisture, and momentum, a large-scale condensation

scheme based onmoisture and instantaneously removed

precipitation, and uses an ocean-covered surface with pre-

scribed SSTs as a lower boundary condition. The Fortran

source code is publicly available (https://earthsystemcog.org/

projects/dcmip-2012/), removing the uncertainty of the

implementation. The suite is simplistic enough to be

easily reproduced within varying model frameworks.

However, the simple-physics package lacks radiation

and is therefore only suitable for short-term simulations.

This lack of thermal forcing was remedied by Thatcher

and Jablonowski (2016), who combined the ideas of the

Reed and Jablonowski (2012) simple-physics package

and the Held–Suarez forcing to create a moist version

of the Held–Suarez test. The resulting Moist Idealized

Test Case (MITC) with Newtonian thermal relaxation

mimicking ‘‘radiation’’ is suitable for long-term simula-

tions and has been shown to reveal some of the intricacies

of the physics–dynamics coupling, as further high-

lighted in section 4b. MITC can be considered a moist

idealized test of intermediate complexity. The MITC

Fortran routine is available as a supplement to Thatcher

and Jablonowski (2016) on the publisher’s web page.

The next step in the test case hierarchy points to

simplified physics formulations with a radiation scheme

and unconstrained SSTs. These SSTs can, for example,

be determined by a slab ocean model (also called

‘‘mixed layer’’ model). Frierson et al. (2006) presented a

gray-radiation GCM, which possesses desirable pro-

cesses such as radiation, an interactive slab ocean, large-

scale precipitation, and surface/boundary layer schemes.

However, the physics suite is not sufficiently docu-

mented to be easily reproducible and comparable to

other models. If more realistic ocean temperatures are

desired, a slab ocean scheme can also be augmented

with a set of specified surface flux adjustments (com-

monly called ‘‘q-flux adjustments’’; e.g., Russell et al.

1995; Sun and Hansen 2003; Zhang and Delworth 2005).

These can be added to the slab model’s temperature

tendency equation at each time step to maintain a sea-

sonal cycle of realistic ocean temperatures.

A final step in the idealized GCM hierarchy is a long-

term aquaplanet simulation on a flat and ocean-covered

Earth that uses the complex physical parameterization

package of a GCM. The lower boundary condition can

either be based on prescribed SSTs as in Neale and

Hoskins (2000) or on a slab ocean approach with pre-

dicted SSTs as in Lee et al. (2008). Aquaplanet simula-

tions are popular for idealized climate studies, partly

due to their perpetual equinox condition, which elimi-

nates the seasonal cycle, allowing for relatively short

simulations to reach equilibrium compared to full-

physics climate simulations. Aquaplanet simulations

can also provide insight into the delicate interplay be-

tween the physical parameterizations and the numerical

3516 MONTHLY WEATHER REV IEW VOLUME 146

https://earthsystemcog.org/projects/dcmip-2012/
https://earthsystemcog.org/projects/dcmip-2012/


schemes of dynamical cores with their associated diffu-

sion (section 4c).

For numerical weather prediction models in particu-

lar, further idealized tests can be analyzed, such as the

Splitting Supercell Test Case (Zarzycki et al. 2018). In

this test case, the horizontal scale of the convective

plumes is on the order of 1 km, similar to many current

weather forecast model resolutions. This test case chal-

lenges in particular nonhydrostatic dynamics.

b. Simplified physics assessments

Figure 5 displays an example of how the MITC ap-

proach by Thatcher and Jablonowski (2016) can provide

information about the physics–dynamics coupling scheme.

The figure shows instantaneous, randomly selected snap-

shots of the 850-hPa vertical pressure velocities and pre-

cipitation rates in MITC simulations with the CAM5

model (Neale et al. 2010b). The depicted CAM5 dynam-

ical cores are the finite volume (FV) core (Lin 2004), the

spectral transform Eulerian (EUL) dynamical core, and

the spectral element (SE) core (Taylor and Fournier 2010;

Dennis et al. 2012). These are run at the horizontal grid

spacing 18 3 18 (’111km); the triangular truncation T85

with a quadratic Gaussian grid (’156km); and in the

‘‘ne30np4’’ (SE) configuration, which corresponds to a

grid spacing of about 111km, respectively. All dynamical

cores use the same 30 vertical levels. The vertical-level

positions are documented in the appendix of Reed and

Jablonowski (2012).

The three dynamical cores are coupled to the MITC

physics package by Thatcher and Jablonowski (2016)

and run for multiple years. Within the MITC physics

package, the coupling of the various physical processes

follows the sequential update approach, which is also

detailed in Thatcher and Jablonowski (2016). However,

the physics–dynamics coupling schemes differ. The FV

dynamical core (Figs. 5a,e) with a dynamics time step of

180 s is coupled to the physics package in a time-split

(sequential) way and applies the physical forcings every

1800 s (physics time step). The EUL dynamical core

(Figs. 5b,f) is coupled to the physics in a process-split

(parallel) way. EUL applies the physical forcings every

600 s, which is identical to EUL’s dynamics time step.

The SE dynamical core (Figs. 5c,d,g,h) with a dynamics

time step of 300 s is coupled to the physical parameter-

izations in a time-split way with a physics time step of

1800 s, as in FV. However, two coupling options exist in

SE, which apply the physical forcings either as a sudden

adjustment after the long 1800-s physics time step

(se_ftype 5 1) or gradually within the subcycled dy-

namical core (se_ftype 5 0) every 300 s.

Figures 5c, 5d, 5g, and 5h document that the choice

of the coupling scheme in CAM5-SE has a significant

impact on the simulation. Intense gridscale (or grid-

point) storms (Williamson 2013) develop along the

equator in all models (seen in the precipitation rates in

the right column). These storms lead to circular gravity

wave ringing patterns in the 850-hPa vertical pressure

velocity v in CAM5-SE when coupled with the long

1800-s physics time step (se_ftype 5 1; Fig. 5c). The

centers of the circular v patterns coincide with the posi-

tions of the strongest precipitation rates in Fig. 5g, which

suggests that the intense latent heat release at these lo-

cations initiates the gravity wave noise. The gravity wave

response to the impulsive physical forcing is large scale so

that the explicitly applied diffusion in CAM5-SE does

not filter out its propagation. Thatcher and Jablonowski

(2016) found that the gravity wave noise can be remedied

when changing the coupling scheme in CAM-SE. In the

case of se_ftype 5 0 (Figs. 5d,h), the physical forcing

tendencies are gradually applied within the CAM-SE

dynamical core every 300 s. The strong gridscale storms

are still present in the precipitation field (Fig. 5h). How-

ever, the more gradual forcing reduces the latent heat

impulses and leads to a smooth vertical pressure velocity

(Fig. 5d). Similar sensitivities to the se_ftype setting were

also found in full-complexity CAM-SE climate simula-

tions (P. Lauritzen 2015, unpublished research). There-

fore, the CAM-SE se_ftype default was switched from 1

to 0. These results show that simpler modeling frame-

works help expose the causes and effects of the physics–

dynamics coupling choices.

Comparing the CAM-SE characteristics to the alter-

native FV and EUL dynamical cores highlights crucial

differences. As in SE (se_ftype 5 1), the FV model

(Figs. 5a,e) also adjusts the state variables with an 1800-s

physics time step and experiences equatorial gridpoint

storms of similar magnitude (Fig. 5e). However, the

damping characteristics of the two dynamical cores dif-

fer (Jablonowski and Williamson 2011), and FV can

more effectively damp gridscale noise due to its built-in

local monotonicity constraints and explicitly applied

second-order divergence damping mechanism. In con-

trast, SE and EUL damp the divergent part of the flow

with an explicitly applied, more scale-selective fourth-

order damping mechanism. Therefore, FV is inherently

more damping for gravity waves that are caused by la-

tent heat impulses. FV distributes the latent heating

forcing more smoothly, which leads to a smoother dis-

tribution of its vertical pressure velocity (Fig. 5a). In

contrast, the EUL model is built upon a global spectral

numerical method, which is known for its difficulty

representing sharp contrasts locally. Here, the latent

heating impulses near the peak precipitation rates

(Fig. 5f) lead to the Gibbs ringing effect (Jablonowski

and Williamson 2011). The Gibbs ringing is visible in
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EUL’s vertical pressure velocity field (Fig. 5b) and mani-

fests itself as a noisy pattern (broken contours). The noise

is even present in the midlatitudinal regions where orga-

nized precipitation bands should dominate. EUL’s shorter

600-s physics time step (in comparison to the 1800 s used in

FV and SE) is not able to prevent these numerical Gibbs

oscillations. In general, the smoothing mechanisms in dy-

namical cores need to be tuned. Overly strong damping

impacts the fluid flow in negative ways by overly smooth-

ing strong gradients and local maxima in the moisture

fields, which connects the physics and the dynamics.

c. Aquaplanet assessments

Anexample of how full-physics aquaplanet simulations

can give insight into the physics–dynamics interplay is

shown in Figs. 6 and 7. The figures provide information

FIG. 5. Snapshots of instantaneous (left) 850-hPa vertical pressure velocities and (right) precipitation rates

in MITC simulations. (a),(e) CAM-FV; (b),(f) CAM-EUL; and (c),(d),(g),(h) CAM-SE dynamical cores. (c),(g)

se_ftype5 1 denotes a physics–dynamics coupling with the long physics time step; (d),(h) se_ftype5 0 couples with

a subcycled, short dynamics time step. The physics time steps are 1800 (FV, SE) and 600 s (EUL); the dynamics time

steps are 180 (FV), 600 (EUL), and 300 s (SE). In the case of SE with se_ftype50, the forcing was gradually applied

every 300 s. The EUL dynamical core is coupled to the physics in a process split (parallel) way; the SE and FV

physics–dynamics coupling is time split.
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about the shape of the ITCZ in CAM5 aquaplanet

simulations with prescribed SSTs [CONTROL case in

Neale and Hoskins (2000)]. As in section 4b, the CAM5

dynamical cores EUL, FV, and SE are assessed at the

resolutionsT85 (EUL) and 111km (SE,FV)with 30 levels.

Also, the figures include the CAM5 spectral transform

semi-Lagrangian (SLD) T85 dynamical core. All model

simulations are run for 2.5 years, and the first 6 months are

disregarded (spinup period). Themodels use the dynamics

time steps 300 (SE), 180 (FV), 600 (EUL), and 1800 s

(SLD), which are paired with the physics time steps 1800

(SE, FV, SLD) and 600 s (EUL).

The shape of the ITCZ in aquaplanet simulations has

been a topic of debate for over a decade. Some models

show a single equatorial peak of the ITCZ precipitation

rate, whereas other models are characterized by a double

ITCZ in the subtropics. Blackburn et al. (2013) even called

the double ITCZ one of the ‘‘modern modeling myster-

ies.’’ The suggestedmechanisms that govern the shape and

strength of the ITCZ vary widely and are ambiguous.

Williamson and Olson (2003) found dependence on the

physics time step, the time stepping scheme, the dynamical

core, and the strength of the horizontal diffusion. Mishra

et al. (2008) discussed the ITCZ time step dependencies

and physics changes. Rajendran et al. (2013) discussed the

SST’s impact on the ITCZ, andLee et al. (2003) andMöbis
and Stevens (2012) investigated the role of the convection

scheme. Williamson (2008) reported on the sensitivities to

horizontal resolution, andLandu et al. (2014) discussed the

FIG. 6. The 2-yr-mean zonal-mean precipitation rate in four

aquaplanet simulations with the CAM5 dynamical cores SE (111km),

FV (111 km),EUL (T85), SLD (T85), and the default CAM5physics

package.

FIG. 7. Aquaplanet simulations with the alternative CLUBB PBL, macrophysics, and shallow convection schemes in CAM5. Latitude–

pressure cross section of the 1-yr-mean zonal-mean vertical pressure velocity in the tropics for the dynamical cores (a) SEwithK4 diffusion

(hyperviscosity) coefficient 13 1015 m4 s21, (b) SE with diffusion coefficient 53 1015 m4 s21, and (c) SLD without explicit horizontal

diffusion. (d)–(f) The 1-yr-mean zonal-mean precipitation rates of the three runs, split into total (red), large-scale (green), and convective

(blue) precipitation.
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ITCZ sensitivity to two dynamical cores, their resolutions,

and strengths of the low-level moisture transports. More

recently, Medeiros et al. (2015, 2016) compared the ITCZs

in the aquaplanet configurations of models that partici-

pated in phase 5 of the Coupled Model Intercomparison

Project (CMIP5) and provided an aquaplanet reference

solution for NCAR’s CAM5.3 model.

Four CAM5 dynamical core simulations were per-

formed in aquaplanet mode that utilized the identical

CAM5 physical parameterization package (Neale et al.

2010b). Figure 6 shows that the time-mean (averaged

over the last 2 years) zonal-mean precipitation rates in all

four aquaplanet simulations are remarkably similar. They

all show a single ITCZ and equatorial peaks that range

between 17.5 and 20mmday21. This similarity is in sharp

contrast to the assessments of Blackburn et al. (2013),

who intercompared 16 different model simulations that

participated in the Aquaplanet Experiment (APE;

Blackburn and Hoskins 2013). The peaks in the APE

models ranged from 10 to 34mmday21 with an almost

even split between single and double ITCZmodels. Since

the APE models are characterized by vastly different

dynamical cores, resolutions, physical parameterizations,

and coupling schemes, thismakes it difficult to distinguish

between causes and effects. Most of these differences in

APE models are likely caused by different physical pa-

rameterizations. As shown in Fig. 6, these effects reduce

when a standardized set of parameterizations is used.

Here, a single aquaplanet framework is promoted as a

‘‘control environment’’ for idealized assessments of the

physics–dynamics interplay. Another example is given

in Fig. 7, which intercompares the CAM5 SE (111km)

and SLD T85 dynamical cores with 30 levels when

coupled to the alternative physical parameterization

scheme CLUBB (Golaz et al. 2002a,b; Bogenschutz

et al. 2012, 2013). CLUBB replaces CAM5’s default

planetary boundary layer (PBL), macrophysics, and

shallow convection schemes. The identical Zhang and

McFarlane (1995) deep convection scheme and CAM5’s

microphysics scheme is still used. CAM5-SE/CLUBB is

shown with two different settings of the fourth-order

horizontal diffusion coefficient. Figures 7a and 7d depict

the default diffusion coefficient 1 3 1015 m4 s21 for the

111-km grid spacing (labeled ne30np4). Figures 7b and

7e show the SE results with an increased diffusion co-

efficient of 5 3 1015 m4 s21. The SLD T85 dynamical

core (Figs. 7c,f) does not apply any explicitly added

diffusion since its numerical scheme already provides

sufficient implicit numerical diffusion. The simulations

shown in Fig. 7 are 1.5 years long, and the first 6 months

are discarded (model spinup period). The physics and

dynamics time steps for SE and SLD are the same as

quoted before.

The top row of Fig. 7 shows the latitude–pressure cross

section of a 1-yr-mean zonal-mean vertical pressure ve-

locity in the tropics for SE (Figs. 7a,b) and SLD (Fig. 7c).

The bottom row presents the 1-yr-mean zonal-mean pre-

cipitation rates of the three runs, split into total, large-

scale, and convective precipitation. The total precipitation

rate can be directly compared to Fig. 6. Two observations

are striking. First, the switch to the CLUBB scheme

causes the SE and SLD dynamical cores with default

diffusion settings (Figs. 7a,c,d,f) to switch from the single

ITCZ shown in Fig. 6 to a double ITCZ structure. Second,

the appearance of a weak double ITCZ structure in SE

(Figs. 7a,d) is highly dependent on the choice of the hor-

izontal diffusion coefficient. The increased diffusion co-

efficient in Figs. 7b and 7e impacts the moisture processes

in a way that converts the weak double ITCZ in the de-

fault SE run to a single ITCZ peak. This brief assessment

highlights the strength of an idealized testing framework

to shed light on the physics–dynamics interactions. This

approach can also be used to analyze the effects of dif-

ferent physics–dynamics coupling schemes.

5. Intramodel coupling

In this section, the focus is on intramodel coupling

problems within the modeling system, where the cou-

pling occurs via an exchange of boundary conditions that

transmit fluxes through a physical interface (e.g., the

ocean–atmosphere, land–atmosphere, ice–atmosphere,

or ocean–sea ice interface). The land–atmosphere in-

teraction—and in coastal areas, the ocean–atmosphere

interaction—particularly affects weather models with

their higher spatial resolution.

This problem is different from the scenarios discussed

earlier for two main reasons. First, the coupling is be-

tween systems at different spatial locations rather than

only different spatial scales at the same location. Second,

the ocean and the atmosphere are usually implemented

as separate submodels. Therefore, tight coupling at every

step may not be practical.

Many distinct physical processes at different temporal

and spatial scales, governed by different physical/con-

servation laws, must be simultaneously considered as a

whole. This difficulty leads to intertwined physical,

mathematical, and computational intricacies.

Algorithms to solve such coupled problems can be

classified into two general categories:

1) Monolithic method: A single model representing all

components to be coupled is defined. Each compo-

nent has to be connected through one common

space–time computational grid, which may be non-

uniform, and connectivity may be established by
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interpolation in space and/or time, and computational

framework. The advantage is that a tightly coupled

solution can be easily obtained. However, this ap-

proach is not tractable when trying to couple two in-

dividual models developed independently from each

otherwith distinct numerical techniques, except for toy

models (e.g., Connors and Ganis 2011). The mono-

lithic approach has been used previously for land–

atmosphere coupling when land surface processes

were implemented as subroutines of GCMs and

weather models, but it is currently abandoned to pro-

vide more modularity because of the increasing com-

plexity of land surface models, which are now treated

as external modules (e.g., Polcher et al. 1998; Ryder

et al. 2016).

2) Partitioned/split method: Analogous to operator

splitting, the full problem is divided into smaller

problems solved independently with boundary

exchanges through their common interfaces (e.g.,

Schulz et al. 2001; Schmidt et al. 2004; Large 2006).

This method is themost frequently adopted andmost

natural option in coupled problems arising in Earth

system modeling. However, the difficulty is that this

type of approach can give rise to various splitting

errors and, thus, makes it difficult to recover a tightly

coupled solution (Keyes et al. 2013). Analysis and

attribution of these errors are not straightforward, as

elaborated below. A comprehensive review of some

interface-coupled multiphysics systems in a broad

sense can be found in Keyes et al. (2013).

Coupled problems arising in Earth system modeling

cover a broad range of aspects. Examples include parame-

terizations of turbulent boundary layers near interfaces,

estimation of interfacial fluxes (Schmidt et al. 2004; Large

2006), numerical space–time schemes,matching of different

grids at the interface (e.g., Best et al. 2004;Balaji et al. 2007),

and coupling algorithms (e.g., Lemarié et al. 2015; Ryder

et al. 2016; Beljaars et al. 2017). The complexity of software

implementation is adding to the overall complexity of nu-

merical models (Valcke et al. 2012), which are usually only

considered on their own, neglecting connectivity.

In the present section, the partitioned approach is

considered, and the example of the ocean–atmosphere

coupling is used to illustrate the subtleties regarding

physics/dynamics inconsistency inherent to intramodel

coupling. The coupling between the atmosphere and the

ocean is vital for forecasting on time scales of hours to

weeks (Smith et al. 2018), even though, relative to the

atmosphere, the ocean is changing rather slowly. Fur-

thermore, most of the issues presented here are not only

relevant to ocean–atmosphere coupling [see, e.g.,

Schmidt et al. (2004); Ryder et al. (2016) and references

therein for more specific details on sea ice–ocean or land

surface–atmosphere coupling]. In the following, the the-

oretical limitations of coupling methods will be pre-

sented. Subsequently, some of the sources of error such as

aliasing, synchronicity, and inconsistency are discussed in

turn. This section concludes with a discussion of how the

inconsistency and splitting errors can be reduced.

a. Theoretical limitations of some of the current
ocean–atmosphere coupling methods

Most multiphysics coupling problems naively assume

that all scales are resolved by the numerical models and

that coupling is restricted to resolved scales. In the case of

the ocean–atmosphere problem, the dynamical coupling

is strongly influenced by physical parameterizations,

which make rigorous mathematical analysis intractable.

The numerical ocean–atmosphere coupling problem

is usually tackled in two different ways, as illustrated in

the first two panels of Fig. 8. The information flow be-

tween the two domains, atmosphere and ocean, is shown

in the vertical. Time advances in the horizontal. The first

method, where the exchange of instantaneous boundary

data occurs at the largest time step of the two models, is

referred to as synchronous coupling (Fig. 8a). The sec-

ond is an exchange of averaged-in-time boundary data

over a time interval [ti, ti11], which is much larger than

the largest time step (Fig. 8b). The latter method is re-

ferred to as asynchronous coupling. Both are commonly

termed loose coupling schemes (in contrast to tight

coupling schemes, such as converged iterative schemes

or implicit solves). These schemes correspond to only

one iteration of an iterative process without reaching

convergence (Lemarié et al. 2014, 2015).Hence, they donot

strictly provide the solution to the ocean–atmosphere cou-

pling problem, but an approximation of one since state

variables of the twomodels are shifted by one time step or a

sequence of time steps. The theoretical limitations of the

synchronous and asynchronous methods are now explained

further.

In the synchronous coupling algorithm, the following

errors are observed:

d Aliasing errors: Significantly different time steps are

used in each model (for the same horizontal resolu-

tion, the oceanic model is integrated with a time step

approximately 10 times larger than the atmospheric

model); as a consequence, aliasing problemsmay arise

and compromise stability (e.g., Schluter and Pitsch

2005). Aliasing errors occur, for example, when an

oscillatory forcing coming from one model may not be

seen by the other model if the sampling is insufficient.

It may be seen as a constant forcing if, for example,

only the peaks are sampled.
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d Synchronicity error: Air–sea fluxes are used as bound-

ary conditions for the vertical turbulent diffusion terms,

which are treated implicitly in time, meaning that the

fluxes at the interface are formally needed at time t1Dt
and not t (Fig. 8a). The explicit exchange of data in the

synchronous coupling leads to an additional condition

for the coupling to be stable even if unconditionally

stable time-stepping algorithms are used for vertical

diffusion (Lemarié et al. 2015; Beljaars et al. 2017). A

way to circumvent these stability issues is to consider a

synchronous coupling with implicit data exchange. In

practice, this approach amounts to solving the local

implicit problems in the ocean and the atmosphere

monolithically as one single implicit solver as often

done for land surface–atmosphere coupling (Polcher

et al. 1998; Ryder et al. 2016). Implicit flux coupling is so

far seldom used in the context of ocean–atmosphere

coupled models.
d Physics–dynamics inconsistency error: The uncer-

tainties in the computation of air–sea fluxes at high

frequency through bulk formulations are huge [see

discussion in section 2 of Large (2006) or Foken (2006)].

The sources of those uncertainties are numerous.

Among them are the assumptions used to derive the

continuous formulation of bulk formulas: for example,

constant-flux layer assumption, horizontal homogene-

ity, quasi stationarity, and the fact that few direct

measurements exist to calibrate those semiempirical

formulations over the ocean. Moreover, the nonlinear

problem associated with the estimation of bulk fluxes is

often solved approximately. In practice, an averaging of

the oceanic and atmospheric inputs to the bulk formu-

las should be required to minimize the uncertainty in

the air–sea fluxes (Large 2006). An internally re-

quired time scale Dtphys,req needs to be assumed for

the parameterization scheme (bulk formulation) to be

valid. Term Dtphys,req is usually greater than the model

dynamical time step Dtdyn. As a result, using a synchro-

nous method can render the model solution sensitive to

the choice for the time step Dtdyn since it is implicitly

assumed that Dtphys 5min(Dtphys,req, Dtdyn), which can

lead to significant errors in the estimation of air–

sea fluxes.

By construction, the asynchronous coupling is ex-

pected to mitigate this latter issue since boundary data

averaged in time are exchanged over a time interval

[ti, ti11] usually much larger than the dynamical time

step. However, the asynchronous coupling algorithm

also suffers from a synchronicity issue. Indeed, the

oceanic state used on [ti, ti11] comes from the previous

time window [ti21, ti] and not the current time window.

The lack of synchronicity is visible in Fig. 8b (oblique

arrow). This error arises from the use of a noniterative

partitioned coupling approach. The asynchronous cou-

pling does not permit an accurate representation of

transient processes on short time scales (e.g., the diurnal

SST cycle), which is undesirable especially when the

space–time resolution is increased. This approach is,

however, still used in numerous coupled climate models,

but research is currently in progress to minimize those

synchronicity issues and allow correct phasing be-

tween the ocean and the atmosphere at a reasonable

computational cost.

b. Reducing physics–dynamics inconsistency and
splitting errors

Possible ways to reduce the errors mentioned above

can be explored using the theoretical framework of the

Schwarz-like domain decomposition methods. These

methods are based on the original work of Schwarz

(1870) and focus on subdividing the space domain into

smaller domains. Over these domains, the equation

FIG. 8. Schematic view of the coupling between the computa-

tional domains of the atmosphere model Vatm and ocean model

Voce, with time advancing to the right. The function Foa(Uo, Ua)

represents the parameterization of air–sea fluxes withUo (Ua), the

oceanic (atmospheric) state vector. Term h�i is a given time aver-

aging operator, and Dto, Dta the dynamical time step of the models

such that N5Dto/Dta.
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systems can be solved subject to particular boundary

conditions [see Lemarié et al. (2013) for a recent ex-

ample]. Here, the domains are not subdomains of one

problem, (e.g., the heat distribution in a plate), but rather

of the two different systems: ocean and atmosphere. The

computational domain V with V5Voce <Vatm is sepa-

rated into subproblems on Voce and Vatm, which can be

solved separately. An iterative process is then applied to

achieve convergence to the solution of the original

problem. For the coupling of systems of partial differen-

tial equations (ignoring physical parameterizations), the

converged solution obtained using the Schwarz algorithm

is the same as the one obtained using a monolithic ap-

proach, within a given tolerance. The asynchronous

coupling method corresponds to a single iteration of a

global-in-time Schwarz method (Fig. 8c). In Fig. 8, only

the global in time has iteration superscripts k because it is

the only scheme that iterates. The prognostic variables

are updated during the iteration procedure, and new

fluxes are computed at each iteration. The asynchronous

and synchronous schemes only exchange fluxes once,

either at the same time (synchronous) or time offset

(asynchronous). Time offset means in this specific ex-

ample that the fluxes for the ocean at time ti are computed

from the atmosphere state at time ti, and the atmosphere

at time ti11 sees the ocean fluxes from time ti. Conse-

quently, the synchronous coupling method corresponds

to one single iteration of a local-in-time Schwarz method.

The usual methods (e.g., synchronous and asynchronous

coupling) used in the context of ocean–atmosphere cou-

pling are thus prone to splitting errors because they cor-

respond to only one iteration of an iterative process

without reaching convergence.

So far, few studies have quantified the impact of these

coupling errors on the coupled solutions. Connors and

Ganis (2011) used highly simplified equations to show

that a tight coupling algorithm leads to a reduced model

uncertainty when compared to a loose coupling algo-

rithm, in the sense that numerical solutions are more

robust to perturbations in input parameters. This result

is based on an uncertainty quantification method us-

ing stochastic input parameters for the exchange co-

efficients involved in the air–sea flux computation. In

Lemarié et al. (2014), numerical experiments using the

Weather Research and Forecasting (WRF) mesoscale

atmospheric model coupled with the Regional Ocean

Modeling System (ROMS) for a realistic simulation of a

tropical cyclone were carried out. Ensemble simulations

were designed that use perturbations of the coupling

frequency and the initial conditions. One ensemble was

integrated using the global-in-time Schwarz and another

using the asynchronous method. The Schwarz itera-

tive coupling method significantly reduced the ensemble

spread regarding cyclone trajectory and intensity, thus

suggesting that a source of error is removed concerning

the asynchronous coupling case, or some amplification

mechanism (such as an instability) is reduced.

The results of Connors and Ganis (2011) and Lemarié
et al. (2014) empirically emphasize a connection between

the existence of splitting errors and model uncertainties.

Indeed, in both studies, a tight coupling scheme provides

a more reliable computation concerning perturbations

(noise) in unknown input parameters, compared to a

loose coupling scheme.

Physics–dynamics inconsistencies in the context of

coupled problems are hard to estimate since there is a

lack of idealized test cases with reference solutions in-

cluding physical parameterizations. Such inconsistencies

can arise from coupling algorithms or nonconformities

in the space–time computational grids, but also from

parameterization schemes for air–sea fluxes and turbu-

lent boundary layers.

However, the mathematical formulation of those

schemes is often devised semiempirically (i.e., by fitting

independent measurements), and this can impair the

smoothness, or differentiability, of the associated solu-

tions (e.g., Burchard et al. 2005; Deleersnijder et al.

2008). This lack of smoothness and/or differentiability

can then, in turn, give rise to the development and

persistence of spurious oscillations in model solutions,

also known as ‘‘fibrillations.’’

This complexity has to be taken into account when

designing mathematically consistent and efficient intra-

model coupling algorithms. When an iterative coupling

method is used, the coupled system of equations has to

obey regularity and be well posed. If the system is not

well posed and does not have regularity, then conver-

gence is not guaranteed, and the relevance of the con-

verged solution is questionable. For instance, the

theoretical framework of the Schwarz methods could be

used to derive intramodel compatibility/consistency

constraints on the turbulent boundary layer parame-

terizations: a pair of parameterizations will be declared

compatible if the associated iterative Schwarz algorithm

converges. To investigate those issues, working on a

simplified equation set to focus on specific problems

should be encouraged.

6. Compatibility of parameterizations with the laws
of thermodynamics

An important topic is the compatibility of the model

formulation with the second law of thermodynamics

(Gassmann and Herzog 2015). Goody (2000), Pauluis

and Held (2002), Romps (2008), Bannon (2015), and

Bannon and Lee (2017) raise the question of entropy
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production in the classical sense for a numerically mod-

eled atmosphere. This transfer can only be a reasonable

endeavor if the model formulation reflects the second

law of thermodynamics correctly. The compatibility of

the model formulation with the first and second laws of

thermodynamics is discussed in the following para-

graphs, first for a dry atmosphere and then for a moist

atmosphere.

a. Dry atmosphere

For a dry atmosphere without radiation effects, the

total energy, as the summation of all subenergies

[Eqs. (B1)–(B4)], may only change by energy flux di-

vergences. The resolved total energy of the model does

not include turbulent kinetic energy (TKE). Therefore,

the TKE, as a subgrid-scale energy, has to be counted as

internal energy. The source terms of the TKE equation

must be distributed to the other subenergy equations.

The TKE dissipation term2«tke must appear in the in-

ternal energy equation and cancel with its counterterm.

The energy transfer due to shear production, often

neglected in weather forecast models such as WRF, has

only one logical route. A loss of resolved kinetic energy

must be added in the role of frictional heating to the

internal energy equation [Eq. (B1)]. For the buoyancy

production or loss term 6cprv
00u00 � =P, this is not the

case. Two alternative routes exist. The buoyancy pro-

duction may be distributed to either the resolved kinetic

energy or the internal energy equation. For the second

law of thermodynamics to hold, energy has to be dissi-

pated. Hence, energy should always be converted to

internal energy. Therefore, for positive buoyancy pro-

duction, energy is converted into internal energy, with a

corresponding buoyancy loss term [Eq. (B10)] appear-

ing in the resolved kinetic energy [Eq. (B3)]. Negative

buoyancy production, in turn, is lost from the internal

energy to unresolved turbulent eddies. In consequence,

the buoyancy loss term must be transferred to the in-

ternal energy [Eq. (B1)]. This implementation then re-

sults in a scheme where dissipation means that energy

ends up in the internal subenergy budget, which com-

prises both the original internal energy and the turbulent

kinetic energy of the subscale eddies.

For unstable stratification [Eq. (B5)] and stable strati-

fication [Eq. (B7)], the internal energy equations differ

[cf. Eqs. (B6) and (B8)]. The associated entropy budget

equations for unstable and stable stratification [Eqs.

(B11) and (B12), respectively] contain different internal

entropy production terms. These internal entropy pro-

duction terms have to be independently positive definite

(de Groot and Mazur 1984). This independence is re-

quired for formal compatibility with the second law of

thermodynamics (Zdunkowski and Bott 2004, p. 104).

Turbulent fluxes computed from fluctuations are funda-

mentally different than subgrid-scale fluxes. Subgrid-

scale fluxes must obey the second law (Gassmann and

Herzog 2015). The subgrid-scale shear production term

must be positive, and the form of the friction tensor is

required such that 2rv00v00:=v̂. 0. This requirement is

fulfilled by a momentum flux tensor built up from shear

and strain deformations. For the buoyancy flux terms to

yield positive-definite entropy production rates, they

must be formulated as downgradient fluxes proportional

to 2=T̂ in (B11) and2=û in (B12).

For unstable stratification, ›zT̂ and ›zu have the same

direction; both are decreasing with height. The internal

entropy production term in (B11) is positive for a

downgradient potential temperature flux. The vertical

buoyancy flux might be counter to the local gradient of

potential temperature in the upper part of a convective

boundary layer. The energy supply for upward mixing

originates from the subgrid-scale eddies losing their

buoyancy. A flux formulation according to cpP rw00u00 5
2cprPKu(›zû2 g) is then adequate. For a givenKu and

g from an arbitrary parameterization, the second law of

thermodynamics requires KT to be positive. This require-

ment can be derived from the relation 2cpr̂K
T›zT̂5

2cprPKu(›zû2 g). The countergradient flux is therefore

not violating the second law at the top of a convective

boundary layer.

A consequence of (B6) for stable stratification is a

corresponding work term in the resolved kinetic energy

[Eq. (B9)]. Hence, the vertical velocity equation gains

an additional subgrid-scale term:

›
t
ŵj

sub
52c

p

rw00u00

rŵ
›
z
P’2

KuN2

ŵ
, (2)

which becomes formally singular for ŵ5 0. In this limit,

the kinetic energy of vertical motions is zero, and hence

there is no conversion into internal energy. Therefore, the

diffusion coefficient Ku must be defined such that it van-

ishes for vanishing vertical wind, leading to the approach

Ku } ŵ2 and the appearance of a Rayleigh damping term

in the vertical velocity equation

›
t
ŵj

sub
52KuN2/ŵ . (3)

The task of the parameterization is then to determine

the diffusion coefficients. The momentum diffusion co-

efficients Km and Ku are no longer connected via a

Prandtl number Pr of O (1).

Idealized 2D numerical experiments have been per-

formed with the ICON–IAP model (Gassmann 2013) to

contrast the second-law-compliant and second-law-violating
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formulations. In these, breaking gravity waves were simu-

lated at a critical layer in themesosphere. The undulation of

the isentropes for breaking gravity waves is always such that

their trough positions coincide with vanishing vertical wind.

Hence, at such a trough position, the diffusive buoyancy flux

is zero, and the isentropes are no longer pushed down as

would be the case if the conventional approach [Eq. (B6)]

were used with Pr 5Km/Ku 5O (1). Breaking waves may

not be amplified as would be the case in a conventional

parameterization. Figures 7a and 7b in Gassmann (2018)

demonstrate that a classical, second-law-violating parame-

terization can lead to wave amplification andmanifestation.

The waves are visibly stronger and smaller in the horizontal

scale. The second-law-compliant parameterization, in turn,

leads to wave attenuation.

b. The inclusion of moisture-related quantities

The first law of thermodynamics defines the governing

equations for a moist atmosphere (Bannon 2002;

Zdunkowski and Bott 2003; Wacker and Herbert 2003;

Wacker et al. 2006; Catry et al. 2007; Gassmann and

Herzog 2015). Thermodynamic properties such as den-

sity, the gas constant, or the specific heat of the air–cloud–

precipitation mixture may no longer be approximated by

the properties of dry air. Also, the barycentric velocity

v5�iviri/r, where i5 denotes dry air, water vapor, rain,

snow, and other species, may differ from the velocity of

dry air when a significant amount of condensate is pres-

ent. Such details contribute to the variability of predicted

extreme regional events, such as heavy precipitation.

Geleyn and Marquet (2011) and Bacmeister et al. (2012)

have demonstrated this for the degree of approximation

of the gas constant for moist air. In the governing equa-

tions, a constant temperature is assumed throughout the

air parcel, which means falling precipitation has the same

temperature as its environment. Bannon (2002) discussed

and estimated the small and negligible spurious heating of

the atmosphere due to this assumption.

The energetically consistent equations for a moist

atmosphere lead to a modification of the entropy budget

[Eq. (B11) or (B12)]. Virtual potential temperature

replaces potential temperature, and more dissipative

processes with corresponding internal entropy produc-

tion rates are present. Gassmann and Herzog (2015)

follow de Groot and Mazur (1984) and find those addi-

tional entropy production rates as

›
t
(rŝ)5 � � �2�

i

J
i
� =m̂

i
j
T̂
/T̂2�

i

I
i
m̂
i
/T̂ , (4)

where Ji with �iJi 5 0 are the turbulent and diffusive

fluxes, Ii are the source terms for a constituent i origi-

nating from phase transitions, and mi is the chemical

potential of constituent i. The first term on the rhs of

Eq. (4) describes irreversible mixing, and the second

describes irreversible phase transitions.

The turbulent mixing of dry air and water vapor

comprises opposite fluxes of dry air and water vapor

Jty 52Jtd. Consequently, the internal entropy pro-

duction term reads Jty � (=m̂djT̂ 2=m̂yjT̂). 0. The gra-

dient of the chemical potential of a constituent at

constant temperature is proportional to the gradient of

its partial pressure rqi=m̂ijT̂ 5=pi. Positive entropy

production can only be guaranteed with a turbulent

water vapor flux formulated as

Jty 52rKy(q̂
d
=p̂

y
2 q̂

y
=p

d
)/p 6¼2rKy=q̂

y
. (5)

The inequality on the rhs with=q̂y turns into equality if it

is assumed that water vapor and dry air have the same

gas constant. Not including the additional entropy pro-

duction rates detailed above would only be compatible

with the second law of thermodynamics if the water

vapor were treated as a passive tracer with the same gas

constant as dry air.

The mixing entropy also reveals internal entropy

production due to liquid or frozen precipitation. Liquid

and frozen constituents have =m̂ijT̂ 5 0. The flux control

condition �iJ
d
i 5 0 requires upward fluxes of the non-

sedimenting air constituents (i.e., dry air and moisture)

with a speed wns. The fluxes of nonsedimenting constit-

uents lead thus to the internal entropy source of

›
t
(rŝ)5 � � �2(Jdd � =m̂d

j
T̂
1 Jdy � =m̂y

j
T̂
)/T̂

52wns›
z
p/T̂5wns rg/T̂. 0. (6)

The importance of the existence of the vertical diffusive

fluxes of nonsedimenting constituents in the governing

equations becomes obvious. A consistent entropy bud-

get equation cannot be formulated without them.

The internal entropy production due to phase changes

is given by

›
t
(rŝ)5 � � �2I

ljf (m̂ljf 2 m̂
y
)/T̂ , (7)

where Iljf is the source of the liquid/frozen component.

The differences between the chemical potentials are

found to be m̂ljf 2 m̂y 52RyT̂ lnH , where H is the

relative humidity concerning water/ice saturation. En-

tropy is produced if water evaporates at subsaturation or

if water vapor condenses at supersaturation. For a

quasi-static process at saturation H 5 1, the entropy

production is zero, and the process is reversible. A

saturation adjustment scheme in a numerical model

removes sub- or supersaturations immediately. This

numerical approximation to a quasi-static process

yields a slightly positive nonzero entropy production.
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All subscale terms produce entropy, and their entropy

sources may be diagnosed. The requirement of positive

internal entropy production specifies the direction of the

diverse fluxes, but not their amount. The latter is the

task of the physics parameterization. Parameterizations

of convection are in fact a combination of heat fluxes,

constituent fluxes, and phase changes. Each of these

fluxes on its own contributes to entropy production.

7. The gray zone

As the resolution of geophysical models increases, the

separation between the scales that are resolved by the

model and the scales of the subgrid processes that are pa-

rameterized, approximately 1–10km for convective and a

few to several hundred meters for the PBL/turbulence

parameterization, vanishes. When a subgrid process that is

targeted by parameterizations at a lower resolution be-

comes partially resolved at a higher resolution, the model

runs at a resolution in what is called the gray zone of this

process: the explicit and the parameterized representations

of a process are in ‘‘competition’’ in the numerical model.

The result of this competition may be double counting or

no counting at all. The gray zone is a particularly timely

problem for weather models, which currently operate at a

resolution precisely in this regime.

a. Examples in current model configurations

The continuous resolution increase over the last

50 years has brought global models close to the gray

zone of convection. Limited area models for numerical

weather prediction (NWP) have already jumped across

the gray zone of convection, and they are now on the

verge of the gray zone of turbulence (Wyngaard 2004;

Boutle et al. 2014; Honnert and Masson 2014).

In the gray zone of a process, it is not accurately rep-

resented by its subgrid representation in a parameteri-

zation or the explicit representation through the gridscale

model variables. In practice, modelers employ a combi-

nation of three corrections. The first is to tune the existing

parameterizations to extend their usage out of the range

of validity of their fundamental hypotheses. The second is

to switch off the parameterizations, even if the process is

not yet well resolved but only ‘‘permitted’’ by the reso-

lution. Third, modelers apply ad hoc numerical filters, if

necessary, to control the intensity of the process.

A recent example in the operational ECMWF model

showed the difficulty of balancing the explicit and the

parameterized representations of deep convection, even

at a grid spacing of about 16 km, which is not typically

considered to be in the gray zone. When the convection

scheme was modified to improve the daily cycle of

convection (Bechtold et al. 2014), explicit convective

clouds at isolated single grid points were diagnosed in

calm conditions near mountainous and moist areas,

leading locally to unrealistic precipitation (Fig. 9a). This

new version of the convection scheme then delayed the

onset of the parameterized convection toward the

evening. The CAPE accumulated such that in a region

with weak orographic forcing of moist air in a low-shear

environment, an explicit convective cloud is permitted

at a single grid point before the convection scheme is

triggered. In the IFS, such single-gridpoint structures are

then pathologically amplified by the semi-Lagrangian

advection scheme of the IFS dynamics (Malardel and

Ricard 2015). The resulting unrealistic explicit deep

convective clouds may last for several hours, leading to

spurious high precipitation rates at some grid points.

Similar gridpoint storms have been reported in the liter-

ature for other global models: for example, Williamson

(2013) in CAM4, with T340 spectral truncation and a

5-min time step (section 2) or in mesoscale limited-area

models at resolutions in the 3–5-km range (Malardel and

Ricard 2015). This example shows that explicit deep

convective circulations are permitted at resolutions that

are far too coarse to sample individual convective ascents

in circumstances where the convection scheme is not

triggered soon enough to release theCAPE.On the other

hand, with the old version of the convection scheme, the

parameterization was triggered earlier, and the onset of

the convection in the tropics was systematically too early.

Finding the right balance between the explicit and the

parameterized representations of convection everywhere

around the globe becomes even more difficult in the gray

zone of convection.

b. Model limitations in the gray zones

The prognostic equations that are solved by a discrete

numerical model are the result of time and space filter-

ing. This filtering creates an artificial cutoff in the con-

tinuous atmospheric spectrum between the processes

that are represented by the gridscale variables, which

constitute a time–space mean, and the processes that are

supposed to be subgrid and whose effect on the larger

scales is parameterized.

This cutoff scale is partly defined by the time–space

resolution of the model and partly by the characteristics

of the numerical schemes and physical parameteriza-

tions. In most numerical schemes, the largest errors are

expected to happen at the cutoff scale, especially in re-

gions of large gradients. Weaknesses of the numerical

schemes such as substantial explicit diffusion, large

phase shift, or nonconservation then directly affect the

energy-containing circulation near this cutoff scale.

Thus, as discussed by Lander and Hoskins (1997),

physical parameterization should not force and should

3526 MONTHLY WEATHER REV IEW VOLUME 146



not be forced by the gridscale model variables contain-

ing variance at the grid scale. The test case shown in

Fig. 9 illustrates this statement. With the horizon-

tal resolution upgrade at the beginning of 2016, the IFS

moved from a linear grid to a cubic grid, keeping the

same spectral truncation T1279. With the cubic grid, the

smallest wavelength of the truncation is now repre-

sented by four points instead of two with the linear grid.

Such a pairing between the spectral representation of

the IFS and the model grid improves the scale separa-

tion between the gridscale prognostic model variables

and the subgrid effect computed in the physics package.

In the linear grid, the separation between resolved scales

and parameterized scales is two grid lengths. In the cubic

grid, this separation is now increased to four grid

lengths. The cubic grid also ensures that the marginally

resolved scales are handled sufficiently accurately. In

particular, ascents that are resolved by a single grid

column do not occur anymore with a cubic grid. The

development of gridpoint storms is then eliminated from

the IFS forecast (Fig. 9b).

Indeed, the formulation of most physical parameter-

izations is based on the scale separation, both in time

and space, between a resolved environment and the

parameterized processes, which are treated as pertur-

bations of the environment. The formulations are de-

rived from a statistical evaluation of the impact of a

large population of perturbations on the resolved flow,

sometimes simplified by a bulk representation of the

process: for example, in many convection schemes, a

single convective cloud replaces a population of smaller

cloud ascents. But, when the resolution increases, the

grid becomes too small for a population of deep con-

vective circulations to develop inside a grid box. In the

gray zone of convection, the updrafts could cover a large

fraction of the gridbox area, and then the mean gridbox

properties that are carried by the gridscale variables of

the model should depart substantially from the updraft

environment. The detrained material from the updrafts

should also not be confined in the same grid column, but

should be distributed over several grid columns (section

3a; Fig. 3). However, theReynolds decomposition that is

used to derive the eddy diffusivity formulation for 1D

turbulence or the mass flux formulation of most con-

vection schemes does not allow any net mass transport

by the perturbations in a grid box. Here, updraft and

downdraft have to cancel in the same grid box, rendering

the problem of extending the detrainment to neighbor-

ing cells challenging to generalize (section 3a).

The equilibrium hypothesis (Arakawa and Schubert

1974) resulting from the hypothesis of the scale separa-

tion in time also starts to collapse when the time step of

the model decreases. With an increase of resolution in

time, the variability of themodel variables becomes faster

than the characteristic convective time scales (Gerard

andGeleyn 2005). If the closure of the convection scheme

is too simple, spurious explicit convective storms are

FIG. 9. Operational ECMWF forecast with a spectral truncation

T1279 (a) 16- and (b) 9-km reduced Gaussian grid. Three-day ac-

cumulated surface large-scale precipitation for forecasts starting at

0000 UTC 20 May 2015 valid at 0000 UTC 23 May 2015. (c) Study

area marked with red square.
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more likely to develop at high resolution (section 2c; see

also Williamson 2013; Gerard 2015).

c. Toward scale-aware parameterizations

Efforts to create scale-aware convective parameteri-

zation started in the limited-area model community

more than 10 years ago (Gerard and Geleyn 2005) and

are now shared by a much larger community (Kuell and

Bott 2008; Arakawa andWu 2013; Gustafson et al. 2013;

Grell and Freitas 2014; Siebesma 2015). The following

paragraphs will illustrate the transition from cloud-

system-resolving models (CSRMs) to scale-aware pa-

rameterizations of convection. Parallels can be drawn to

the problem of large-eddy simulation and turbulence

parameterization. This transition would be of particular

interest for high-resolution limited-area models (e.g., in

an NWP context) who, due to their high resolution, al-

ready allow convection.

One of the main issues for the parameterization of

deep convection in the gray zone is that when the res-

olution of the model increases, some of the condensates

can be detrained across the grid box; the ensuing com-

pensating subsidence should take place within a set of

grid boxes, and the convective updraft grid box may not

necessarily be part of that set. With the time step orga-

nization of NWP codes, the horizontal transport across

the grid boxes can only be handled by the advection of

the dynamical core.

Piriou et al. (2007) observed that the advantage of

CSRMs with respect to parameterized budget equations

is that the source terms for the convection can be sep-

arated into transport terms and microphysics terms,

and they argued that the two types could be treated in-

dependently. Moreover, if the condensation (and the

cloudy evaporation) terms in cloud budgets are com-

puted by a microphysics scheme and provided as source

terms to the environment, then the system can be closed,

leading to CSRM-type equations that still do not con-

tain explicit detrainment terms. In that case, there is no

need to rely on the budget equations to close the system

directly.

However, to go from CSRM to gridbox parameteri-

zations, it is necessary to partition the grid box into a

convective and a nonconvective part. Gerard et al.

(2009) used the cloud scheme of Smith (1990) and Xu

and Randall (1996) to introduce protection of the cloud

condensates in the convective part to prevent their

evaporation by the cloud microphysics scheme. Addi-

tionally, Gerard et al. (2009) used a prognostic formu-

lation of the convective mesh fraction of the updraft

and a prognostic equation for the updraft vertical ve-

locity proposed in Gerard andGeleyn (2005). The result

is a CSRM-type set of equations without any explicit

presence of detrainment terms. In other words, it

interacts with the dynamics in the same manner as a

CSRM-type model does.

One can argue that bulk parameterizations should

converge in their behavior to the behavior of CSRM in

the cloud-resolving limiting resolutions. If the prognos-

tic equations of the mesh fraction and the updraft ver-

tical velocity scale correctly, then the equations should

converge to the equations of a CSRM. This prognostic

formulation yields a mechanism to control this conver-

gence and to formulate a scale-aware parameterization

of deep convection.

This approach was implemented in a scheme called

the Modular Multiscale Microphysics and Transport

scheme (3MT), and it formed the basis of the so-called

ALARO-0 configuration of theARPEGE-Aire Limitée
Adaptation Dynamique Développement International

(ALADIN) system. Gerard et al. (2009) showed satis-

factory results of this scheme with resolution ranging

from the mesoscale down to 4 km (their Fig. 11). In that

figure, it can be seen that without 3MT, the model did

not resolve the organized convection satisfactorily.

Only a few small intense gridpoint storms were resolved.

Recently, good results were found with an updated

version of the scheme up to a grid spacing of about 1 km.

De Meutter et al. (2015) tested a version of the 3MT

scheme that included the parameterization of unsatu-

rated downdrafts. They found downdraft mass fluxes

that are sufficiently realistic so that they can be used

operationally to forecast downbursts. De Troch et al.

(2013) demonstrated that the ALARO model has an

improved multiscale character, compared with the for-

mer ALADIN configurations (Termonia et al. 2018).

These efforts still need to be generalized for global

NWP. The different types of convective circulations,

deep and shallow convection, in the tropics and at higher

latitudes, have to be well represented for medium-range

weather forecasting. Recent results with variable reso-

lution grids (Müller 2014) also show the need for scale-

aware physics across the problematic range between 1

and 10 km.

Limited-area models with subkilometer resolutions do

not use any parameterization of deep convection, but the

parameterization of eddies in the boundary layer is still

needed. A blending between a 3D turbulence parame-

terization designed for large-eddy simulation and a 1D

boundary layer parameterization suitable for coarser grid

resolution has been shown to be beneficial to the repre-

sentation of clear or stratocumulus-topped boundary

layers by Boutle et al. (2014). In this case, the transition

laws developed by Honnert and Masson (2014) are used.

The transition law defines a threshold for the required

dimensionality of the turbulence scheme depending on
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the wind shear, the resolution normalized by the bound-

ary layer height, and the depth of the cloud layer. This law

then drives the transition from unresolved to resolved tur-

bulence seamlessly. But more efforts are needed to gen-

eralize this approach to any regime in the boundary layer.

Malardel and Wedi (2016) identify the influence of

subgrid-scale parameterizations for the shape of the

kinetic energy spectra, as well as for the nonlinear

spectral fluxes at all scales. The artificial scale separation

between resolved and subgrid processes modifies the

natural turbulent energy cascade. When the processes

are parameterized, the circulation that is responsible for

the average effect of the subgrid mixing is neither part of

the resolved kinetic energy spectra nor part of the

nonlinear spectral transfer, thus effectively disabling

any energy cascade. Subgrid-scale circulations are not

involved in the resolved energy cascade due to nonlinear

interaction between scales. Hence, the parameteriza-

tion directly feeds the large scales, bypassing the natural

cascade.

The temptation to enable the natural cascade by

eliminating a particular parameterization too early in a

gray zone is, however, risky as the model balances

change at all scales as a result. Such practice may also

have implications on the forecast error growth, as the

predictability time of a k23 system can be much longer

than that of a k25/3 system (Rotunno and Snyder 2008;

Palmer et al. 2014). However, it is unclear if a growing

error is merely replaced by a much larger error injected

at multiple scales when the process is parameterized.

8. Emerging challenges

The ecosystem of models is continuously evolving, and

new methods become available and feasible, replacing

older and often somewhat simpler technologies. Cur-

rently, the advent of high-order finite element methods

offers manymore choices to the coupling than a gridpoint

model would. Likewise, spatially varying resolution and/

or adaptive refinement is used more and more often,

partly due to the availability of mimetic methods that

support this sort of models. The spatially varying reso-

lution, however, is not without challenges to the coupling

of the multiple scales now present in the model.

a. Spatial physics–dynamics coupling with
element-based high-order Galerkin methods

Numerical methods using element-based high-order

Galerkin discretization (e.g., Durran 2010) have reached a

level of maturity in which they are being considered for

next-generation weather and/or climate models. For ex-

ample, the spectral-element dynamical core in NCAR’s

CAM(Neale et al. 2010b), referred to asCAM-SE (Taylor

et al. 2008; Taylor and Fournier 2010;Dennis et al. 2012), is

currently being used for high-resolution climate modeling

(e.g., Small et al. 2014;Giraldo andRestelli 2008;Nair et al.

2009; Brdar et al. 2013). In principle, the discussion applies

to any element-based high-order Galerkin method. In the

following, the focus is on CAM-SE.

Element-based high-order Galerkin methods typi-

cally apply quadrature rules to integrate basis functions

over a reference element to advance the solution to the

equations of motion in time. The choice of quadra-

ture rule is application dependent and can have conse-

quences for the properties of the final algorithm, in

particular, algorithm efficiency. In CAM-SE, Gauss–

Lobatto–Legendre (GLL) quadrature is used, which

accurately integrates Lagrange polynomials up to de-

gree 2p2 1, where p1 1 is the number of quadrature

points. For an introductory discussion on emerging

Galerkin methods in the context of atmosphere mod-

eling, see Nair et al. (2011).

Irrespective of the choice of quadrature rule, the

quadrature points for higher-order methods are not

equally spaced over the sphere and reference element.

The higher the order, the more the quadrature points

tend to cluster near the sides and, in particular, the

corners of the elements. As far as the authors are aware,

current dynamical cores employing element-based high-

order Galerkin methods use the quadrature point values

for the state of the atmosphere passed to subgrid-scale

physical parameterizations. This approach follows the

traditional model setup where physics and dynamics

grids coincide. One may question if that is an appro-

priate choice for the element-based high-order Galerkin

methods. Physical parameterizations expect a state of

the atmosphere representative of the area for which it

should compute tendencies (e.g., a gridcell-averaged

state of the atmosphere). The quadrature point values

are representative of the state of the atmosphere at the

quadrature point and in the vicinity of the quadrature

point, but what area is associated with the quadrature

point value? An irregular grid results if the areas around

the quadrature points are defined, such that the spheri-

cal area exactly matches the GLL quadrature point

weight times the metric factor. Hence, the state of the

atmosphere passed to physics is sampled anisotropically

and inhomogeneously in space.

Assuming that physics should be given a gridcell av-

erage value, it may be more consistent to integrate the

basis functions within each element over quasi-equal-

area control volumes. From an implementation point of

view, it is convenient to have the control volumes sub-

divide the element so that no control volume spans part

of the neighboring elements. Note that the basis func-

tions are C‘, infinitesimally differentiable, within each
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element but onlyC0, which may be discontinuous, at the

element boundaries. If there is a strong gridscale forcing

at the element boundary, the physics grid value may be

more representative than the extrema value. Figure 10

shows such an example where the boundary edge values

are large. However, the physics-grid-averaged value is

not. Hence, the boundary edge values are outliers. It

would not seem reasonable to force the dynamics with

the edge value (at the third blue arrow from the left) as it

is not an accurate representation of the overall forcing.

This configuration, where physics and dynamics grids

are separated, is referred to as physgrid. Care must be

taken when mapping variables to and from dynamics

and physics grids so that conservation properties are not

violated. For CAM-SE, the arbitrary high-order, con-

servative, and consistent remapping algorithm ofUllrich

and Taylor (2015) is used. The algorithm consists of

matrices that can be precomputed: for mapping from the

dynamics to the physics grid, it consists of one matrix

that performs a shape-preserving, but low-order, remap

and another matrix that is not shape preserving but is

high order. The algorithm has been modified such that

the two matrices in each element are optimally com-

bined linearly so that the method is shape preserving

and, where possible, high order. For mapping the ten-

dencies back to the GLL quadrature grid, a low-order

conservative and shape-preserving method is used. The

mapping algorithm accommodates any order of basis

functions. Ideally, the map should be reversible and

shape preserving at the same time. That, however, seems

unattainable.

The next step is the choice of physics grid spacing. Three

options exist. The grid spacing can be the same in dy-

namics and physics; it can be smaller or larger in the

physics. Lander andHoskins (1997) argued, in the context

of a spectral transform model, that the physical parame-

terizations should only be given what they termed ‘‘be-

lievable,’’ well-resolved scales. From linear theory, it is

well known that numerical methods used in the dynamical

core do not resolve the shortest wavelengths (e.g., the 2Dx
wave) accurately. Physical parameterizations should not

be passed scales that, from linear theory, are not accu-

rately represented. On the other hand, computing physics

tendencies on a higher-resolution grid compared to the

dynamical core may provide a better sampling of the at-

mospheric state, somewhat similar to the subcolumns

concept (Pincus et al. 2003; Barker et al. 2008; Thayer-

Calder et al. 2015).

In this section, the consequences of separating physics

and dynamics grids in CAM-SE, as described above, are

explored. The 18 version of CAM-SE is used in the

ne30np4 configuration (30 3 30 elements in each panel,

FIG. 10. Element polynomials in one dimension. The figure shows three elements. The edges

of the elements are marked with blue arrows. The red curves are the degree 3 polynomials in

each element, and, following the CAM-SE algorithm, the polynomial values from each side of

an element boundary are averaged. The filled green circles show the GLL quadrature point

values, and the red filled circles are the locations of the GLL quadrature points in each element

for np5 3. The histogram bar shows the cell-averaged values on an nc5 3 physics grid (each

element has been divided into three equal-sized control volumes) obtained by integrating the

Lagrange basis functions over the control volumes.
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ne5 30, and 4 3 4 quadrature point, np5 4, in each el-

ement). The physics tendencies are computed on the

GLLgrid (the grid of the dynamical core), a coarser (1.58)
physgrid, a same-resolution (18) physgrid, and a finer-

resolution (0.758) physgrid. The four configurations are

referred to as ne30np4, ne30np4nc2, ne30np4nc3, and

ne30np4nc4, respectively, where nc2 refers to a 23 2, nc3

to a 33 3, and nc4 to a 43 4 quasi-equal-area physics grid

in each element. Note that the GLL grid is the grid on

which the dynamical core operates. Aquaplanet simula-

tions (Neale and Hoskins 2000) are performed with

CAM4 physics (Neale et al. 2010a), and the physics time

step is the default 1800 s. The reasoning behind choosing

CAM4 physics instead of the newer CAM5 physics is

that CAM4 physics is more resolution dependent (e.g.,

Bacmeister et al. 2014; Zarzycki et al. 2014b). CAM4

physics is therefore expected to produce more physgrid

resolution dependence than CAM5. Simulation length

is 30 months, and only the last 24 months are used for

analysis. The code base used is revision 65448 of https://

svn-ccsm-models.cgd.ucar.edu/cam1/branches/physgrid. Stan-

dard out-of-the-box namelist settings for the spectral element

dynamical core were used.

Figure 11 shows the zonal–time average of surface

pressure, total precipitation rate, total cloud fraction,

and albedo as a function of latitude (from the equator to

808N) for the different model configurations. The sur-

face pressure field follows a slight decrease with in-

creased physics grid resolution north of approximately

558N. In the simulations presented in Williamson’s

(2008) Fig. 4, the surface pressure exhibited the same

behavior when the model resolution was increased.

FIG. 11. Zonal–time average (top left) surface pressure, (top right) total precipitation rate, (bottom left) total

cloud fraction, and (bottom right) albedo as a function of latitude (from the equator to 808N) for the different

configurations of CAM-SE. Temporal averaging over a period of 24 months and mapping to a 1.58 3 1.58 regular
latitude–longitude grid was applied for analysis.
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Precipitation rates show relatively little dependence on

physics grid resolution, except at the equator. For total

cloud fraction, Williamson (2008) observed that the

fraction decreased with increasing resolution. This de-

crease is noted for the physgrid nc5 2 and nc5 3 sim-

ulations. For nc5 4, the cloud fractions are mostly

bounded between the nc5 2 and nc5 3 cloud fraction

values. The same is observed for albedo. So for the

zonal–time-averaged fields, there seems to be little de-

pendence on physics grid resolution.

In all, the physgrid configuration of CAM-SE has

been demonstrated to produce aquaplanet results that

are similar to the baseline (no physgrid) version. The

dependence on physics grid resolution is different for

different fields. The aquaplanet setup does not have a

stationary gridscale forcing and is only suitable for ana-

lyzing the freemodes in the atmosphere. The next step is to

investigate the effect of a physics grid on applications with

stationary gridscale forcing (e.g., orography). CAM-SE

had been found to produce some noise if the orography

is not sufficiently smoothed (Lauritzen et al. 2015a).

The physgrid configuration has shown promise in allevi-

ating spurious gridscale precipitation near steep orogra-

phy due to the averaging over control volumes (especially

near the edges of the elements). Similarly, the physgrid

may improve simulations of other fields exposed to strong

gridscale forcing, such as photolysis-driven tracers. An

idealized test to investigate this has recently been de-

veloped (Lauritzen et al. 2015b). A newer version of the

physics grid configuration of CAM-SE has been de-

veloped and is described by Herrington et al. (2018,

manuscript submitted to Mon. Wea. Rev.).

b. Emerging challenges in physics–dynamics
coupling with multiscale models

The grid lines of latitude–longitude grids converge at

the poles by construction. This means that at the poles,

the grid spacing is orders of magnitudes smaller than

at the midlatitudes. This has two main disadvantages.

First, the permissible time step is severely restricted, and

for the sake of computational efficiency, this restriction

is often violated at the poles. Second, waves excited at

these small grid lengths are not supported elsewhere on

the grid, leading to aliasing problems. This is commonly

termed the pole problem. Atmospheric dynamical cores

on quasi-uniform grids, which do not suffer from the

pole problem, have been developed during the last de-

cade (Williamson 2007).

Their development is also driven by the need to im-

prove scalability onmassively parallel computers and by

diverse model applications from weather prediction to

atmospheric chemistry and climate projections. For

these applications, the dynamical cores ideally should

satisfy several properties, such as conservation, com-

patible or mimetic properties, and accurate representa-

tion of global-to-mesoscale flows (Taylor and Fournier

2010; Ringler et al. 2010; Skamarock 2011; Staniforth

and Thuburn 2012). These numerical techniques, along

with progress in grid generation (Tomita et al. 2002;

Anderson et al. 2009; Ju et al. 2011; Walko and Avissar

2011), make it possible to increase grid resolution locally

while maintaining a quasi-uniform resolution outside

the refined domain. The associated grids are often de-

scribed as unstructured because each cell is identified

by a unique index and its connectivity to the neigh-

boring cells, due to nonrectangular cell shapes and/or

local coordinate system used in the numerical scheme.

Ju et al. (2011) present examples of unstructured grids in

quasi-uniform and variable-resolution configurations.

Local grid refinement is also possible by stretched-

grid methods on structured grids that are continuously

and conformally transformed to achieve higher gridcell

density over a specified region (Schmidt 1977; Staniforth

and Mitchell 1978); general reviews can be found in

Fox-Rabinovitz et al. (2006) and McGregor (2013). In

this technique, the number of the grid points remains the

same after the transformation, so the increase in reso-

lution over one region must be compensated by the

decrease in resolution in the rest of the model domain.

Recently, the stretched-grid method has been extended

to unstructured grids by Uchida et al. (2016). Here, all

approaches that refine the horizontal resolutions over

one or more regions on a global grid are referred to as

the variable resolution (VR) approach.

With global VR models, higher horizontal resolu-

tions can be achieved in the area(s) of interest, while the

computational burden is reduced relative to global high-

resolution simulations due to a coarser resolution over

the remainder of the globe. The VR approach can avoid

some of the known issues in limited-areamodels, such as

the treatment of lateral boundaries, consistency be-

tween the global and regional models, and lack of two-

way interactions between the regional simulations and

their driving global simulations (Wang et al. 2004).

Idealized testing demonstrates that properly designed

numerical schemes on VR grids can provide addi-

tional finescale information at the regional scale with-

out decreasing the accuracy of the global solution

(Ringler et al. 2011; Ullrich and Jablonowski 2011;

Guba et al. 2014).

The advantages and challenges of VR weather and

climate modeling have been actively studied. The con-

sensus is that VRmodels can provide the benefits of high-

resolution simulation inside or even outside the refined

domain. The benefits include improved orographic pre-

cipitation and snow cover (Rhoades et al. 2016), tropical
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cyclones (Zarzycki and Jablonowski 2014, 2015; Zarzycki

et al. 2014a), land-cover representation (Medvigy et al.

2011), remote influence from high-resolution regions

(Medvigy et al. 2013; Sakaguchi et al. 2016), and overall

regional climate metrics (Medvigy et al. 2010; Harris and

Lin 2014; Harris et al. 2016; Sakaguchi et al. 2015;

Zarzycki et al. 2015; Huang et al. 2016). Boundary effects

have also been evaluated, finding few artifacts in propa-

gating waves throughout the variable-resolution domain

(Harris and Lin 2013; Hagos et al. 2013; Park et al. 2014;

Zarzycki et al. 2015). So far the most challenging issue

for VR models is related to unphysical sensitivity of

physics parameterizations to spatial and temporal res-

olutions, although there are other potential challenges

such as optimum orography smoothing on VR grids

(e.g., Zarzycki et al. 2015).

Sections 2 and 7 illustrated several examples of un-

desirable sensitivities of weather and climate models to

temporal and spatial resolutions. Specifically, section 2

discussed the mismatch between the predefined physi-

cal process time scales and the model time steps and

how the mismatch affects the interaction among con-

vection, cloud microphysics, and resolved dynamics in

the sequential update time-splitting scheme. Similar

sensitivities could negatively affect VR simulations that

feature multiple resolutions within a single simulation.

For example, a striking difference in precipitation ap-

pears inside and outside the high-resolution domains in

aquaplanet VR simulations using the CAM-SE dy-

namical core (Zarzycki et al. 2014b) or the MPAS–A

dynamical core (Hagos et al. 2013; Rauscher et al. 2013;

Zhao et al. 2016). In the following, the effects of physics–

dynamics coupling on the model sensitivity to spatial

resolution in VR modeling are briefly explored.

Aquaplanet experiments were conducted using Model

for Prediction across Scales-Atmosphere (MPAS-A)

with the CAM4 physics as in Williamson (2013), who

used the Eulerian spectral model with the same CAM4

physics. The version of MPAS–A used is the hydrostatic

model described by Park et al. (2013) and Rauscher et al.

(2013). The model was configured with three different

grids: quasi-uniform (QU) 240km,QU120km, and a VR

grid with 30-km grid spacing at the center of the refined

domain over the equator transitioning to 240-km grid

spacing on the rest of the globe. The same configuration

of the parameterization suite was used in all simulations,

except for the numerical diffusion coefficient, which was

adjusted based on the gridcell size (Rauscher et al. 2013).

The same dynamics time step of 100 s was used in all

simulations and for each grid cell in the VR simulations.

The physics time step was defined independently of the

dynamics time step. For each resolution, simulations with

three different ratios R of the physics time step Dt to the

convective relaxation time scale t were run: R5 1/6

(Dt5 600 and t5 3600 s), R5 1/2 (Dt5 1800 and t5
3600 s), and R5 1 (Dt5 600 and t5 600 s).

Reduced sensitivity to grid spacing of the total

(convective 1 large scale) precipitation (Fig. 12a) is

observed as R approaches unity in the QU simulations

(Fig. 12a). The sensitivity of convective fraction to grid

spacing is also reduced (Fig. 12b). This dependence of

the resolution sensitivity onR has a visible impact on the

VR simulations. For R 5 1/6, the zonal anomaly (rela-

tive to the zonal mean) of precipitation appears on the

western or downwind side of the refinement (Fig. 12c),

and the attendant latent heating excites a Gill-type cir-

culation apparent in the 200-hPa velocity potential

as shown in Fig. 12e and Hagos et al. (2013), Rauscher

et al. (2013), and Zarzycki et al. (2014b). Theoretically,

the zonal anomaly should be nearly random spatially

because there are no longitude-dependent forcings in

the aquaplanet configuration. The model precipitation

exhibits a substantially weaker sensitivity to the change

of resolution with R5 1 (Fig. 12d). When making t

comparable to Dt, convection is more active in removing

the instability created by the resolved dynamics

(Williamson 2013). However, the zonal anomaly is still

visible, and the undesirable Gill-type circulation is not

eliminated (Fig. 12f).

A more physical behavior may be expected if t is al-

lowed to vary with the grid spacing as opposed to using a

constant value across the globe. Ma et al. (2014) and

Gustafson et al. (2014) suggested a simple formulation

of t as a linear function of grid spacing. This function is

plotted in Fig. 13a. Fowler et al. (2016) tested another

simple method to achieve scale-aware representation of

convection in VR MPAS-A simulations. They used the

Grell and Freitas (2014) convection scheme, which fol-

lows the approach originally suggested by Arakawa

et al. (2011) and Arakawa and Wu (2013). In Fowler

et al. (2016), the cloud-base mass flux Mb is scaled by a

quadratic function of the convective cloud cover. With

this grid-size-dependent scaling, convective precipitation

is mostly parameterized with $40-km grid spacing, but

the fraction of parameterized convection rapidly de-

creases over the 5–30-km range, and most convection is

allowed with ,5-km grid spacing (Fig. 13b). A heuristic,

idealized analysis can be made to compare the resolution

sensitivity in the context of VR modeling and the time

scale mismatch (Williamson 2013).

With the modification following Grell and Freitas–

Fowler (red line in Fig. 13c), Mb gradually decreases

with reduced grid spacing, reaching a minimum value

that is specific to the implementation of Fowler et al.

(2016). This curve mimics the behavior of convection

reported in their study. The Ma et al. (2014) approach
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exhibits a different behavior (blue line), with Mb in-

creasing with decreasing grid spacing and reaching a

maximum value at a grid size that depends on the tun-

able parameter. A simple combination of the two is also

shown (green line).

A different picture emerges when Mb is multiplied by

Dt to obtain themass increment over one time step, which

is an important quantity as it represents the effectiveness

of deep convection to remove instability generated over

one time step. Figure 13d shows the mass increment, as-

suming that Dt changes with Dx [e.g., by considering the

Courant–Friedrichs–Lewy (CFL) stability criteria]. For

simplicity,Dt is set to 63Dx, withDx in km. TheMa et al.

(2014) approach maintains a constant mass increment

independent of grid spacing for grid cells larger than the

gray zone. By doing so, this approach allows deep con-

vection to be active even asDx (andDt) becomes smaller,

thereby reducing the time step sensitivity elucidated by

Williamson (2013). The R5 1 case in Figs. 12a and 12b is

another demonstration of the same principle of allowing

deep convection to be active by making t and Dt com-

parable. On the other hand, theGrell and Freitas–Fowler

approach produces amass increment equal to or less than

the default case. Therefore, the Grell and Freitas–Fowler

approach will likely generate the same positive feedback

and truncation-scale storms at high resolution as de-

scribed byWilliamson (2013) if it is implemented inCAM

with the Zhang–McFarlane scheme. This problem may

be avoided by combining the Grell and Freitas–Fowler

formulation of mass flux with the linear equation for t

FIG. 12. Influence of R5Dt/t on the resolution sensitivity of the CAM4 physics (precipitation) to QU and VRs

usingMPAS-A. (a) Sensitivity of equatorial (628 latitude) precipitation to gridcell size (x axis) in different values of
R as represented by three arrows. (b) Fraction of convective precipitation as a function ofR (x axis) and gridcell size

(240 vs 120 km). (c) Zonal anomaly of precipitation in a VR simulation with R5 1/6. (d) As in (c), but a VR

simulationwithR5 1. (e) Zonal anomaly of velocity potential (shading) and divergent component of wind (arrows)

with R5 1/6. (f) As in (e), but for R5 1. The solid and dashed circles in (c)–(f) represent the boundaries enclosing

the domain with 30-km grid and the transition to 240-km grid domain, respectively.
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(Ma et al. 2014; Gustafson et al. 2014) (green line). Note

that the closure assumption in the Grell and Freitas

scheme is different from that in the Zhang–McFarlane

scheme. It does not include a predefined convection time

scale of Eq. (19) in Grell and Freitas, and both Gustafson

et al. (2014) and Fowler et al. (2016) use the parallel

split approach, in which tendencies from the convection

scheme do not directly affect the behavior of the cloud

microphysics within a time step. Therefore, the resolution

sensitivity described here is for illustrative purpose and is

not directly applicable to their simulations.

In VR models, it is common to use a constant dynamics

time step that satisfies the stability criteria of the smallest

grid cell for all the grid points in the global domain. Gen-

erally, the physics time step (Dt) is also fixed to the dy-

namics time step. In this case, the mass increment over Dt
behaves in the same way as Mb (as shown in Fig. 13c)

because Mb is multiplied by the same constant Dt, re-
gardless of the grid spacing. Based on this plot, the be-

havior of the Grell and Freitas–Fowler approach seems to

be more desirable for VR models with a constant Dt, the
CAM’s sequential update splitting, andZhang–McFarlane

convection. The modification by Ma et al. (2014) (and the

result in Figs. 12d and 12f with R5 1) would introduce a

larger mass increment from the parameterized convection

for smaller grid spacing even beyond the gray zone, which

is asymptotically erroneous. This artifact arises from the

implicit assumption that Dt and Dx vary together, but

this assumption breaks down in VR models. This simple

analysis illustrates the dependence of scale-aware con-

vection representation on the physics–dynamics coupling,

such as the time-splitting method or the covariation be-

tweenDt andDx, which has not been elucidated in the VR

modeling framework.

Global simulations using the newer CAM5 parameter-

ization suite show improvement in some of these aspects,

particularly with respect to cloud fraction and pre-

cipitation scaling inVR simulations (Zarzycki et al. 2014b,

2015; Zhao et al. 2016). O’Brien et al. (2013) postulated

that the large improvement in cloud fraction scaling is

dominated by CAM5’s new microphysical parameteriza-

tion (Morrison and Gettelman 2008). These results un-

derscore the need to understand the complex relationships

between the multitudes of components within parame-

terization suites that continue to grow in complexity.

9. Conclusions and outlook

Model resolutions, model complexity, and the accu-

racy of individual model components are all likely to

FIG. 13. Illustration of the Ma et al. (2014) and Fowler et al. (2016) approaches for scale-aware convection using

the Zhang–McFarlane closure. (a) Term t from Ma et al. (2014) as a function of grid spacing. (b) The fractional

convective cloud cover (s; red line) and scaling factor for cloud-base mass flux used in Fowler et al. (2016). (c) The

cloud-base mass flux (inside y axis) based on the Zhang–McFarlane closure with CAPE5 1000 J kg21 and F5
250 Jm2 kg22 and different modifications. Dashed line is the default with t5 3600 s (Default); blue line is

t following Ma et al. (2014); red line is t5 3600 s (Grell and Freitas–Fowler); and green line is combined. The

outside y axis in (c) shows the mass increment through the cloud base for Dt5 600 s (i.e., multiply each curve by

600). (d) Mass increment through the cloud base is shown for the same cases in (c), using Dt5 63Dx.
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continue to increase. As they do, the errors due to what

has here been referred to as physics–dynamics coupling

will become increasingly important. This paper has

presented some examples of the impacts of physics–

dynamics coupling, such as those on climate sensitivity,

clouds, and precipitation. For example, the RMS error

of 10-m wind speeds has been reported to double under

particular configurations of the dynamics–physics cou-

pling. Also, issues with the convergence of the coupling

between an atmosphere and an ocean model have been

shown to dominate the overall coupled model error.

There is a large variety of approaches to under-

standing and addressing the challenges of physics–

dynamics coupling. These range from full model runs

using a range of time step sizes to gain insight (section

2); to the use of simplified equation sets such that

an exact solution can be obtained and the coupling

schemes analyzed against this reference solution (sec-

tion 3); to the use of a hierarchy of models from sim-

plified physics, through simplified forcing (aquaplanet

model) to complete models (section 4).

Section 2 reviewed the splitting problem. Experience

shows that a realistic atmospheric state is needed for the

derivation of the highly nonlinear quantities used in

parameterizations. This experience would argue for

parallel splitting. However, it is also known that each

parameterization needs to know about the increments

being produced by the others. Sequential splitting

allows this in a one-way sense. This ‘‘need to know’’

calls for fully implicit procedures following Cullen

and Salmond (2003).

A common challenge is determining the ‘‘ground

truth.’’ As has been discussed above on several occa-

sions, it is not always clear how this can be defined. The

issues of using a short time step solution for full model

runs have been discussed in section 2. In section 3, the

problem was approached from a different angle: the

underlying equation set was simplified such that an exact

solution could be obtained, and the coupling schemes

were evaluated against this reference. In section 4, a

hierarchy of model complexity, and hence a hierarchy of

proxy ground truths, was used to unravel the complexity

of physics–dynamics coupling. It is essential to design

the model hierarchy to ensure that the experiment (and

its proxy ground truth) has a realistic, albeit approxi-

mated, sensitivity. Then, provided the results are in-

terpreted with full appreciation of the limitations of the

imperfect proxy ground truths, physically relevant con-

clusions can be drawn.

The issues exposed by these various methods have

quite distinct causes. Section 8 discusses the problems

that arise due to the coupling of different numerical

representations of the physical processes. One example

is the coupling of a finite difference scheme to a finite

element scheme. Another is the coupling of a physical

parameterization on one grid to a dynamical core on

another grid. Equally though, issues also can arise at the

continuous level. Because of different formulations and

sometimes pragmatic attitudes toward the representa-

tion of the physics and the coupling between model

components, consistency with the laws of thermody-

namics might not be as strict as would be desirable. An

example is given in section 6, which discusses the con-

sequences of violating the second law of thermody-

namics. Another issue that has emerged as model

resolutions have increased is the problem of how to

accurately represent aspects of amodel that are partially

resolved by the discrete system yet remain partially

represented by a parameterization scheme. This prob-

lem is known as the gray zone problem, discussed in

section 7, and requires the development of scale-aware

parameterizations. As elaborated upon in section 8,

this problem is perhaps most evident when variable-

resolution grids are used, since for given computer

power, these models can use smaller grids than would

otherwise be the case. The coexistence of different res-

olutions in the same model means that the parameteri-

zation does not only need to be scale aware, but it also

needs to be able to switch across and between resolu-

tions seamlessly.

Physics–dynamics coupling is an important, com-

plex, and pervasive modeling problem. Decisions in

the development of new models and improvements

to current ones demand guidance based on objective

and systematic investigation and understanding of

the physics–dynamics coupling issue. Generating this

guidance is a challenging activity and one that im-

pacts all of the modeling community, from developers

to users. Because of its complexity, it has to be tack-

led by the community as a whole. The authors hope

that this article helps to seed this development and

provides a basis for this decision-making process.

The PDC workshop series (2014 in Ensenada, Baja

California, Mexico; 2016 in Richland, Washington;

and 2018 in Reading, United Kingdom—refer to

http://pdc.cicese.mx for the latest information and

material from the previous workshops) will provide a

platform for this.
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APPENDIX A

The Semigeostrophic Model

The ageostrophic wind equation (Cullen and Salmond

2003) with the ‘‘potential vorticity’’ matrix Q is de-

fined by
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where u5 (u, y, w) is the velocity, with suffix g indicating

geostrophic values; f is the Coriolis parameter; g is the

acceleration due to gravity; u is the potential temperature

with reference value u0; and F1, F2, and S are momentum

and thermodynamic forcing terms, respectively.

APPENDIX B

Compatibility of Parameterizations with the Laws
of Thermodynamics

In the following equations, the overbar denotes

Reynolds averaging, and the hat denotes mass-weighted

averaging. For a generic variable F, this is F5F1F0

andF5F̂1F00 5 rF/r1F00, respectively. Parameter r

denotes density;T is temperature; v is the velocity vector

with its components u, y, andw; p is pressure;P is Exner

pressure; : is the double dot product, sometimes also

written ��; cp and cy are the specific heat at constant

pressure and volume, respectively; u is potential tem-

perature; g is gravitational acceleration;Km,Ku, andKT

are the diffusion coefficients for momentum, potential

temperature, and temperature; g is the countergradient

term; N is Brunt–Väisälä frequency; ›z and ›t are the

partial derivative with respect to the vertical coordinate

axis and time, respectively; and s is entropy.

a. Dry atmosphere

For a dry atmosphere without radiation effects, the

subenergy equations for internal energy cyT̂ , TKE ke,

resolved kinetic energy v̂2/2, and potential energy F are
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The internal energy equation must be formulated with

the turbulence averaging also applied to the work term.

Combining the work term and the internal energy

transport term yields the second form with Exner pres-

sure P and potential temperature u, which is more

convenient for the following discussion.

b. Stable and unstable stratification

For unstable stratification,
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û/û5 rKuN2 , 0,

(B5)

and the internal energy equation reads
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For stable stratification,
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and the internal energy equation reads

›
t
(c

y
rT̂)52= � (c

p
P rv̂û)1 c

p
rv̂û � =P2 rv00v00:=v̂

2 c
p
P= � (rv00u00) . (B8)

The resolved kinetic energy equation in the case of

stable stratification is

›
t
(rv̂2/2)52= � [rv̂(v̂2/2)1 rv00v00 � v̂]2rv̂ � =F

2 c
p
rv̂û � =P1 rv00v00:=v̂2 c

p
rv00u00 � =P ,

(B9)

where the last term

2c
p
rv00u00 � =P (B10)

describes the work that must be performed to push

isentropes down at stable stratification.

The associated entropy budget equations are

›
t
(rŝ)52= � (rv̂ŝ)2= �

 
c
p
rv00u00

û

!
2
c
p
P rv00u00

T̂2
� =T̂

2
rv00v00:=v̂

T̂
, (B11)

and

›
t
(rŝ)52= � (rv̂ŝ)2= �

 
c
p
rv00u00

û

!
2

c
p
rv00u00

û2
� =û

2
rv00v00:=v̂

T̂
, (B12)

for unstable stratification and stable stratification, re-

spectively. The two last terms are the internal entropy

production terms.
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