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Abstract As societal dependence on transionospheric radio signals grows, space weather impact on
these signals becomes increasingly important yet our understanding of the effects remains inadequate. This
challenge is particularly acute at high latitudes where the effects of space weather are most direct and no
reliable predictive capability exists. We take advantage of a large volume of data from Global Navigation
Satellite Systems (GNSS) signals, increasingly sophisticated tools for data-driven discovery, and a machine
learning algorithm known as the support vector machine (SVM) to develop a novel predictive model for
high-latitude ionospheric phase scintillation. This work, to our knowledge, represents the first time an SVM
model has been created to predict high-latitude phase scintillation. We use the true skill score to evaluate
the SVM model and to establish a benchmark for high-latitude ionospheric phase scintillation prediction.
The SVM model significantly outperforms persistence (i.e., current and future scintillation are identical),
doubling the predictive skill according to the true skill score for a 1-hr lead time. For a 3-hr lead time,
persistence is comparable to a random chance prediction, suggesting that the memory of the ionosphere in
terms of high-latitude plasma irregularities is on the order of, or shorter than, a few hours. The SYM model
predictive skill only slightly decreases between the 1- and 3-hr predictive tasks, pointing to the potential of
this method. Our findings can serve as a foundation on which to evaluate future predictive models, a critical
development toward the resolution of space weather impact on transionospheric radio signals.

Plain Language Summary Society is increasingly dependent on radio signals, particularly those
from the Global Navigation Satellite Systems (GNSS), and the technologies (e.g., navigation and financial
transactions) that they enable. The integrity and reliability of these signals is threatened by their travel from
the GNSS satellites to the ground, which includes passage through a charged region between 100 and
1,000 km known as the ionosphere. Disturbances to the ionosphere from solar energy, or space weather,
cause variations in GNSS signals that adversely affect the dependent systems and technologies. Currently,
the effect of the ionosphere on these signals cannot be reliably predicted, and the challenge is particularly
important at latitudes above 45° where space weather impacts are most direct. We have compiled a large
volume of data from the regions important to space weather (i.e., from the Sun to the Earth) to develop a
novel machine learning model capable of skillfully predicting disruptions to GNSS signals at high latitudes.
To our knowledge, this model is the first of its kind. We find that the new model is capable of more accurate
predictions than current methods and position this model as a benchmark on which future predictive
models can be measured.

1. Introduction

Irregularities in the density of the charged region of the upper atmosphere between ~100- and 1,000-km
altitude—the ionosphere —cause rapid radio signal phase and intensity fluctuations in the frequency range
between 100 MHz and 4 GHz (Aarons & Basu, 1994; Basu et al., 1988; Kintner, 2001). These fluctuations are
referred to as scintillation, and their study, particularly at high latitudes and in the context of recent advances
in machine learning methodologies, is in its infancy.

lonospheric scintillation is increasingly important as (1) our society becomes more dependent on Global Nav-
igation Satellite Systems (GNSS) signals, which are critically affected by the ionosphere (Kintner et al., 2007),
and (2) proliferation of technology and access to space drives a greater reliance on transionospheric signals
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(Tzelepis & Carreno, 2016). Despite the frequent and deleterious effects of the ionosphere on radio signals
there is a lack of awareness of, and appreciation for, mitigating these impacts on a given GNSS-dependent
service. Due to the absence of robust prediction models, users are often unaware that disruptions should be
attributed to ionospheric disturbances. This fact, exacerbated by the increasing demand on GNSS applications
(e.g., Sadlier et al., 2017), motivates the pressing need for new predictive capabilities.

Though powerful new understanding has been created based on improved models both of the ionosphere
(Wernik et al., 2003) and for signal propagation through irregularities (Chartier et al., 2016; Deshpande et al.,
2016; Forte, 2012; Norman et al., 2016) most new knowledge is incremental, coming in two forms: (1) highly
specific cases without clear broad connection/implications or (2) highly generalized circumstances without
application to specific individual situations. For example, Chartier et al. (2016) provided an extensive analy-
sis of an event from 20:03 to 20:07 UT on 17 October 2013 during which several observing systems provided
constraints from which a scintillation model could be tuned. Their study contributed new understanding of
phase scintillation; however, how well the results generalize is unknown. Despite the importance of these
advances, they do not constitute a comprehensive understanding capable of unifying the general and the
specific. Both approaches are limited in predictive capability. The former only applies to very specific circum-
stances, while the latter applies only in a qualitative sense and cannot accurately inform the individual cases
that are most important (i.e., disturbed ionospheric conditions). The result is a lack of effective ionospheric
scintillation predictive capability, and the need is particularly acute at high latitudes.

While prediction of scintillation at low latitudes is, in many respects, a more tractable problem given the
predominance of repeatable (i.e., predictable) physics associated with the equatorial ionization anomaly
(Anderson, 1973; Hanson & Moffett, 1966; Muella et al., 2010) and has received more attention as a result
(Redmon et al., 2010; Uwamahoro & Habarulema, 2015), prediction of scintillation at high latitudes involves
additional complexity due to more direct space weather connections (Cowley, 2013).

The body of work to predict high-latitude ionospheric scintillation is very limited. The simplest approach is
persistence prediction or predicting that the scintillation conditions in the future will be identical to the con-
ditions currently. The accuracy of a persistence prediction will decrease with increasing prediction time. To be
considered skillful in any way, any new prediction model must outperform persistence. Another approach is
climatological prediction, in which scintillation statistics are accumulated over many years, perhaps binned
according to solar wind or geomagnetic activity variables, and future scintillation occurrence is predicted
based on the statistical occurrence for a given date, time, and location. An upgrade to the high-latitude portion
of the WideBand MODel of ionospheric scintillation (Secan, 1995), known as SCINTMOD (Secan et al., 1997), is
capable of providing climatological predictions of high-latitude scintillation. SCINTMOD produces predictions
of ionospheric scintillation based on F-region electron density climatology with variations due to sunspot
number, the Kp index, latitude, local time, longitude, and season. A variant on climatological prediction uti-
lizing probabilistic relationships derived for repeatable solar conditions such as coronal mass ejections and
corotating interaction regions was introduced for geospace applications by McPherron and Siscoe (2004). This
approach is derived from the air mass climatology paradigm in meteorological prediction. Prikryl et al. (2012,
2013) adapted this approach for high-latitude scintillation using Canadian High Arctic lonospheric Network
(CHAIN) data, though this applies only to scintillation prediction during coronal mass ejections and corotating
interaction regions and has only been experimentally applied to a select few case studies (i.e., not available
for widespread application).

The data-driven (e.g., machine learning) approach to prediction, on the other hand, relies on a large collection
of input data with an associated label describing the variable to be predicted and attempts to automati-
cally extract the relationships between these data. Despite limited application to low-latitude scintillation
(Habarulema et al., 2011; Lima et al., 2015; Rezende et al., 2009; Uwamahoro & Habarulema, 2015), machine
learning prediction techniques are largely unexplored for middle- and high-latitude (defined here to mean
>45° magnetic latitude [MLAT] ) ionospheric scintillation. To our knowledge we provide the first investigation
of machine learning prediction for middle- and high-latitude ionospheric phase scintillation.

At latitudes poleward of 45° characteristics of phase variations/scintillation are not well understood. Though
climatological studies of high-latitude scintillation have improved the understanding of these phenomena
(Alfonsi et al., 2011; Jiao et al., 2013; Spogli et al., 2009), their use for prediction is limited. In fact, high-latitude
scintillation prediction lacks a reliable benchmark from which to evaluate future improvements.
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While the proliferation of transionospheric radio signals and technologies dependent on them have produced
adire need to understand and predict scintillation, it has also created a much wider data set through which to
study, understand, and, ultimately, predict the phenomenon. The operation of the United States’ Global Posi-
tioning System (http://www.igs.org/) constellation since 1993 coupled with the advent of Russian (Globalnaya
Navigazionnaya Sputnikovaya Sistema), Chinese (Beidou, http://www.beidou.gov.cn), and European (Galileo,
http://www.gsa.europa.eu/galileo/programme) systems and the proliferation of ground-based receivers and
networks of receivers (e.g., the International GNSS Service high-latitude network [http://www.igs.org/, Cher-
niak et al., 2014], CHAIN [http://chain.physics.unb.ca/chain/], Greenland Global Positioning System Network
[http://www.polar.dtu.dk/english/Research/Facilities/GNET], Istituto Nazionale di Geofisica e Vulcanologia
Electronic Space Weather Upper Atmosphere [http://www.eswua.ingv.it/ingv/home.php?res=1024], GNSS
Earth Observation NETwork [http://datahouse1.gsi.go.jp/terras/terras_english.html]) provide a vast and pow-
erful new data set through which ionospheric scintillation and, more generally, space weather can be studied
(Beutler et al., 1999; Ren et al., 2016; Rizos et al., 2013). These data provide information at higher cadence
and over a larger portion of the globe than any other single data set and are the premier remote sensing
tools to facilitate new understanding of space weather phenomena (Coster & Komjathy, 2008). GNSS data
are voluminous (on the order of terabytes when considering data from the mid-1990s to now and taking
into account the growing number of ground-based receivers) and heterogeneous (different satellite systems,
receiver technologies, and archived in a variety of locations and formats). Appropriate utilization of these data
can potentially revolutionize the study of space weather.

The presence of large volumes of underutilized data motivates the investigation of machine learning
approaches. Machine learning here is broadly defined as any approach that allows a computer system to learn
from experience introduced in the form of data samples. Our definition of machine learning encapsulates
a broad range of approaches, including linear regression, clustering, information theory, statistical model-
ing, and neural networks, to name a few. There are, in general, three keys to successful machine learning: (1)
availability of a large volume of high-quality data, (2) a well-defined task, and (3) adequate computational
resources. The advent of GNSS signals coupled with long histories of ground-based GNSS signal observa-
tion and a robust data quality control process (detailed in section 2) carried out for this work address the
first requirement. To address the second requirement, we study the explicit task of predicting the occurrence
of ionospheric scintillation at any given location with 1-hr lead time given input solar wind and geospace
data (further detailed in section 3). Finally, to satisfy the computational demand, this work takes advantage
of increased availability of computational resources (e.g., high-performance computing) that have become
commonplace in the digital age (Duderstadt, 2001).

The following three questions (and the sections of this paper where they are addressed) motivate this work:

« What data are most important to determine future high-latitude phase scintillation activity? (section 3.2)

« Can we establish a benchmark for prediction of high-latitude ionospheric scintillation at spatial resolutions
commensurate with user needs? (section 5)

« To what extent can current understanding of space weather phenomena guide the improvement of machine
learning models and what future research paths does this outline? (section 6.1)

The emphasis and importance of this paper is to use an explainable machine learning technique known
as support vector machines (SVMs) to establish new relationships between observed solar wind, geo-
magnetic activity, and ionospheric behavior and future phase scintillation occurrence in the high-latitude
ionosphere without attempting to explain the complex and numerous physical mechanisms giving rise
to ionospheric irregularities and the physical relationships that cause these irregularities to lead to
scintillation for a given circumstance (i.e., at a given location with specific contextual conditions). We
refer to the explainability of SVMs as the quality by which links are explicitly identified between the
scintillation prediction and the input variables (for more information on explainable methods refer to,
for example, the Defense Advance Research Projects Agency project, Explainable Artificial Intelligence,
https://www.darpa.mil/program/explainable-artificial-intelligence). We choose SVM due to its high accuracy,
capability to handle high-dimensional data, and flexibility to model diverse data (further justification is pro-
vided in section 3.3). The results of this work provide a benchmark for future prediction models through the
use of the true skill score (TSS; Bloomfield et al., 2012) as the model evaluation metric.

Therefore, the contributions of this paper are threefold:
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Table 1
Input Features and Details®b:¢
Feature F score Description
1.10 Day of year
1.06 Universal time (seconds into the day)
1.31 Azimuth of receiver-satellite line of sight
1.07 Elevation of receiver-satellite line of sight
B,—30 min (nT) 1.53 Solar wind interplanetary magnetic field (IMF) z com-
ponent 30 min prior to observation
B,—15 min (nT) 1.53 Solar wind IMF z component 15 min prior to observa-
tion
B,—0 min (nT) 1.54 Solar wind IMF z component at time of observation
B, —30 min (nT) 1.25 Solar wind IMF y component 30 min prior to observa-
tion
B, —15 min (nT) 1.25 Solar wind IMF y component 15 min prior to observa-
tion
By—O min (nT) 1.24 Solar wind IMF y component at time of observation
Vsw—30 min (km/s) 1.15 Solar wind velocity 30 min prior to observation
Vsw—15 min (km/s) 1.15 Solar wind velocity 15 min prior to observation
Vgy—0 min (km/s) 1.16 Solar wind velocity at time of observation
P, —30 min (nPa) 1.56 Solar wind pressure 30 min prior to observation
Py — 15 min (nPa) 1.55 Solar wind pressure 15 min prior to observation
P,y —0 min (nPa) 1.56 Solar wind pressure at time of observation
AE—30 min (nT) 2.00 Auroral electrojet index 30 min prior to observation
AE—15 min (nT) 2.10 Auroral electrojet index 15 min prior to observation
AE—0 min (nT) 2.17 Auroral electrojet index at time of observation
SymH—30 min (nT) 1.59 Sym-H index 30 min prior to observation
SymH—15 min (nT) 1.60 Sym-H index 15 min prior to observation
SymH—0 min (nT) 1.61 Sym-H index at time of observation
Clock angle—30 min (°) 0.88 Solar wind IMF clock angle 30 min prior to observation
Clock angle—15 min (°) 0.87 Solar wind IMF clock angle 15 min prior to observation
Clock angle—0 min (°) 0.87 Solar wind IMF clock angle at time of observation
Newell CF—30 min (m/s@#/3) T(2/3)) 1.99 Newell et al. (2007) coupling function 30 min prior to
observation
Newell CF— 15 min (m/s#/3) T(2/3)) 2.01 Newell et al. (2007) coupling function 15 min prior to
observation
Newell CF—0 min (m/s®4/3) T(2/3)) 204 Newell et al. (2007) coupling function at time of obser-
vation
Borovsky CF—30 min (nT-km/s) 1.11 Borovsky (2013) coupling function 30 min prior to
observation
Borovsky CF—15 min (nT-km/s) 1.15 Borovsky (2013) coupling function 15 min prior to
observation
Borovsky CF—0 min (nT-km/s) 1.20 Borovsky (2013) coupling function at time of observa-
tion
Kp (dimensionless) 1.81 Kp index
F107 (sfu=10"22 W-m~—2 Hz ") 1.10 10.7-cm wavelength solar flux
OVATION diffuse eflux (erg-cm=2.~1) 1.92 OVATION Prime auroral precipitation model diffuse
electron energy flux
OVATION mono eflux (erg-cm*2-5’1) 2.23 OVATION Prime auroral precipitation model monoen-
ergetic electron energy flux
OVATION wave eflux (erg-cm=2-s~1) 247 OVATION Prime auroral precipitation model wave elec-

tron energy flux
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Table 1 (continued)

OVATION diffuse nflux (#-cm=2.s~1) 1.92 OVATION Prime auroral precipitation model diffuse
electron number flux

OVATION mono nflux (#-cm~2-s1) 2.25 OVATION Prime auroral precipitation model monoen-
ergetic electron number flux
OVATION wave nflux (#-cm=2.s1) 2.33 OVATION Prime auroral precipitation model wave elec-
tron number flux
1.42 Altitude-adjusted corrected geomagnetic latitude
1.37 Altitude-adjusted corrected geomagnetic longitude
1.02 Cosine of the altitude-adjusted corrected geomag-
netic local time
1.01 Sine of the altitude-adjusted corrected geomagnetic
local time
1.47 Geographic latitude
1.37 Geographic longitude
1.11 Total electron content at time of observation
1.94 Rate of change of the total electron content over the

15 s prior to observation
1.23 GNSS signal spectral index
3.04 GNSS signal spectral slope
1.30 Amplitude scintillation index projected to vertical

333 Phase scintillation index projected to vertical

Note. GNSS = Global Navigation Satellite Systems; OVATION = Oval Variation, Assessment, Tracking, Intensity, and Online
Nowcasting; S| = scintillation index.

aRed text coloring refers to solar wind data. PBlue text coloring refers to geomagnetic activity and OVATION Prime
particle precipitation data. ¢

- Curate a new database for use with data-driven techniques to better understand and predict high-latitude
phase scintillation and that can be flexibly used to fulfill various space weather user needs.

« Provide new high-latitude phase scintillation prediction capabilities based on machine learning approaches.

- Create a benchmark for high-latitude phase scintillation prediction.

The rest of the paper is outlined as follows: Sections 2 and 3, respectively, first explicitly address the first two
key components of a successful machine learning approach: data input and predictive task definition as well
as justification for the use of SVM. We then present the results and discussion in sections 5 and 6, respec-
tively. Given the massive exploration space afforded by the GNSS database that we compile, we then discuss
the compelling future work in section 6.1. Finally, we provide the conclusions and broader implications in
section 7.

2. Data

The objective of this paper is the prediction of high-latitude ionospheric scintillation at specific locations
and times, with lead times of a few hours. Our machine learning approach relies on two elements: (1) fea-
tures, or input variables, that contain enough information to explain the diversity of scintillation behavior, and
can, therefore, collectively act as a suitable predictor and (2) the corresponding scintillation data at a later
time equal to the prediction lead time to be used for training and validation. We take advantage of openly
available solar wind, geomagnetic activity, particle precipitation, and ionospheric GNSS data to develop the
predictive model and compose the machine learning database. These data are chosen in an attempt to incor-
porate information from across the solar-terrestrial system (from the Sun, through interplanetary space, into
the magnetosphere, and extending down to the upper atmosphere).

2.1. Solar Wind and Geomagnetic Activity Data
We use 5-min resolution solar wind and geomagnetic activity data from NASA’s Coordinated Data Analysis
Web (CDAWeb, https://cdaweb.sci.gsfc.nasa.gov/). These data contain measurements from multiple space-
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craft, accounting for estimated spacecraft-to-magnetopause propagation times. The text colors red and blue
in Table 1 respectively detail the solar wind and geomagnetic activity variables used.

2.2, Particle Precipitation Data

Due to the importance of particle precipitation to ionospheric scintillation (Mrak et al., 2017; Semeter et al.,
2016, 2017; Zou et al.,, 2015), we also incorporate data from the Oval Variation, Assessment, Tracking, Inten-
sity, and Online Nowcasting (OVATION) Prime model (Newell et al., 2010) as potentially important input for
prediction. OVATION Prime (freely available at http://sourceforge.net/projects/ovation-prime/) provides sta-
tistical distributions of particle precipitation in the middle- and high-latitude ionosphere and was created
from 11 years (roughly 50 satellite years) of observations from the Defense Meteorological Satellite Program
satellites. The model provides number (#-cm~2-s7') and energy (ergs-cm~2-s~") flux of diffuse, monoenergetic,
and broadband electrons and diffuse ions and is driven by solar wind parameters via the Newell coupling
function (Newell et al., 2007). OVATION Prime allows precipitation information to be obtained for any loca-
tion at any time, which is not currently possible through direct precipitation observations and is considered
a useful predictive tool (Machol et al., 2012). It is, therefore, deemed important and appropriate for this work.
We use the electron precipitation output in this work and interpolate the global OVATION Prime maps to the
location of the appropriate observation for use in the machine learning model. Blue text coloring in Table 1
details the geomagnetic activity data, which includes the OVATION Prime particle precipitation data.

2.3. CHAIN Data

To obtain ionospheric information, including phase scintillation/variation, we utilize GNSS data from the
CHAIN (Jayachandran et al., 2009). CHAIN consists of 25 specialized GNSS receivers distributed throughout
Canada, covering the auroral region, polar cap, and ionospheric cusp (http://chain.physics.unb.ca/chain/). Two
types of receivers are included in the network: NovAtel GSV4004B (Dierendonck & Arbesser-Rastburg, 2001)
and Septentrio PolaRxS (http://chain.physics.unb.ca/chain/pages/gps/\#PolaRxS). Table 2 provides details of
the CHAIN stations. The data we use are subject to the following considerations: (1) We use only PolaRxS
receiver data to avoid potential biases with GSV4004B receivers data (16 stations total); (2) data from some
stations are not regularly available via the CHAIN file transfer protocol server (R. Chadwick, University of New
Brunswick, personal communication, October 2017); (3) Sachs Harbour and Taloyoak station data are unavail-
able until late 2016; and (4) Kuglugtuk station data are removed due to known bias in the phase data (R.
Chadwick, University of New Brunswick, personal communication, October 2017). Each of these caveats are
detailed in Table 2. We analyze 2 years of data throughout 2015-2016. Data availability for each CHAIN station
are provided by the CHAIN network (http://chain.physics.unb.ca/chain/pages/data_availability).

Details of the CHAIN data processing by which GNSS signals are used to generate ionospheric data products
are provided in depth by Jayachandran et al. (2009) and Watson et al. (2016a, 2016b, and references therein)
and are not repeated here. We instead focus on the additional data quality control and treatments that we
apply. Table 3 provides an overview of these treatments and their rationale. For each CHAIN receiver obser-
vation we obtain the following data: location data of the receiver at time of observation (both geographic
and altitude-adjusted corrected geomagnetic [AACGM] coordinates [Shepherd, 2014]), azimuth and elevation
between the receiver and the GNSS satellite, total electron content (TEC) calculated from the dual L1 and L2
frequency signals, differential TEC calculated as the difference between the TEC value 15 s prior and that at
the current observation time, the scintillation index (SI) as defined in section 3.1.9 of Septentrio (2015), the
slope of the phase spectral density function (spectral slope, p; e.g., Carrano & Rino, 2016), amplitude SI (S,),
and phase Sl (64). S, is defined as the standard deviation of the 50-Hz raw signal power normalized to the
average signal power over the previous minute, while o, is defined as the standard deviation of the 50-Hz
detrended carrier phase averaged over the previous minute. Calculation of S, and o, for the PolaRxS receivers
are detailed in Septentrio (2015) and are provided directly in the CHAIN data products. CHAIN receivers collect
raw amplitude and phase data at 50 Hz, and the scintillation indices are calculated on 3,000 samples, yielding
a 1-min temporal resolution in this study. The ionospheric data, including each of the variables obtained from
the CHAIN data, are provided in green text coloring in Table 1. We recognize that the phase Sl captures GNSS
signal phase variations, which are potentially due to both deterministic and stochastic processes (Wang et al.,
2018) and (PT. Jayachandran, University of New Brunswick, personal communication, July 2018), but use the
index in this work to represent scintillation, which is consistent with previous phase scintillation studies.

We note that though we focus on the CHAIN network here, our methods are scalable to the global comple-
ment of GNSS scintillation receivers, and such scaling is the objective of ongoing work.
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Table 2
Canadian High Arctic lonospheric Network Stations? at Geographic Latitudes >60°

Geographic location Magnetic location

Station name (abbreviation) Receiver model (degrees, [Lat, Long]) (degrees, [MLat, MLong])b

1 Arctic Bay (arc) PolaRxS [73.004, 274.974] [81.078, 349.049]
2 Arviat (arv) PolaRxS [61.098, 265.929] [69.956, 334.857]
3 Cambridge Bay (cbb) GSV4004B [69.102, 254.885] [76.404,313.991]
4 Coral Harbour (cor) PolaRxS [64.188, 276.650] [72.948,352.116]
5 Eureka (eur) GSV4004B [79.990, 274.098] [87.265, 345.243]
6 Fort Simpson (fsi) PolaRxS [61.757,238.772] [66.959, 296.328]
7 Fort Smith (fsm) PolaRxS [60.026, 248.067] [66.915, 308.847]
8 Gjoa Haven (gjo) PolaRxS [68.633, 264.152] [76.824, 329.840]
9 Hall Beach (hal) GSV4004B [68.767, 278.744] [77.098, 356.019]
10 Igaluit (iga) GSV4004B [63.737, 291.460] [71.299, 15.201]
11 Kugluktuk (kug)© PolaRxS [67.818, 244.865] [73.817,300.305]
12 Pond Inlet (pon) GSV4004B [72.693, 282.045] [80.504, 3.214]

13 Rankin Inlet (ran) PolaRxS [62.825, 267.885] [71.657,337.729]
14 Repulse Bay (rep) PolaRxS [66.524, 273.769] [75.164,347.213]
15 Resolute (res) GSV4004B [74.747, 264.998] [82.357, 327.063]
16 Sachs Harbour (sac)d PolaRxS [71.991, 234.739] [76.032,283.310]
17 Taloyoak (tal)d GSV4004B [69.541, 266.443] [77.774,333.541]

Note. Only stations with the PolaRxS receiver model (listed in green) are used to avoid potential intercalibration issues
with the GSV4004B receivers. Sreeja et al. (2011) found that the receiver performance is comparable. Altitude-adjusted
corrected geomagnetic coordinates for 1 June 2015 (the middle of the time period of analysis in this paper) are shown.
Kugluktuk data are ignored due to known bias (R. Chadwick, University of New Brunswick, personal communication,
January 2018). Sachs Harbour and Taloyoak data are not available in 2015. Complete data availability between 2008 and
present are provided at http://chain.physics.unb.ca/chain/pages/data_availability.

2.4. Preparation of Data for Machine Learning

In this work we choose a supervised machine learning model known as SVMs, discussed in detail in section 3.3.
Supervised learning refers to the scenario where we know the desired output (i.e., the correct answer) for each
data sample. Supervised learning is the guiding principle of many machine learning algorithms, including the
commonly used neural network approach. Machine learning requires the data to be prepared as data samples
or instances. For our supervised problem, each sample must contain the input data, individually known as
features, and the corresponding value of the variable we intend to predict, or the label. Therefore, we create
one sample for each CHAIN station at each observation time, in which each consists of the full set of input
features detailed above in sections 2.1-2.3 and Table 1 and the corresponding predicted label (see section
3.1 for the definition of the predicted label for this study) organized as a row vector. Figures 1a and 1b provide
a visual representation of the machine learning sample construction. The samples are then combined to form
the machine learning database.

High-quality data are critical to any data-driven method, and we apply a robust quality control process to
produce a capable database for machine learning. Our process attempts to minimize data errors and uncer-
tainties and to remove bad data. We first discuss the CHAIN data preparation and then provide details of the
solar wind and geomagnetic activity data.

First, we examine the CHAIN data. To remove observations potentially corrupted by multipath, we apply a
conservative elevation mask of 30° , which is consistent with previous statistical (Prikryl et al., 2015) and
machine learning-based approaches (Jiao et al., 2013) using GNSS data. Additionally, we remove all data dur-
ing loss-of-lock events using the lock time recorded by the PolaRxS receiver (Septentrio, 2015). The lock time
refers to the time period over which there exists an uninterrupted lock on the carrier phase signal. Cycle slips,
occurring when sharp ionospheric density gradients result in loss-of-lock between the GNSS satellite and
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ground receiver (Watson et al.,, 2016a), and other disruptions cause interruptions to the tracking of the carrier
phase signal, and the detrending filter requires time to resettle (Mitchell et al., 2005; Sreeja, 2016). We remove
all data recorded during periods when lock time was less than 200 s. Finally, we reduce the data by projecting
the receiver-satellite slant signals to the vertical, geolocating at the position of the receiver, and taking the
median of signals from all satellites in view of a receiver at a given time. Figure 2a provides an illustration of
the latter data processing step.

We use established techniques to project the slant receiver-satellite quantities (i.e., along the receiver-satellite
line of sight) to the vertical. We perform projections for three quantities: (1) TEC, (2) S,, and (3) . To transform
slant TEC (STEC) to the vertical we follow the method of Komjathy (1997):

2
— 2 e

TEC = STEC - \/1 — cos?(el) RThe (1)
where el is the satellite elevation angle of the satellite with respect to the receiver, R, is the radius of the
Earth (6,378.137 km in this work), and h; is the assumed height of the ionosphere. It should be noted that the
value of h; should be chosen based on the phenomenon one hopes to study. A larger assumed value of h;
will focus on the F-region ionosphere (altitudes are greater than roughly 150 km), where scintillation may be
more closely associated with irregularities that have convected into the receiver-satellite line of sight (Watson
et al.,, 2016a). These irregularities may have convected far from their generation location. Values of h; in the E
region (roughly 90-130 km), on the other hand, will target E-region phenomena and are primarily associated
with particle precipitation (Deshpande et al., 2016). Detailed investigation of the altitude assumption for scin-
tillation is provided by Semeter et al. (2016, 2017) and Mrak et al. (2017) and for ionospheric irregularity drift
and associated scintillation effects by Su et al. (2017) and Wang et al. (2017). We note that h; only appears in
our projection of STEC to vertical, and, therefore, has relatively little impact on our results.

To project the scintillation indices to the vertical, we follow the approach identified by Spogli et al. (2009):
vertical S, = S,(el) sin’(el) )

forS, and

verticalog, = o4 (el) sin?(el) (3)

for o4, where a and b are chosen based on signal characteristics (see Spogli et al., 2009, for an in-depth
discussion). We follow the example of Spogli et al. (2009) and use a = 0.5 and b = 0.9.

At any given time several GNSS satellites will be in view of a single receiver. To create a database commen-
surate with the objective of this study (i.e., to create a novel prediction method for high-latitude scintillation
and establish a benchmark for future efforts) we produce a super observation that is the median of all simul-
taneous observations for a given station. Using a super observation effectively smears the information in
space (i.e, produces a coarser resolution). Figure 2b illustrates the ionospheric spatial resolution under this
approach. In the coarsest case (when the GNSS satellites are viewed at opposite sides of the sky, or at azimuth
angles 180° apart, and at the minimum accepted elevation angles of 30° ) and assuming an irregularity alti-
tude of 110 km the horizontal spatial resolution becomes ~380 km or on the order of ~2-3° at high latitudes.
The super observations, in general, yield finer spatial resolution, but this estimate represents an upper bound
on the spatial resolution of our data, and, therefore, the capabilities of our predictive model. Note that this
estimate does not take into account the motion of the receiver-satellite signal through the ionosphere over
the finite collection time, though, in comparison, has a negligible impact on spatial resolution. The CHAIN
science data team provides the data ata 1-min cadence. We note that the spatial and temporal scales are com-
mensurate with the current state of the art in ionospheric prediction (Codrescu et al., 2012) and the National
Oceanic and Atmospheric Administration Space Weather Prediction Center wishlist for ionospheric prediction
(Steenburgh et al., 2014). Additionally, the predictive task we have outlined represents a balance between
GNSS user needs and tractability (the challenge grows considerably to predict scintillation, for instance, for
individual GNSS satellites). Therefore, we deem the approach to be aligned with our objective to establish a
benchmark upon which future efforts can build and gauge success.

The final element of the data preparation pertains to the solar wind and geomagnetic activity data. The tem-
poral relationships between these data and ionospheric scintillation are complex, including various degrees
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Figure 1. The critical components of the machine learning approach: (a) Construction of the machine learning database.
In this work we use input from NASA’s CDAWeb (https://cdaweb.sci.gsfc.nasa.gov/), the OVATION Prime
(http://sourceforge.net/projects/ovation-prime/), and the CHAIN (http://chain.physics.unb.ca/chain/) to predict the
phase scintillation index at a future time. (b) A generic illustration of the input features and the manner in which a data
sample is constructed from time series data. The variable to be predicted is the phase scintillation index, and we
formulate the prediction as a classification task in which the positive and negative classes are determined based on
whether or not the phase scintillation index exceeds a given threshold (illustrated by the bottom two panels [Predicted
variable and Class labels]). (c) Schematic illustration of the SVM approach to prediction (i.e., the chosen machine learning
algorithm). Two easily visualized examples are shown: 2-D (top) and 3-D (bottom). For the 2-D case, the SVM algorithm
finds the optimal line that separates the positive and negative prediction classes. For the 3-D case, the SVM algorithm
finds the optimal plane that separates the positive and negative prediction classes. For higher-dimensional cases, an
optimal hyperplane is found. The input feature space for this work contains 51 dimensions. CDAWeb = Coordinated Data
Analysis Web; CHAIN = Canadian High Arctic lonospheric Network; GNSS = Global Navigation Satellite Systems;
OVATION = Oval Variation, Assessment, Tracking, Intensity, and Online Nowcasting; SVM = support vector machine;

TEC = total electron content.
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Figure 2. (a) lllustration of a single receiver simultaneously communicating with multiple Global Navigation Satellite
Systems satellites (red dashed arrows) and the super observation created by taking the median of the data from these
signals and geolocating to the receiver location (green dashed arrow). The sphere shown depicts the height of the
ionosphere (h;), which is assumed to be 110 km. (b) Schematic showing the spatial resolution as a result of the use of
super observations. For the coarsest case in which the Global Navigation Satellite Systems satellites are separated by
180° in azimuth, both exist at the lowest elevation angles accepted for this work (30° ), and with h;=110 km, the spatial
resolution is roughly 380 km.

of delay. We attempt to encode this information into our database in a simple yet geophysically meaningful
manner. We include three data points for the solar wind and geomagnetic activity input features for each sam-
ple: (1) at the current observation time, (2) 15 min prior, and (3) 30 min prior. Precise understanding of delay
times between solar wind and geomagnetic activity variations and high-latitude ionospheric phase scintilla-
tionis not well established, but studies of direct (i.e., ~0—20 min [Lu et al., 2002; Ridley et al., 1998]) and indirect
(e.g., ~20-30 min [Oksavik et al., 2000]) ionospheric driving establish 0-30 min as a reasonable range to con-
sider. We, therefore, believe that these three data points cover an appropriate range. The Kp and F,, ; indices
have time resolutions coarser than 1 hr and, therefore, for these variables only the value at the observation
time is used. We reiterate that the solar wind data used has been propagated to the magnetopause location.

Finally, each data sample for which any input feature does not exist is discarded. Our final database consists
of more than 9.6 million samples. Figure 3 shows the observational density of our database in AACGM coor-
dinates projected onto an equal area grid to mitigate the latitudinal variation that affects fixed resolution
grids at middle and high latitudes (Ruohoniemi & Baker, 1998). The equal area gridding scheme uses a con-
stant 2° MLAT resolution and variable magnetic local time (MLT) resolution (0.28 hr at 50° MLAT to ~2.18 hr at

(@ 2015 (b) 2016
12 12
50° 50°
# of Observations

i 10000
8000
6000
6 18 ‘6
14000
2000
0

0 0

Figure 3. Observation density for the machine learning database generated from the Canadian High Arctic lonospheric
Network for (a) 2015 and (b) 2016. Data are shown on an equal area grid in altitude-adjusted corrected geomagnetic
MLAT-MLT coordinates with noon MLT to the top of each polar plot and a low-latitude limit of 50° . The MLAT resolution
is 2° and the MLT resolution is variable (0.28 hr at 50° MLAT to ~2.18 hr at 85° MLAT). MLAT = magnetic latitude;

MLT = magnetic local time.
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85° MLAT), yielding a total of 938 grid points between 50° and 90° . There is a slight difference between 2015
and 2016, due to the presence of data from the Grise Fiord station in 2015, but not 2016, and the presence
of data from the Sachs Harbour station in 2016, but not 2015. There are minor gaps in latitudinal coverage
in both years because of the projection and collocation process that we apply (see Figure 2 and discussion
above). We obtain complete MLT coverage and all observed magnetic locations are amply sampled.

Table 3 summarily details and provides rationale for the important data processing design choices. To
summarize, we take the following steps to generate the database used in this work:

1. Quality control the ionospheric GNSS data:
(@) Apply an elevation mask of 30° .
(b) Remove data during which the phase lock time <200 s.
(c) Project the slant signal data to vertical and geolocate at the receiver position.
(d) Generate a super observation as the median value among all signals acquired by the receiver at a given
time (i.e., due to signals from multiple GNSS satellites in view simultaneously [see Figure 2a]).
(e) Organize the data into samples by observation time.
2. Attach the corresponding solar wind and geomagnetic activity data.
3. Attach the corresponding predicted label (detailed next in section 3).

Figures 1a and 1b schematically show the creation of the database.

3. Prediction Methods

We apply, for the first time, a machine learning classification algorithm to the prediction of high-latitude iono-
spheric phase scintillation. We follow four steps to create a new machine learning prediction capability: (1)
create a well-defined and explicit prediction task, (2) explore the input features, (3) select an algorithm, and (4)
measure performance based on a robust evaluation metric. The following subsections, respectively, address
each step.

As this paper is motivated by the value of data-driven methods, we use quantitative means to make method
design choices.

3.1. Prediction Task

We investigate a quasi-predictive situation in which each input feature has zero latency (i.e., all input data are
available instantaneously at a given time). Of course, in reality, various data latencies are associated with these
data (e.g., GNSS and auroral precipitation); however, such considerations could be included with relatively
minor difficulty in future operational circumstances.

We attempt to predict the phase SI, o4, and choose a classification task, that is, whether or not scintilla-
tion occurs based on a given o, threshold. Observations for which scintillation exceeds the threshold are
called the positive class and given the label +1 and are otherwise called the negative class and given the
label 0. In the machine learning community this is known as one hot encoding. A threshold of 0.1 rad was
chosen based on two criteria: (1) a geophysically meaningful level tuned to space weather user needs (i.e.,
that distinguishes between conditions when scintillation is unlikely [64, < 0.1] and likely [c4 > 0.1] to dis-
rupt GNSS performance—see, for instance, Jiao et al., 2017) and (2) limits the imbalance of scintillation to
non-scintillation events. To the second point, higher threshold values yield fewer scintillation events and a
larger positive-to-negative class imbalance. For our database a threshold of 0.1 rad yields an imbalance ratio
of ~1:30, while a threshold of 0.5 rad grows the imbalance significantly to ~1:1,400.

Finally, we choose a prediction interval of 1 hr; meaning, we take current data and attempt to predict whether
or not scintillation will occur 1 hrin the future. Figure 1b provides an illustrative overview of the input features
and predictive task. Shown are a full day of data for the CHAIN Arviat station, including an illustrative subset
of the input features (solar wind, geomagnetic activity, and GNSS derived), the ¢, values at prediction time,
and the corresponding classification label.

3.2. Exploration of Input Features

The database that we introduced in section 2 consists of 51 features. These features were selected based on
the likely existence of a physical relationship with high-latitude scintillation (see, for instance, the important
discriminating factors identified by Prikryl et al., 2012, for high-latitude scintillation in CHAIN data). However,
higher dimensionality of input features (i.e., selecting more input features) may result in lower performance
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for classification prediction tasks (Zhang et al., 2016), and performance improvement can be gained by remov-
ing less informative features. This process is typically called featurization and is an active area of research in the
machine learning community (Khalid et al., 2014). Featurization not only results in a smaller set of input fea-
tures, and, therefore, a simpler predictive model, but can also improve physical understanding by quantifying
the relationships between the inputs and the predicted variable.

To perform feature selection we choose the univariate Fisher ranking score (F score), a widely used and com-

putationally efficient technique. This simple approach assumes that the input features are independent and

ignores correlations between them. The F score for feature i is given by (e.g., (Gu et al., 2011)):
2 _ _\2

) +n (X7 —%)

7 06 - %)

. n* ()?ﬁ =X
Fi) = ————— @
N_2 [Zj=1 (Xj,i+ - Xi)

where X;* is the average of the values of feature i over the positive-class examples, X;~ is the average of the
values over the negative-class examples, X; is the average of the values over the entire data set, n* is the
total number of positives examples in the data set, n~ is the number of negative examples, and N is the total
number of examples. The variance between each class for a given feature is measured by the numerator and
the variance within each class for a given feature is measured by the denominator. A small F score (i.e., a small
ratio) indicates that the two groups have similar population means while a large F score means the population
means are distinct. Univariate feature selection relies on F scores to rank the input features. Our approach
represents a standard statistical analysis of variance (ANOVA) univariate F score test, and will simply be referred
to hereafter as ‘univariate score’.

Figure 4 shows the univariate scores for each of the input features considered in this work (51 total). The
scores contain significant geophysical information and reveal potentially important relationships. The top two
F scores are the current value of the phase scintillation (o) and the spectral slope, indicating that current
phase scintillation conditions are more informative of the scintillation at a lead time of one hour than any
other individual feature. The largest F-values could be due to several factors. We offer two explanations: 1) the
lifetimes of high-latitude ionospheric irregularities in the region of the ionosphere in which a receiver-GNSS
signal is disrupted are statistically greater than one hour at the scales studied here (~2-3°), or 2) the nature
of geomagnetic activity (whether quiet or active) is maintained for periods longer than one hour (i.e., current
conditions are indicative of conditions one hour in the future). Both explanations suggest that the ionosphere
at these spatial scales exhibits ‘memory’ at least on a time scale of one hour and may be predictable (Siscoe &
Solomon, 2006). Intuitively, the spectral slope partially describes the size of scintillation-causing irregularities
(Chartieretal.,, 2016; Forte et al., 2016; Mezaoui et al., 2014; Wernik, 1997; Yeh &Liu, 1982) and we should expect
a relationship between spatial size and/or irregularity lifetime and future scintillation (i.e., larger irregularities
would be expected to affect a given area for periods exceeding that of smaller irregularities and/or have longer
lifetimes).

The next four largest F scores are each obtained from OVATION Prime particle precipitation input features
(particularly the wave and monoenergetic accelerated electrons [Newell et al., 2009]). The diffuse electrons
also rank high among the input features. These findings are consistent with the conclusions drawn by Seme-
teretal. (2016, 2017) and Mrak et al. (2017) who identified a close connection between electron precipitation,
particularly accelerated electrons, and GNSS signal corruption. A high fidelity of the OVATION Prime model
would then explain its high feature score. Generally, the OVATION Prime precipitation input features appear
to be more important than solar wind variables (compare, for instance, the F scores forOVATION Prime input
features to those for B, ,, P, and V,,). Combinations of solar wind variables (i.e., the Newell et al. [2007]
and Borovsky [2013] coupling functions) and, separately, geomagnetic activity indicators (e.g., the AE index)
contain important information for this predictive task. Finally, there are several input features with quite low
univariate scores, indicating that these input features are expected to contribute little or nothing to the overall
predictive capability of the SVM model. In fact, more input features may even reduce predictive performance
by driving the model to overfit (Zhang et al., 2016).

It is important to note that some variables will not, by themselves, have high predictive power for scintil-
lation, but are important in the context of other variables. We acknowledge that a more robust method to
perform featurization would be a full statistical discriminant analysis of all variables and combinations of

MCGRANAGHAN ET AL.

1829



Ar g

a4
100 Space Weather 10.1029/20185W002018
AovANGHG EARTH
Avpspactscince
. sigmaPhi projected to vertical [radians]
- . spectral sjope [dimensionless]
. OVATION wave eflux [;rg/cm /s]
. OVATION wave nflux [#/cm"/:
g OVATION mono nflux [#/cm’ /;
. OVATION mono eflux [erg/cm?/s]
. AE- Gmin [n1]
. AE - 15min [n
° Newell CF - Omin [m/s'4/3) T'2/3)]
: X'Eewgll)l CF - td’nm [m/T '4/3) T'2/3)]
— * well CF 30 Vs'4(3) T'2/3)
. Py AT rr{E 5( 1
b OVATION diffuse nflux [#/cm /§]
* OVATION diffuse eflux [erg/cm®/s]
. Kd) [dimensionles: f
. SymH - Omin [nT]
. SymH - 15min [’
. Symit aoTig n
o sw - Omni
. Pov - Somi Jnbo Accepted
. Psw - 15min [nPal
. Bz - Omin
. Bz - 15min [n’
. Bz - 30min [nT]
Afographic latitude [deg] .
tits L[]
gcogvapmclonglmde deg] .
ACGM longitude [deg] .
e [d
$4 proj; (‘Cl?d to vertical [dimensionkess]
- By - S0min [nT] .
By- é5m<ri (1] e
y - Omin [n
sl [dmmnsmnl]ms] ° Rejected
orovsky CF - Dlmn [nT km/s] .
Vsw - Omin [km, .
Borovsk: (qmm [nTkm/s] e
sw - 15min [km/s] .
'sw - 30min [km/s] .
TEC at current time U] b4
- Borovsky CF - mmJnT km/s] e
F107 [sfu=10"22 W/m°/hz] H
Slevation [deg] .
ut
co>( AACGM local ime) [rad]
in(AACGM local time) [rad; .
Clock Angle - 3cmm{ch .
Clock Angle - 15min [de: .
Clock Angle - Omin [deg] .
I | | | ! |

o 0.5 1 1.5 2 25 3 35 4 4.5
Univariate F-score

Figure 4. Univariate F scores for each of the 51 input features calculated for the 1-hr predictive task. The features are
organized by increasing F score and the top 25 selected for the prediction algorithm are shown in green.

AAGCM = altitude-adjusted corrected geomagnetic; AE = auroral electrojet index; CF = coupling function;

OVATION = Oval Variation, Assessment, Tracking, Intensity, and Online Nowcasting; TEC = total electron content;
TECU = TEC unit.

variables (i.e., only include a feature/combination of features if one can statistically reject the null hypoth-
esis that the positive and negative class data for this feature/combination of features are drawn from the
same distribution). Though we have not investigated such multivariable considerations in our feature selec-
tion analysis here (at the time of writing, no such comprehensive evaluation of variables for scintillation exists,
though the authors note the value of such a study; note, for instance, the benefit of the work of Leka & Barnes,
2003, to the solar flare prediction community), we choose to include a broad range of the available input
data, from which the design of the SVM algorithm inherently considers such relationships in searching for
the optimal decision boundary. This responds to the intuitive expectation that, for a complex variable such as
scintillation, no single variable is capable of distinguishing between scintillation and non-scintillation popu-
lations (and, in fact, even low-order combinations of variables such as three or four are still unlikely to be able
to provide sufficient discrimination), but that multivariable combinations are more effective at distinguishing
between populations. Numerous studies have reached a similar conclusion, notably Gjerloev et al. (2018), indi-
cating an important theme for ionospheric specification and prediction. Given the extent of the input features
we consider, we believe our machine learning database is robust and capable for this prediction exploration.

To examine the impact of the number of input features on the SVM model performance, we perform a sen-
sitivity analysis in which the number of input features is varied from 1 to 51 (i.e., the total number of input
features collected for this study; see Table 1 and section 2) in the order of decreasing univariate score as shown
in Figure 4. In other words, we begin with a single feature, the current value of o4. Then, we add the next
most informative feature one at a time, examining the resultant SVM performance at each step, until we have
included the complete set of input features. At each step we train 10 SVM models using different subsets of
50K training data samples, testing the performance on the remaining data, and record the average and stan-
dard deviation of various evaluation metrics. The results revealed little variation between SVM models across
training/testing subsets for a set number of input features and were relatively invariant to the number of mod-
els. Therefore, we deemed 10 to be sufficient. Figure 5 shows the outcomes of this sensitivity analysis for the
TSS (see section 3.4 for the definition of TSS) evaluation metric and for the first 30 input features. The blue and
red scatter points respectively show the average and standard deviation error bars of the TSS computed for
the 10 SVM models at each step, and the x axis reveals the input feature that was successively added begin-
ning with the first (sigmaPhi projected to vertical [radians]) on the far left. The average and standard deviation
error bars for the persistence case (i.e., assuming the phase Sl remains the same for the next hour) are shown
by the horizontal solid and dashed black lines, respectively, and are quantitatively 0.41 + 0.01. The dashed
green vertical line marks the point beyond which input features are no longer included in the SVM and were
used to produce the model results presented throughout this paper (i.e., 25 input features).
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Figure 5. TSS versus number of input features used to train a Support Vector Machine (SVM) model. The blue and red
scatter points, respectively, show the average and standard deviation error bars of the TSS for the ten SVM models
generated for each input feature set. Moving left to right the x-axis reveals the input feature that was successively
added. The average and standard deviation error bars for the persistence case are shown by the horizontal solid and
dashed black lines, respectively, and are quantitatively 0.41+0.01. The dashed green vertical line marks the point
beyond which input features are no longer included in the SVM model results presented throughout this paper (i.e., 25
input features). Note that the vertical axis limits are 0.3-0.6 to improve clarity. AACGM = altitude-adjusted corrected
geomagnetic; AE = auroral electrojet index; CF = coupling function; dTEC = differential TEC; OVATION = Oval Variation,
Assessment, Tracking, Intensity, and Online Nowcasting; TSS = true skill score.

Figure 5 reveals several important points. First, additional input features increase the predictive capability of
the SVM model as evaluated by the TSS, however only to a certain point. Beyond the first 25 input features
(marked by the dashed green line), the TSS starts to decrease and the variation of the models increases; one
indication of overfitting. We, therefore, select only the top 25 input features according to univariate score.
These features are shown in green in Figure 4. Figure 5 also shows that much of the skill of the SVM model
for the 1-hr predictive task is obtained by the current scintillation conditions (i.e., current value of ¢4 and
the spectral slope). The importance of the current conditions will obviously decrease as prediction time is
increased, which we address in section 5.3 and will more thoroughly investigate in future work.

Finally, given the drastically different dynamic ranges of the input features, each feature is normalized to a
zero mean unit variance, which is a common and often necessary data preparation step prior to training a
machine learning model (Ng, 2018; Witten & Frank, 2005). The scikit-learn package RobustScaler function is
used to normalize the data while remaining robust to outliers, meaning that the median is removed and the
data are scaled according to the interquartile range (25th to 75th percentiles).

3.3. SVM for Classification

The SVM (Cortes & Vapnik, 1995) is a popular classification algorithm due to its high accuracy, capability to
handle high dimensional data, and flexibility to model diverse data (Scholkopf et al., 2004). The mathematical
formalism of the SVM is well addressed in the literature (e.g., Burges, 1998; Hastie et al., 2001), including in
geospace applications (Jiao et al., 2017), and we only give brief introduction to it here, focusing instead on
why it is an appropriate choice to the problem at hand.

Our problem is given an input data sample, x,, € RN where N is the number of input features that defines
the problem dimensionality, and the corresponding classification label, y,, (either +1 or 0 in our two-class
scintillation application), find a function that separates the data based on their associated label. Note that
each label corresponds to a class, which in this work is either scintillation or no scintillation. If the classes are
linearly separable in the feature space, then this function is a hyperplane of the form f(x) = x7f + f, such
that x,,, is of class y,, = +1if f(x) > 0 and class y,, = 0if f(x) < 0. The SVM operates by maximizing the
distance, or margin, between the decision hyperplane and the closest data samples. These samples are called
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no scintillation

True label

scintillation

True Negative

support vectors, lie closest to the decision boundary, and are the most dif-
ficult to classify. The support vectors determine the hyperplane. Figure 1c
shows illustrations of the SVM approach for two- and three-dimensional
cases, each containing three training data samples for illustrative pur-
poses.

(Type | error)

However, our input data samples are likely not linearly separable in feature

False
Negative True Positive
(Type Il error)

space (RV). Acommon solution is to map the data samples nonlinearly to a
higher-dimensional space using a kernel basis function ®,(x), k =1, ..., K
and to identify the discriminating hyperplane in this higher-dimensional
space, f(x) = ®X)TJ + f,. In the SVM literature this is called the ker-
nel trick and its use to produce a more capable classifier derives from
Cover’s theorem, which states that complex, linearly inseparable classifi-

no scintillation scintillation cation problems are more likely to be linearly separable when cast non-

i linearly (via the kernel function) into much higher-dimensional spaces
Predicted label (Cover, 1965). Therefore, the classification is now nonlinear in the orig-

Figure 6. The contingency matrix. On the left axis are the true labels for the  inal feature space RN. A common choice for the kernel function, and
predicted variable (i.e., scintillation or no scintillation) and on bottom axis that chosen for this work, is the Gaussian kernel or radial basis function:
are the predicted labels. This matrix defines four critical categories: True k(x,x') = e—y|x—x’|2 where y is the width parameter, effectively determin-

Negative for which no scintillation occurs and no scintillation is predicted,
True Positive for which scintillation occurs and scintillation is predicted, False
Negative for which scintillation occurs yet no scintillation is predicted, and

ing the influence of a single data sample, x. When y is small all samples
affect the decision boundary, and a smooth boundary is identified, but

False Positive for which no scintillation occurs yet scintillation is predicted. as y is increased the affect of each sample becomes more local. If y is set
These four values provide the basis from which all prediction metrics are too large, then, overfitting can occur and it is, thus, an important design
derived. parameter.

The formulation above requires the correct classification of all samples,

however improved performance can be obtained by allowing some data
samples to be misclassified, especially with noisy data samples. This is accomplished through regularization
where a term C determines the penalty for misclassified samples or those that exist in the margin. The larger
the value of C, the heavier the penalty for misclassification and margin errors. This regularized version of SVM
is called a soft margin classifier.

Class imbalance is a major problem in many machine learning algorithms. Many algorithms are prone to
strong bias toward the majority class, in this case non-scintillation, at the cost of neglecting the minority one.
There are several approaches to mitigating this problem (e.g., Longadge & Dongre, 2013), but a particularly
effective technique is to separately set C for the negative (majority) and positive (minority) classes. We explore
this approach in our results, introducing the class weight ratio (Wpegative class © Wpositive class) @5 another design
parameter.

Together, y, C, and class weight ratio are called hyperparameters of the SVM and their selection, or tun-
ing, is critical to predictive performance. We implement the SVM approach using the python scikit-learn
library (Pedregosa et al., 2011), which is open source, widely used, and well established. Additionally,
we openly and freely provide sample software to produce the results shown here through a FigShare
Project with the same name as this paper and available at https://doi.org/10.6084/m9.figshare.6813143
(McGranaghan et al.,, 2018a). Data from this work are also provided through the FigShare Project at
https://doi.org/10.6084/m9.figshare.6813131 (McGranaghan et al., 2018b).

3.4. Evaluation

There are numerous metrics through which the success of a prediction method can be evaluated and each
are derived from four values: false positives (FPs), false negatives (FNs), true positives (TPs), and true nega-
tives (TNs). These values are defined by the contingency table. Figure 6 shows the format of the contingency
matrix and defines the terms. The textual definitions of these categories are as follows: True Negative (TN) for
which no scintillation above the threshold occurs and no scintillation is predicted, True Positive (TP) for which
scintillation occurs and scintillation is predicted, False Negative (FN) for which scintillation occurs yet no scin-
tillation is predicted, and False Positive (FP) for which no scintillation occurs yet scintillation is predicted. These
four values provide the basis from which all prediction metrics are derived. Robust quantitative measures are
essential to compare the performance of different prediction methods. Table 4 details common evaluation
metrics and those which guide our investigation of SVMs, though we primarily focus on the TSS in this paper.
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Table 4
Model Evaluation Metrics

Metric Equation Significance/value Shortcoming
Precision TPT% Capability of the model to identify only Sensitive to class imbalance
the positive cases
Recall % Capability of the model to identify all of the positive
cases; insensitive to class imbalance
Specificity TNT% Capability of the model to identify the negative cases Sensitive to class imbalance
F1 Erecisionxfecall Harmonic average of precision and recall; ranges over [0:1] such that F1 = 1

Area under precision-recall
curve (AU-PRC)
True skill score (TSS)

Bloomfield et al. (2012)

Precision+Recall

TP+FN ~ FP+TN

indicates perfect precision and recall
= Better indication of model performance
with large class imbalances

FP G B 9na q
Accounts for random chance and is insensitive to class imbalance

Ranges over [—1:1] such that TSS = —1 means every event is incorrectly
classified; TSS = +1 means every event is correctly classified; and 7SS = 0

means the model predicts consistently with a random chance predictor

Note. FN = False Negative; FP = False Positive; TN = True Negative; TP = True Positive.

Given the findings of Bloomfield et al. (2012) we adopt the TSS as the primary metric by which to judge model
prediction capability. We suggest, based on the body of work from various communities (notably weather
forecasting [Manzato, 2005] and solar flare forecasting [Barnes et al., 2016; Bloomfield et al., 2012; Bobra &
Couvidat, 2015; Jonas et al.,, 2017]) as well as our own exploration detailed in this manuscript, that TSS is a
robust and appropriate measure to benchmark high-latitude ionospheric phase scintillation prediction, a key
objective of this work. To our knowledge this paper is the first to compute a TSS from a forecastable model of
high-latitude phase scintillation and to use this metric to evaluate prediction models.

It should be noted that one potential challenge of using TSS to evaluate success is that it treats FPs (i.e., false
prediction alarms) and FNs (i.e., missed occurrences) in the same way and does not consider the different
consequences associated with each. In the case of ionospheric scintillation it may be more costly to miss an
occurrence than to falsely predict one will occur. For instance, in the case of communication the cost of a false
prediction alarm may be delaying the action associated with that communication until after the prediction
alarm concludes, whereas the cost of missing the occurrence of scintillation is an incomplete, corrupted, or
lost communication and the resultant, potentially dangerous, disconnect between the sending and receiving
parties. Clearly, the relative importance of the various entries of the contingency matrix is application specific.

4, Inherent Limitations

As important as understanding the capabilities of a prediction model is understanding where it is incapable.
All models will have shortcomings, and their effective use depends on their clear identification. Therefore, we
list the limitations that accompany this work:

« The input data are not fully representative of the vast spectrum of circumstances that can be manifested
in the ionosphere, and our prediction model is only capable of robustly predicting circumstances that are
represented in the input data (2015-2016). Predictions outside of this range can be made, and, in general,
may be accurate, but are, however, extrapolation.

« Related to the first point, the input data cover only the declining phase of solar cycle 24, and the same point
regarding predictions for different ranges of input data applies for predictions during different phases of the
solar cycle.

+ We use only the CHAIN receiver network, which does not geographically cover all latitudes and longitudes.
It does, however, provide complete coverage of the high-latitude ionosphere in magnetic coordinates.

«We use super observations (see section 2.4) which is a statistical summary of the ground
receiver-to-individual GNSS satellite links available at a given time for a given station. Statistically summa-
rizing the data in this manner inevitably reduces the information content of the original data (primarily by
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reducing the spatial resolution of the data), which may preclude our results from impacting certain scientific
investigation (e.g., at resolutions finer than those provided by the super observations).

« The predictive task we have defined may not be appropriate to all applications. We address this limitation
briefly in section 5.3 by examining alternative tasks. Full exploration of these tasks will be the focus of future
publication.

+ We explore only one machine learning algorithm, the SVM.

Finally, it is important to be aware of the resolution and data preparation aspects to understand the model
capabilities. We have detailed these items in section 2.

5. Results

We reiterate here that the objective of this paper is to use machine learning algorithms to create a novel pre-
diction method for high-latitude phase scintillation and to establish a benchmark for future efforts. Therefore,
we separate our results into two sections: (1) exploration of SVM machine learning models (section 5.1) and (2)
presentation of the capabilities of the SVM approach (section 5.2). We primarily use the TSS to evaluate pre-
dictive performance in order to allow comparison with future studies (Bloomfield et al., 2012). Throughout the
results section we use data from 2015 for training. Section 5.2 presents a validation period, taken from 2016,
to assess the model performance. Throughout the results the model is always evaluated based on predictions
for data that were not used in training (i.e., independent data samples).

5.1. SVM Model Exploration

The number of parameters and design choices that influence the construction of an SVM model create a vast
exploration space. Like any machine learning or physics-based modeling attempt, it is important to gain an
understanding of the sensitivity of the model on the input parameters. Therefore, we attempt a robust, quanti-
tative analysis of this exploration space. Our objective is to identify the set of (1) SVM hyperparameters and (2)
training data size that collectively yield high predictive performance. To this end, we organize our SVM model
exploration through a series of important questions for SVM model design. These questions not only guide
the exploration process for these machine learning models but also provide a road map for future efforts to
develop high-latitude scintillation prediction models.

5.1.1. What Effect Do the Penalty Parameter (C), the Width of the Gaussian Kernel Basis Function (y),
and the Class Weight Ratio Have on the SVM Performance?

The three primary design parameters, or hyperparameters, for an SVM model are the penalty parameter (C),
the width of the Gaussian kernel basis function (y), and the class weight ratio. We designed a sensitivity anal-
ysis whereby a range of each of the hyperparameters was defined and a separate SYM model was trained for
each point in the search space. The ranges used were C = {0.001,0.01, 0.1, 10}; y = {0.001,0.01,0.1,10}; and
class weight ratio = {1:1, 1:2, 1:10, 1:50, 1:100}. Therefore, a total of 125 SVM models were examined. For com-
putational reasons discussed further below in section 5.1.2 we used a subset of 50K data samples from 2015
to train each SVM model and computed the TSS based on the remaining data samples in 2015 (~4.4 million).
This may seem like a small number of samples for training; however, recall that the SVM model identifies the
small number of most important data samples (i.e., the support vectors) and determines the decision hyper-
plane based on them. We acknowledge that a limited data set provides fewer support vectors from which
to determine the discriminating hyperplane, but there is evidence that SVM can obtain high accuracy with
a small fractional training data set (Mourad et al., 2017). We explore this quantitatively through a sensitivity
analysis based on the number of data samples used for training in section 5.1.2 below. Future work will address
intelligent subsampling of the available data to attempt to identify the support vectors a priori to optimally
increase model predictive capability and minimize training time. Figures 7a to 7e show the outcome of the
sensitivity analysis as a function of TSS for increasing class weight ratio (i.e., moving left to right, greater weight
is progressively placed on correctly predicting the positive class).

Figures 7a and 7b show that at equal or low class weight ratios, relatively independent of the values of C and
v, low skill scores are obtained. Skill increases noticeably for class weight ratios greater than 1:2 and peaks in
this coarse grid search for a ratio of 1:50. Figures 7c and 7d suggest that SVM models with predictive skill exist
in the range of class weight ratios between 1:10 and 1:100 and primarily for C values between 0.01 and 10 and
y values between 0.01 and 0.1.
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Figure 7. Support vector machine hyperparameter sensitivity analysis. For each combination of hyperparameters from
the ranges: C = {0.001,0.01,0.1,10}; y = {0.001,0.01,0.1, 10}; and class weight ratio = {1:1, 1:2, 1:10, 1:50, 1:100}, a
support vector machine model was trained using 50K data samples from 2015 and the TSS computed from the
remaining 2015 samples (~4.4M). (a—e) The results as a function of increasing class weight ratio (i.e., greater weight
placed on correctly predicting the positive class). TSS = true skill score.

5.1.2. What Effect Does the Training Data Size Have on the SVM Performance?
SVMs determine the optimal decision boundary by identifying the support vectors, a small subset of data
samples that most influence the boundary.

The computational cost of training an SVM model grows nonlinearly with respect to the number of training
samples (the exact scaling is dependent on a number of factors, including the number of support vectors [and,
therefore, the hyperparameters C and y] and the specific algorithm used, and is generally between ©@(n?) and
O(n?) in computational cost; see Chapelle, 2007, and Chapter 12 Sections 2 and 3 of Hastie et al., 2001). There-
fore, practically speaking, computational considerations place a limit on the number of training samples that
can be used. Therefore, it is important to investigate the effect of training sample size on SVM performance.

Based on the results shown in Figure 7 we use the following hyperparameters to assess the impact of training
data size on predictive performance: y = 0.1, C = 0.1, class weight = 1:10. We carried out a sensitivity study
whereby SVM models were trained using different input training data sizes in the range: {50K, 100K, 250K,
1M}. For each training data size, we train 50 separate SVM models each using a different random subset of
training data samples and show the average value (red dots) and standard deviation (blue error bars) across
the models in Figure 8a. We also present the growth in training time in Figure 8b.

Figure 8a shows that the TSS approaches a plateau for a given SVM model as training data size is increased,
indicating that subsets of training data can capably be used to train an SVM model. Additionally, the variation
from using different subsets of training data decreases with increasing training data size (smaller error bars on
the 1M case compared with the 50K case in Figure 8a) but is relatively small for each of the data sizes tested.
Figure 8b shows the drastic growth in training computation time required as the training data sample size
is increased, growing from the order of hours for thousands of samples to the order of weeks for millions of
observations. This clearly illustrates the need to balance number of training data samples and training time.

5.2. Exploration of SVM Model Capability

In section 5.1 we comprehensively examined the SVM design space for the 2015-2016 CHAIN machine learn-
ing database and the 1-hr predictive task and evaluated the models using the TSS. Here we use the outcomes
of that exploration to examine a candidate SVM model (100K training data samples selected randomly from
2015, C = 0.1,y = 0.01, and class weight ratio = 1:50), applying predictions to a particular period from
15-25 January 2016. This allows us to test the model on data unused during the training and testing peri-
ods and to incorporate space weather understanding to interpret, understand, and, ultimately, improve the
predictive model. It is important to note that this study does not claim to identify an optimized SVM model
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Figure 8. SVM input training data size sensitivity analysis. (a) TSS and (b) SVM training time across the range of training
data sample sizes tested: 50K, 100K, 250K, and 1M. For each training data size, we train 50 separate SVM models each
using a different random subset of training data samples and show the average value (red dots) and standard deviation
(blue error bars) across the models. SVM = support vector machine; TSS = true skill score.

for high-latitude scintillation prediction but rather selects an SVM model based on our findings above and
assesses it during a specific period, which allows us to examine SVM performance in the context of space
weather knowledge (McGranaghan, Bhatt, et al., 2017).

Figure 9 presents a case study during this period on 20 January 2016 for a single station, McMurdo, taken to be
representative and illustrative of several important points. Figures 9a to 9c provide contextual solar wind and
geomagnetic activity data: (a) the solar wind IMF B, and B, components (nT), (b) the planetary Kp index, and
(c) the AE index (nT). Figures 9d to 9f show the phase Sl (o) values (the true values of ¢, are repeated in each
of Figures 9d to 9f), where the values in Figures 9e and 9f have been color coded according to the contingency
matrix entries (shown to the left of the figures) of the SVM and persistence predictions, respectively.

The IMF B, component shows a southward turning of the magnetic field followed by a prolonged period of
southward-directed magnetic field that corresponds to enhancements in geomagnetic activity as indicated
by the Kp and AE indices. McMurdo station, located at 63° magnetic latitude observes phase scintillation
enhancements, primarily around 1000-1500 UT and throughout the postmidnight local time sector. This
behavior could be indicative of substorm-induced scintillation. Referring to the persistence predictions in
Figure 9f it is clear that persistence is incapable of capturing this scintillation, yielding many FNs shown by
red points and very few TPs shown in green. Alternatively, the SVM model capably predicts the scintillation
in the postmidnight local time sector, correctly predicting the most extreme scintillation as indicated by the
TPs in green. However, the characteristic of the SVM model predictions to overpredict during active times is
also clear. Throughout the active period, and for a prolonged period after the return of the phase scintillation
to values below the 0.1-rad threshold (shown by a dashed black line in Figure 9d), the SVM model yields FPs
(yellow points). These results, and other case studies that were analyzed, illustrate that the SVM model over-
predicts scintillation when the phase Sl approaches the threshold. However, for the prediction of scintillation
it is more costly to miss important scintillation events such as that around 1200 UT in Figure 9 than to incor-
rectly predict cases of no scintillation. It is quite likely that attempting to predict when a single data point for
a highly dynamic variable will exceed a given threshold causes the performance issues for the SVM model,
and we address this shortcoming in section 5.3.

We can obtain further information about the capability of the SVM model by examining predictions from all
stations throughout the 15-25 January 2016 period as a function of AACGM latitude and local time. Figure 10
shows the number of predictions on polar plots laid out according to the contingency matrix (e.g., TNs in the
upper left quadrant and TPs in the bottom right quadrant). Each polar plot is displayed in the same way. Data
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Figure 9. The 20 January 2016 case study. Shown are contextual data: (a) solar wind interplanetary magnetic field B,
and B, components (nT), (b) the planetary Kp index, and (c) the AE index (nT). The bottom three panels show (d) true
phase scintillation index values, (e) SVM predictions, and (e) persistence predictions. All data are shown at the time of
prediction. Phase scintillation index data in panels e and f are the same as the time series shown in panel d (the true og,
values) but have been color coded according to the contingency matrix shown to the left of the panels based on the
scintillation/no scintillation classification predictions of these models. The 0.1-radian threshold used for this work is
shown by a dashed black line in panel d. Data for the McMurdo ground station are selected as a representative case and
the UT, altitude-adjusted corrected geomagnetic latitude and local time of the station are provided as x-axis labels.
AE = auroral electrojet; MLAT = magnetic latitude; MLT = magnetic local time; SVM = support vector machine;
UT = universal time; FN = False Negative; FP = False Positive; TN = True Negative; TP = True Positive.

are shown on an equal area grid in AACGM MLAT-MLT coordinates with noon MLT to the top of each polar
plot and a low-latitude limit of 50° . We use the same equal area binning scheme in Figure 10 as that used in
Figure 3 and described above. Note that the color ranges are different for the no scintillation cases (top row
of both Figures 10a and 10b) than for the scintillation cases (bottom rows) due to the difference in number of
occurrences.

Comparing the bottom right of Figures 10a and 10b (the TPs) we find that the SVM model captures more
of the scintillation occurrences throughout the polar and auroral regions, and the improved performance
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Figure 10. Polar plots showing the (a) persistence and (b) SVM model predictions during the 15-25 January 2016
period laid out according to the contingency matrix entries. Note that the color ranges are different for the no
scintillation cases (top row of both a and b) than for the scintillation cases (bottom rows) due to the difference in
number of occurrences. Each polar plot is displayed in the same way. Data are shown on an equal area grid in
altitude-adjusted corrected geomagnetic MLAT-MLT coordinates with noon MLT to the top of each polar plot and a
low-latitude limit of 50° . The MLAT resolution is 2° , and the MLT resolution is variable (0.28 hr at 50° MLAT to ~2.18 hr
at 85° MLAT). MLAT = magnetic latitude; MLT = magnetic local time; SVM = support vector machine.

over persistence is particularly pronounced in two critical areas: (1) the polar cusp (roughly a region spanning
1-2° MLAT and near-1200 MLT [Newell & Meng, 1988]) and (2) the nightside premidnight to postmidnight
auroral region. The SVM predictions exhibit both a higher number of TPs and a lower number of FNs in these
regions. Consistent with the findings shown in Figure 9, however, the SVM model does exhibit larger numbers
of FPs. The amount of FPs (i.e., the degree of overprediction) is influenced by the class weight ratio chosen
and can, therefore, be optimized using the SVM approach. Finally, there is no discernible pattern in the TNs
for either predictive model, indicating that these conditions are ubiquitous and both models capture these
cases independently of MLAT-MLT location. The TSSs for this period for the persistence and SVM models are
0.25 and 0.48, respectively.
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Table 5

Prediction Tasks Evaluation and Definitions

Task FN FP N TP TSS Definition of scintillation occurrence

SVM: 1 hr, 1 point 1,071 32,188 89,718 3,252 0.49 If a single o4, point exceeds the threshold at a
prediction time of 1 hr

SVM: 1 hr, 3 points 638 18,218 106,156 1,217 0.51 If 3 consecutive 64, points exceed the
threshold at a prediction time of 1 hr

SVM: 1 hr, 6 points 267 7,934 117,626 402 0.54 If 6 consecutive 64, points exceed the
threshold at a prediction time of 1 hr

SVM: 1 hr, 15-point mean 1,053 29,337 92,728 3111 0.51 If the average of 15 consecutive o4, points exceeds the
threshold at a prediction time of 1 hr

SVM: 3 hr, 1 point 940 37,865 83,961 3,463 0.48 If a single o4, point exceeds the threshold at a
prediction time of 3 hr

SVM: 3 hr, 3 points 824 16,865 107,316 1,224 0.46 If 3 consecutive o4, points exceed the threshold at a

SVM: 3 hr, 6 points

SVM: 3 hr, 15-point mean

Persistence: 1 hr, 1 point
Persistence: 1 hr, 3 points
Persistence: 1 hr, 6 points
Persistence: 1 hr, 15-point mean
Persistence: 3 hr, 1 point
Persistence: 3 hr, 3 points
Persistence: 3 hour, 6 points

Persistence: 3 hr, 15-point mean

prediction time of 3 hr
434 8,376 117,055 364 0.39 If 6 consecutive o4, points exceed the
threshold at a prediction time of 3 hr
879 34,193 87,619 3,538 0.52 If the average of 15 consecutive o4 points exceeds the

threshold at a prediction time of 3 hr

3,131 3,339 118,567 1,192 0.25 =
1,252 3,928 120,446 603 0.29 =
416 4,278 121,282 253 0.34 =
2915 3,282 118,783 1,249 0.27 =
3,667 3,795 118,031 736 0.14 =
1,724 4,207 119,974 324 0.12 =
678 4,411 121,020 120 0.12 =
3,651 3,765 118,047 766 0.14 =

Note. FN = False Negative; FP = False Positive; TN = True Negative; TP = True Positive. The bold emphasis on some of the entries in this table is used to emphasize
the difference between row entries, which are similar but vary in number of data points and prediction time.

The general conclusion from Figure 10 is that the SVM model more capably identifies scintillation occurrence
than persistence (75% versus 28% TP rate for this time period), which corresponds also to a much lower FN
rate (25%) for the SYM model than the persistence model (72%). The SVM model, however, does exhibit a
tendency to overpredict (~27% FP rate), which can be mitigated through further optimization of the class
weight ratio hyperparameter. Given the importance of prediction hits (i.e., TP identification), we believe these
results indicate a significant predictive improvement using the SVM model.

5.3. Examination of Different Predictive Tasks

We recognize that the 1-hr, single data point predictive task, while well-defined, important, and conducive to
our objective of establishing a benchmark for high-latitude ionospheric phase scintillation, does not encap-
sulate the full prediction space of interest. Therefore, we examine an extended set of predictive tasks briefly
here. We focus on three aspects of the prediction problem: (1) extended lead times, (2) event-based predic-
tion, and (3) prediction of time-averaged phase scintillation. For all tasks we use a standard SVM model design
chosen based on the results shown in Figure 7 and consistent with the model used to produce Figures 9 and
10 (100K training data samples, C = 0.1, y = 0.01, class weight = 1:50). We evaluated each of the predictive
tasks during the same ten day period between 15 and 25 January 2016 addressed in section 5.2. We reiter-
ate that this period represents novel data (i.e., unique from the data used for training) and shows a range of
geomagnetic activity in order to provide information about performance across a large range of geospace
conditions, including both quiet and active periods. We created separate SVM models for eight different pre-
dictive tasks. Table 5 provides a description of each predictive task alongside numerical results, including the
entries in the contingency matrix for both the SVM and persistence predictive approaches. Figure 11 accom-
panies Table 5, graphically showing the TSS results (y axis) for each predictive task (x axis). To improve the
visual representation, data point sizes, locations on the y axis, and color each reflect the magnitude of the TSS.
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Figure 11. TSS results for the SYM model and persistence predictions evaluated for different predictive tasks over the
period of 15-25 January 2016. To improve the visual representation, data point sizes, locations on the y-axis, and color
each reflect the magnitude of the TSS. Refer to Table 5 for numerical results and definitions of the predictive tasks.
SVM = support vector machine; TSS = true skill score.

From Figure 11 we find that the persistence predictive capability falls off drastically between 1- and 3-hr pre-
diction times (only slightly exceeding random prediction skill for the 3-hr task), while the SYM model only
experiences a minor decrease in skill. This trend is expected to continue with increasing prediction time, sug-
gesting that the SYM approach offers the potential for skillful prediction at extended prediction times whereas
persistence rapidly becomes ineffective. In general across all predictive tasks the SVM models outperform the
persistence models, in most cases reaching values 2 times greater than persistence for the same predictive
task (e.g., the TSS for the SVM model during this period for the 7-hr, 1-point task is 0.5 and that of persis-
tence is 0.25). Finally, the SVM models for the 15-point-mean predictive tasks show high skill. This may be a
more appropriate predictive task for many users of GNSS signals given that the prediction is based on average
scintillation conditions over a time period (15 min) significant to the operation of systems that require GNSS
availability.

Ultimately, the most appropriate predictive task is application dependent, and end user needs should dictate
predictive task selection.

6. Discussion

We have demonstrated the potential for skillful high-latitude ionospheric phase scintillation using an SVM
model and benchmarked the performance using the TSS, which can be used across different predictive mod-
els to compare performance largely independent of the details of the input data (Bloomfield et al., 2012). We
have notidentified an optimal SVM model. Thus, itis important to consider how this model could be improved.
First, knowledge of the space weather system can be utilized. Figure 10b showed that the SVM model with
large class weight ratios is prone to overpredict scintillation occurrence (reference the large number of FPs for
a model trained with a class weight ratio of 1:50). We also found the MLAT-MLT locations of the FPs peaked
in the dayside cusp and premidnight auroral regions. One way to mitigate the shortcoming is to incorpo-
rate additional information pertaining to cusp and substorm phenomena into the input feature space. For
instance, several studies (e.g., Jin et al.,, 2016; Watson et al., 2016a) found that scintillation in the cusp region
may be closely related to the convection of ionospheric irregularities and would, therefore, benefit from con-
vection data that could be provided by the Super Dual Auroral Radar Network (SuperDARN; Ruohoniemi
& Baker, 1998) or an ionospheric convection model such as the SuperDARN assimilative model (Cousins
et al,, 2013). Field-aligned currents have been shown to relate closely to substorm behavior (McGranaghan,
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Mannucci, et al., 2017; Murphy et al., 2013, and references therein), and field-aligned currents data from the
Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE; Anderson et al.,, 2014)
may, therefore, improve performance for this important scintillation-causing phenomenon. Further, pertur-
bations in the Earth’s magnetic field caused by horizontal electrical currents in the ionosphere, which can
be sensed by ground-based magnetometers, provide a proxy for the dynamics of the magnetosphere and
magnetosphere-ionosphere coupling (Kamide et al., 1981). The horizontal currents may be closely related
to high-latitude phase scintillation (Prikryl et al., 2017). Therefore, the Super Magnetometer Initiative (Super-
MAG; Gjerloev & Hoffman, 2012), coordinating data from more than 100 ground-based magnetometers, may
be an important source of data as well. The SuperDARN, AMPERE, and SuperMAG data will also likely be ben-
eficial to overall model improvement. Exploration of additional input features should be addressed through
the lens of identifying the data that provide the greatest potential for discriminating among the scintillation
and no scintillation classes, particularly for the cases that are most difficult to classify.

Next, sophisticated approaches to improve machine learning model performance from the machine learn-
ing research community can also contribute to drastic improvements. For instance, we have used random
data selection to produce the data samples with which to train our SYM models. However, smart subsam-
pling methods, such as the Synthetic Minority Oversampling Technique (Chawla et al., 2002), may prove more
effective in selecting data to train more capable models.

Despite the fact that the SVM models that we presented are not in a strict sense optimal, they do exhibit skill
and additionally provide new understanding for high-latitude phase scintillation. Referring to Figures 4 and
5 we found that several input features contributed little to the overall predictive capability of the SVM model.
Forinstance, individual solar wind parameters (e.g., IMF B,) had relatively low univariate scores and did little to
increase the predictive capability of the SVM model. This, coupled with the large univariate scores of geomag-
netic activity indices (e.g., Kp) and coupling functions, suggests that not only are combinations of data more
effective toimprove predictive skill for high-latitude ionospheric scintillation but also that single variables may
not sufficiently distinguish ionospheric phenomenon. The latter points to the need to evolve approaches that
traditionally attempt to understand characteristics (i.e., repeatable behavior) of ionospheric phenomena by
examining ionospheric behavior as a function of a single variable (such as IMF clock angle). This is consistent
with the conclusions drawn by Gjerloev et al. (2018) that it is unlikely that the ionosphere can be described
by cause and effect relationships with individual solar wind variables nor that small subsets of parameters
can accurately encode the necessary complexity. Our approach using SVMs allows an exploration of non-
linear combinations of a large number of relevant parameters for the prediction of ionospheric scintillation.
We suggest that this supports the conclusion that machine learning approaches can complement traditional
approaches to improve understanding and prediction of the geospace environment (McGranaghan, Bhatt,
etal., 2017).

Our results also suggest new information regarding ionospheric predictability. Figure 11 showed that per-
sistence prediction is almost completely ineffective for prediction times longer than 1 hr for high-latitude
phase scintillation (i.e., performs just better than random chance for the 3-hr predictive task). This sug-
gests that the memory of the ionosphere in terms of high-latitude plasma irregularities is on the order of or
shorter than hours, an important result given the outstanding question of the predictability of the ionosphere
(Mannucci et al., 2016). In general, new scientific understanding has been created from our machine learning
approach and is indicative of the capability for explainable machine learning through the fusion of data-driven
approaches with scientific knowledge (Karpatne et al., 2017).

We acknowledge that machine learning is only one approach to high-latitude ionospheric scintillation pre-
diction. We do not claim that this is the best or most appropriate approach, only that traditional approaches
and models should be compared with and complemented by machine learning approaches, given the avail-
ability of vastly increased data volumes and computational power that support successful machine learning
techniques. This work is intended to provide the foundation for comparing various approaches and integrat-
ing traditional and novel approaches to produce more accurate and capable prediction models. There are
many machine learning approaches that are not explored in this work. We present one promising approach
and position this model as a benchmark to support future exploration.

Finally, we chose the prediction of the phase SI, 64, as our predictive task due to the actionable information
for GNSS users provided by such a prediction (e.g., Albanese et al., 2017; Prikryl et al., 2015; Sreeja et al., 2012;
Strangeways, 2009), the availability of large volumes of Sl data, and the body of literature surrounding this
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task (e.g., Spogli et al., 2009; Prikryl et al., 2012; Rezende et al., 2009, and references therein). Other useful
approaches to ionospheric scintillation prediction also exist. Conker et al. (2003), Aquino et al. (2009), and
Sreeja (2016) point out that the variance on the GNSS receiver phase-locked loop is a critical parameter to the
calculation of the navigation solution from GNSS signals. Therefore, another useful predictive task would be
to predict the variance of the error at the output of the phase-locked loop at a given location (i.e,, a tracking
jitter map [Sreeja et al., 2011]). The approach outlined in this work could indeed be applied to predict tracking
jitter maps, and is, therefore, adaptable to serve GNSS user needs.

6.1. Future Work

This study examined a focused, well-defined, albeit minimal use case to explore promising, novel data-driven
approaches to high-latitude scintillation. We note that data-driven approaches inherently open massive
exploration spaces. The high-latitude scintillation data that are provided by the CHAIN GNSS receivers and
that have been curated into an open and usable database through this research provide an opportunity for
widespread exploration of this space. We detail a few important avenues of that exploration here and note
that follow-on work in these regards is ongoing.

Future work will address four areas of investigation:

1. additional input features (e.g., SuperDARN convection) and determination of the importance of these
additional data to scintillation prediction;

2. additional methods of featurization (e.g., discriminant analysis);

3. additional methods to subsample data (more sophisticated than a simple random subsampling);

4. a broad spectrum of machine learning algorithms (e.g., neural networks).

Given that the SVM model produces a high number of false alarms, these investigations will be geared toward
reducing the false alarm rate without sacrificing the high number of true scintillation predictions. This effort
may benefit from a deeper investigation into evaluation metrics used in cooperation with the TSS.

7. Conclusions

We have addressed a critical and unresolved task in space weather: the prediction of high-latitude ionospheric
phase scintillation. We used a data-driven approach, with a large volume of data from GNSS signals collected
by the CHAIN ground receivers, to develop a novel machine learning method to predict the occurrence of
phase scintillation at magnetic latitudes poleward of 45° . We chose the SVM algorithm and evaluated the
predictive performance using this approach based on a robust metric, the TSS, which can be reliably used to
compare between predictive methods, to establish our results as a benchmark for future efforts. To our knowl-
edge, this is the first time a SVM model has been applied to predict high-latitude phase scintillation. We find
that the SVM model consistently and significantly outperforms a persistence prediction, yielding TSS values
double that of persistence for a 1-hr predictive task. The improvement is even greater for longer prediction
times, for which persistence experiences significant degradation in predictive skill but the SVM exhibits only
slight decreases between 1- and 3-hr predictive tasks. We use knowledge of the space weather system to
investigate the capabilities and shortcomings of the SVM model and find that overprediction (i.e., predicting
scintillation to occur more often than it actually does) is a challenge but may be able to be addressed through
further optimization of the model. Additionally, improving prediction capability in critical areas such as the
ionospheric cusp and premidnight auroral region (i.e., the statistical location of prominent substorm behav-
ior) may require additional data to inform the model such as the SuperDARN, the AMPERE, and the SuperMAG.
A useful aspect of this work is that it is readily extensible to metrics other than the TSS, which may benefit
application-specific investigations.
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