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ABSTRACT

A nonlocal quasi-phase radio occultation (RO) observation operator is evaluated in the assimilation of
Challenging Minisatellite Payload (CHAMP) radio occultation refractivity using a Weather Research and
Forecasting (WRF) ensemble data assimilation system at 50-km resolution. The nonlocal operator calcu-
lates the quasi phase through integration of the model refractivity along the observed ray paths. As a
comparison, a local refractivity operator that calculates the model refractivity at the observed ray perigee
points is also evaluated. The assimilation is done over North America during January 2003 in two different
situations: in conjunction with dense, high-quality radiosonde observations and with only satellite cloud drift
wind observations. Analyses of temperature and water vapor with the RO refractivity assimilated using the
local and nonlocal operator are verified against nearby withheld radiosonde observations. The bias and
RMS errors of the analyses of water vapor and temperature using the nonlocal operator are significantly
reduced compared with those using the local operator in the troposphere when the only additional obser-
vations are satellite cloud drift winds. The reduction of the bias and RMS errors is reduced when radiosonde
observations are assimilated.

1. Introduction

Atmospheric limb sounding making use of signals
transmitted by the global positioning system (GPS) has
evolved as a promising global observing system. By
placing GPS receivers onboard low-earth-orbiting sat-
ellites, one can measure the delays of radio signals
transmitted by GPS satellites due to the refractivity
structure of the earth’s atmosphere as they set or rise
behind the earth (Ware et al. 1996; Kursinski et al.
1997). The delays of the signal are integrated effects of
the atmospheric refractivity along the ray paths of the
signals, which usually extend several hundred kilome-
ters in the troposphere (Kursinski et al. 1997). From the
measurements, one can derive vertical profiles of bend-
ing angles and refractivity using the Abel inversion un-
der the assumption of local spherical symmetry. Details
of the GPS data retrieval process conducted at the
University Cooperation for Atmospheric Research
(UCAR) can be found in Kuo et al. (2004).

The bending angle and refractivity profiles can be

used to reduce the errors of temperature and water
vapor of the first guess/forecasts through assimilation
with numerical weather and climate models. An obser-
vation operator, which calculates the bending angle or
refractivity from the model state variables, is required.
A “local” operator uses temperature, water vapor, and
pressure at the estimated tangent points of the radio
rays to calculate the bending angles or refractivity. A
nonlocal operator takes account of the variations of the
temperature, water vapor, and pressure along the ray
paths.

When there exist strong horizontal gradients of at-
mospheric refractivity in the middle and lower tropo-
sphere, forward modeling of radio occultation (RO)
refractivity/bending angle using local operators may
have significant errors. Use of nonlocal operators may
significantly reduce the forward modeling errors (see,
e.g., Sokolovskiy et al. 2005a,b; Syndergaard et al. 2005,
2006; Poli 2004; Foelsche and Kirchengast 2004). For
example, Sokolovskiy et al. (2005a) showed that use of
a nonlocal quasi-phase operator may reduce the for-
ward modeling errors using the Weather Research and
Forecasting (WRF) model, especially in the middle and
lower troposphere in a few cases of strong horizontal
gradient of refractivity, compared with use of a local
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operator. The error reduction using the nonlocal opera-
tor is more significant at horizontal model resolutions
of 100 km or less. At resolutions of 200 km or coarser,
the use of the nonlocal operator does not have an ob-
vious positive impact and the use of a local operator
may have sufficient accuracy.

A number of nonlocal and local refractivity/bending
angle operators have been tested in assimilation of GPS
radio occultation data with global and regional data
assimilation systems (Healy and Thepaut 2006a; Healy
et al. 2006b; Zou et al. 1999; Kuo et al. 2000; Liu and
Zou 2003). The benefit of using nonlocal operators,
however, has not been demonstrated in the tropo-
sphere with high-horizontal-resolution data assimila-
tion systems (�100 km).

In this study, the impact of using the nonlocal quasi-
phase operator in assimilation of Challenging Minisat-
ellite Payload (CHAMP) RO refractivity with a rela-
tively high-horizontal-resolution (50 km) version of the
WRF model is examined focusing on the middle and
lower troposphere. The ensemble adjustment Kalman
filter (EAKF; Anderson 2001, 2003) is used to assimi-
late the refractivity with the WRF model because of the
easy implementation of the observation operators and
use of flow-dependent forecast error covariances to
model the first guess/forecast errors.

In section 2, the WRF ensemble data assimilation
system is briefly introduced. The implementation of the
nonlocal quasi-phase operator with the WRF ensemble
data assimilation system is described in section 3. The
experimental design for examining the performance of
the nonlocal operator is given in section 4. The
CHAMP RO refractivity and satellite cloud drift wind
data are described in section 5. The latitudinal distri-
bution of the horizontal gradients of refractivity of the
WRF forecasts in the troposphere and the departures
of the first guess calculated using the nonlocal and local
operator from the observations are discussed in sec-
tions 6 and 7, respectively. Evaluation of the nonlocal
operator is presented in sections 8 and 9. Conclusions
and discussion are presented in section 10.

2. WRF ensemble data assimilation system

The WRF ensemble data assimilation system uses the
Data Assimilation Research Testbed (DART) of the
National Center for Atmospheric Research (NCAR).
The EAKF is used to assimilate observations with
WRF short-range forecasts as first guess. A brief de-
scription of the EAKF is given in the following. Assum-
ing observational error distributions of the observations
are independent for each scalar observation, the obser-
vations can be assimilated sequentially in any order by

the EAKF. Here, we describe only how the EAKF
works for assimilation of a single observation, yo.

A joint state–observation vector is defined as

z � �x, H�x�� � �x, y�, �2.1�

where x is the model state variable vector; y � H(x) is
the prior estimate (first guess) of the observation given
x obtained by applying the forward observation opera-
tor H to the model state.

Using Bayesian statistics, the updated (analyzed or
posterior) probability distribution, zu � [xu, yu], can be
computed from the prior probability distribution, zp �
[xp, yp], as

p�zu� � p�yo |zp �p�zp ��normalization, �2.2�

where yo is the single observation. A prior ensemble of
the model state variables, xp

i (i � 1, . . . , K), can be ob-
tained from an ensemble integration of the model to the
time when the observation is available, where i is the
index of the ensemble member and K is the ensemble
size. A prior ensemble estimate of the observation, yp

i (i
� 1, . . . , K), can be obtained by applying the forward
observation operator H to each ensemble member, xp

i .
The updated probability for the marginal distribution

of y can be formed as

py�y
u� � p�yo |yp �py�y

p ��normalization. �2.3�

The assimilation of the observation can be done in
two steps. The first step determines updated estimates
of the ensemble members, yu

i (i � 1, . . . , K), for the
observation using the ensemble adjustment method and
computes increments between the prior and updated
ensemble estimates of the observation. The second step
determines the updated ensemble of the model state
variables, xu

i (i � 1, . . . , K), from these observation
space increments. In practice, the following procedures
are involved:

1) Generate a prior ensemble, xp
i (i � 1, . . . , K), at the

time when the observation is available.
2) Get a prior ensemble estimate of the observation, yp

i

(i � 1, . . . , K), by applying the forward observation
operator to each member of the prior ensemble,

y i
p � H�x i

p�, i � 1, . . . , K. �2.4�

3) Compute the prior ensemble mean yp and variance
�p:

yp �
1
K �

i�1

K

y i
p, �2.5�

�p �
1

K 	 1 �
i�1

K

�y i
p 	 yp��y i

p 	 yp�. �2.6�
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4) Compute the updated/analysis variance and mean of
the ensemble in observation space as follows:

�u � ���P �	1 
 ��o�	1�	1, �2.7�

yu � �u�yp��p 
 yo��o�, �2.8�

where �o is the so-called observation error variance,
which may include observation measurement errors
and the model’s representative errors of the obser-
vation. In other words, the updated ensemble mean
is shifted closer to the observed value and the vari-
ance of the updated ensemble of the observation is
reduced due to the combination of the information
from the observation.

5) Get the updated ensemble members by shifting the
mean and linearly contracting the deviation of the
ensemble members about the prior ensemble mean:

y i
u � �y i

p 	 yp���u��p 
 yu, i � 1, . . . , K.

�2.9�

In this way, the updated mean and variance of the
ensemble of the observation are exactly yu and �u.
The increment for each ensemble member of the
observation can be obtained by �yi � yu

i 	 yp
i .

6) Compute the prior ensemble variance of the obser-
vation (
 p

y, y) and the prior covariance (
 p
xj,y

) of
yp with each model state variable, xp

j , which is to be
updated. Here, j is the index of model state variables
and

�y,y
p �

1
K 	 1 �

i�1

K

�y i
p 	 yp��y i

p 	 yp�T, �2.10�

�
xj,y

p �
1

K 	 1 �
i�1

K

�x i, j
p 	 x j

p��y i
p 	 yp�T, �2.11�

where

x j
p �

1
K �

i�1

K

x i, j
p . �2.12�

7) Assuming the prior error distribution of the model
state variables is Gaussian, the corrections to the
prior of the model variables can be obtained from
the increments to the prior ensemble of the obser-
vation (�yi) by a linear regression:

�xj,i �
�xj,y

�y,y
�yi, i � 1, . . . , K; j � 1, . . . , M,

�2.13�

where M is the number of model state variables. As
shown in Anderson (2003), the state variables can

be updated sequentially given the observation incre-
ments �yi.

8) The updated ensemble is

x j,i
u � x j,i

p 
 �xj,i, i � 1, . . . , K; j � 1, . . . , M.

�2.14�

It can be seen that the corrections to the model state
variables are proportional to the covariance be-
tween the prior ensemble estimate of the observa-
tion and the prior ensemble of the model variables.

To reduce the noise in the sample covariance esti-
mates for observations with physically remote model
state variables in (2.11), especially when a small en-
semble size is used, a horizontal distance dependent
factor {the Gaspari–Cohn fifth-order polynomial [Gas-
pari and Cohn 1999, their Eq. (4.10)]} multiplies the
forecast covariance 
xj,y

. The half-width of the function
used here is 650 km. When the distance between the
observation and the state variable is larger than 1300
km, the impact of the observation goes to zero. This
localization half-width distance is large enough to span
the area of dependence of an RO refractivity observa-
tion, approximately 300–500 km around the GPS RO
observation perigee locations in the troposphere (Kurs-
inski et al. 1997).

The current version of the WRF ensemble data as-
similation system can assimilate radiosonde observa-
tions, aircraft reports, satellite winds, retrieved tem-
perature and water vapor profiles from satellite radi-
ances, and many kinds of surface observations. GPS
RO refractivity can also be assimilated using both local
and nonlocal observation operators. In this study, WRF
6-h forecasts at 50-km horizontal resolution with 28 ver-
tical levels from the surface to 50 hPa (�20-km alti-
tude) are assimilated with CHAMP refractivity obser-
vations.

One advantage of using the ensemble data assimila-
tion system is that various nonlocal RO observation
operators can be implemented easily without the devel-
opment of tangent linear and adjoint models. Another
important advantage is that time-varying multivariate
forecast error covariance of temperature with water va-
por is included in the assimilation of RO data. The
forecast error of water vapor may be correlated with
that of temperature because of the dynamical and
physical processes involved as well as the deficiencies of
physical parameterizations in the forecast model (see,
e.g., Liu et al. 2007). The forecast error covariances
involving water vapor may also be highly time and
space dependent. Using the information from the flow-
dependent multivariate forecast error “covariance” for
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temperature and water vapor should improve the cor-
rection of the forecast errors in temperature and water
vapor. Our previous study shows that inclusion of these
forecast error correlations in the ensemble data assimi-
lation system significantly reduces the analyses errors
of temperature and water vapor in the assimilation of
idealized RO measurements (Liu et al. 2007).

3. Implementation of the nonlocal quasi-phase
operator

The neutral atmospheric refractivity is defined as

N � �n 	 1� � 106 � 77.6 � P�T 
 3.73 � 105 � e �T2,

where n is the refractive index, P is pressure (hPa), T is
temperature (K), and e is water vapor partial pressure
(hPa) (Kursinski et al. 1997).

For the local RO refractivity operator, the first guess
of temperature, pressure, and water vapor on the WRF
model grid is interpolated linearly in the vertical and
horizontal directions to the RO observations’ locations.
The local refractivity is then calculated from the tem-
perature, pressure, and water vapor.

For the nonlocal quasi-phase operator, a preprocess-
ing step for observations is required that calculates ob-
servation quasi-excess phase using refractivity from ra-
dio occultation observations:

Sobs � �
ray

NRO�r� dl, �3.1�

where r � rc 
 z, rc is the local curvature radius of the
earth, and z is the height above the earth’s surface. The
rays are approximated as straight lines starting from the
observations’ locations along the observed ray direc-
tions and stopping at 15 km above the earth’s surface (a
bit below the WRF model top at 20 km to avoid the
impact of the damped upper boundary of the model).

The next equation presents the nonlocal quasi-phase
operator that calculates quasi phase from the refractiv-
ity of the first guess, where the rays are the same as in
the calculation of phase observations:

Sguess � �
ray

Nguess�x, y, z� dl. �3.2�

A constant step size of 5 km (Sokolovskiy et al. 2005a)
is used in the integrations of (3.1) and (3.2). In (3.1), the
refractivity at an arbitrary point along the rays is cal-
culated from the observation refractivity using a verti-
cal linear interpolation. In (3.2), the first-guess refrac-
tivity at an arbitrary point along the rays is calculated

from the first-guess refractivity field using linear inter-
polations in both vertical and horizontal directions.

The computational cost of the nonlocal operator
along a single ray path at 10 and 2 km above surface is
�0.001 and 0.0018 s of CPU, respectively, on a Linux
cluster of NCAR. The cost of the local one is �0.000 01
s of CPU. The ratio of the cost of nonlocal to local
operator is �100 and �160 at 10 and 2 km above the
surface, respectively. The impact of the computational
cost of the nonlocal operator, however, may be signifi-
cantly reduced if all of other factors in the assimilation
step are considered. For example, the ratio of assimi-
lating using the nonlocal operator to local operator is
1.14 when one RO profile is assimilated with the WRF
forecast given the fact that the ensemble assimilation
system spends significant CPU time on initialization,
input/output, etc.

4. Experimental design

In regions where conventional high-quality data (e.g.,
radiosondes) are sparse, like over the oceans, the im-
pact of GPS RO data is expected to be larger than for
conventional data-dense regions. This may be espe-
cially true in the presence of thick clouds over the
oceans as in the case of winter storms or hurricanes. In
the presence of thick precipitating clouds, satellite ra-
diances can have larger uncertainties. In this study, we
choose to evaluate the nonlocal operator in two differ-
ent situations: in conjunction with dense radiosondes
and with only satellite cloud drift wind observations.
The latter situation serves as an upper bound on the
impact of GPS data. Many additional observation data
types not used here are in fact assimilated in opera-
tional global and regional data analyses systems.

Two sets of experiments are done. The first set in-
cludes the following:

• Experiment I: Assimilate only satellite cloud drift
wind observations.

• Experiment II: Assimilate the same set of satellite
wind observations as in experiment I plus RO refrac-
tivity using the nonlocal operator.

• Experiment III: Same as experiment II, but assimi-
late the RO refractivity using the local refractivity
operator.

The second set includes the following:

• Experiment IV: Assimilate radiosonde observations
including wind, temperature, and specific humidity.
Radiosonde observations within 200 km and �3 h of
an RO observation are withheld for verification.
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• Experiment V: Assimilate the same set of radiosonde
observations as in experiment IV plus RO refractivity
using the nonlocal operator.

• Experiment VI: Same as experiment V but assimilate
the RO refractivity using the local refractivity opera-
tor.

The assimilation experiments are done over a North
American domain where radiosondes are dense and
many nearby radiosondes are available for verification
of the analyses of temperature and water vapor. We
examine the impact of the CHAMP RO refractivity on
WRF analyses at 50-km horizontal resolution during
January 2003.

5. The observations

The radiosonde observations and their error esti-
mates are obtained from the National Centers for En-
vironmental Prediction (NCEP) operational dataset for
its global and regional data assimilation systems. The
radiosondes are mainly available at 0000 and 1200
UTC.

The satellite cloud drift wind observations are ob-
tained from the National Environmental Satellite,
Data, and Information Service (NESDIS) and are
thinned by using only 1 of every 20 raw observations.
After thinning, there are �3500 satellite wind observa-
tions available within the domain daily. The observa-

tion error estimates for the satellite cloud drift winds
used in the NCEP operational data assimilation system
are used here; the errors are significantly larger than
those for the radiosonde winds.

In January 2003, there are 536 CHAMP RO profiles
available over the North American domain (see Fig. 1).
In each assimilation window of 6 h, there are about 17
profiles over the domain. Only the RO observations
that passed the Constellation Observing System for
Meteorology, Ionosphere, and Climate (COSMIC)
Data Analysis and Archive Center (CDAAC) quality
control (Kuo et al. 2004; Rocken et al. 2000) are used;
no additional quality control is applied to the RO ob-
servations. The few RO refractivity observations below
2 km are excluded to avoid relatively larger measure-
ment errors due to the possible existence of superre-
flection in the lower troposphere (see, e.g., Sokolovskiy
2003).

To reduce possible errors associated with aliasing of
small-scale structures of RO refractivity onto larger-
scale vertical structures of WRF model refractivity, the
high-vertical-resolution raw RO data are (boxcar) av-
eraged to the domain-averaged WRF model vertical
levels. The average is done with all of the refractivity
observations that are located between the interfaces of
these model levels. There are nine model levels or re-
fractivity/excess phase values in the troposphere be-
tween 2 and 10 km per profile. These observations are
then assimilated using the nonlocal and local operators.

Observational error estimates for the CHAMP RO
refractivity and excess phase are shown in Fig. 2. The
estimates were obtained for August 2003 using a 45-
km-resolution version of WRF 24-h forecasts and the

FIG. 1. Locations of the CHAMP RO profiles over the North
American domain during January 2003.

FIG. 2. CHAMP RO observation standard deviation of error
estimates for excess phase (solid line) and refractivity (dashed
line).
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CHAMP RO data using the Hollingsworth and Lonn-
berg (1986) method. The estimates include measure-
ment and forward modeling error for WRF forecasts at
45-km resolution.

To evaluate the analyses of the assimilation experi-
ments, radiosondes within 200 km and �3 h of the RO
observations are withheld in the assimilation experi-
ments. A total of 104 collocated radiosondes are avail-
able during the period, and these are distributed across
the North American domain (Fig. 3).

In the experiments, the RO refractivity and satellite
wind observations are assimilated at 0000, 0600, 1200,
and 1800 UTC and the radiosonde observations are
assimilated at 0000 and 1200 UTC. The initial and
boundary ensemble mean conditions are obtained from
the 1 � 1 degree Aviation (AVN) analysis, produced
routinely by NCEP as part of the operational weather
prediction enterprise. A total of 20 ensemble members
are used in this study. The initial (1 January 2003) and
boundary ensembles are generated randomly according
to the forecast error covariance statistics of the WRF
three-dimensional variational data assimilation system
(3DVAR). An alternative way to generate the initial
and boundary ensembles would be to use global en-
semble forecasts, but that is not done here. Since we
excluded the few RO measurements below 2 km, we
only examine the impact of the RO refractivity on the
analyses above 800 hPa.

6. Latitudinal distribution of refractivity gradient
of the first guess

In this section, we examine the refractivity gradient
of the WRF 6-h forecasts in the troposphere. The mag-
nitude of the horizontal gradient of refractivity at any
observation perigee is defined as follows. First, the
horizontal gradients of refractivity at the two sides of
the perigee along the observed ray direction—that is,
the differences between the refractivity at the perigee
and the two points that are 50 km away from the peri-
gee along the two opposite directions of the ray—are
calculated. Then, the magnitudes of the two refractivity
gradients are averaged to represent the magnitude of
the gradient of refractivity at the perigee. Figure 4
shows the latitudinal and height distribution of the
magnitude of the refractivity gradient of the 6-h fore-
cast (ensemble mean) of experiment I, which is a com-
posite at all RO refractivity locations over the domain
during January 2003. The major feature is that the mag-
nitude of the refractivity gradient is much larger in the
lower and middle troposphere and at the low and
middle latitudes. For example, a maximum of the gra-
dient of 2 N-units (50 km)	1 is located at 25°N near 2
km. The gradient is much weaker at 60°N near 2 km,
only �0.6 N-units (50 km)	1.

A similar latitudinal distribution of the horizontal
gradient of refractivity can also be found in the fore-
casts of experiment IV (Fig. 5). The gradient in experi-
ment IV is sharper than the one in experiment I be-
tween 2 and 4 km in altitude. These distributions of the

FIG. 3. Locations of the radiosonde profiles that are within 200
km and �3 h of RO observations during January 2003; the num-
ber indicates the number of times that a radiosonde at this loca-
tion was used for verification of the analyses from the assimilation
experiments.

FIG. 4. Latitudinal and height distribution of the refractivity
gradient [N-units (50 km)	1] of the 6-h forecasts (ensemble mean)
for experiment I at the perigee points of the CHAMP RO loca-
tions, averaged over the North American domain for January
2003.
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refractivity gradient suggest that the use of the nonlocal
operator in the assimilation of RO data may be most
important in the middle and lower troposphere and at
the low and middle latitudes. It is noted that the num-
ber of radio occultation observations is less in the lower
troposphere and at low latitudes and so the results
shown in Figs. 4 and 5 rely on a different sample size.

In the following, we will evaluate the performance of
the nonlocal operator in two separate latitude belts
from 15°–45°N and 45°–75°N.

7. Departures of first guess from observations

In this section, we examine the departures of the first
guess from observations using the nonlocal operator
and local operator. Figure 6 shows the percentage bias
and RMS error relative to the observations of experi-
ment I in the latitudes of 15°–45°N (two outlier radio-
sonde profiles were removed from the statistics). It can
be seen that the bias and RMS error of the quasi phase
in the first guess are much smaller than the refractivity
calculated using the local operator. In the high latitudes
of 45°–75°N, the bias and RMS error of the quasi phase
is also smaller than the refractivity calculated using the
local operator (Fig. 7). For experiment IV, similar re-
sults can also be found with a better fit to GPS RO
observations (see Figs. 8 and 9), which suggests that
experiment IV contains smaller forecast errors than ex-
periment I.

These results suggest that use of the nonlocal opera-
tor may have significantly smaller bias and RMS error
between the first guess and the observations. There-

FIG. 6. (left) The percentage bias and (right) RMS departures of the nonlocal quasi-phase
(solid line) and the local refractivity (dotted line) of the first guess/forecasts of experiment I
from the corresponding observations averaged for the latitudes of 15°–45°N.

FIG. 5. Same as in Fig. 4 but for experiment IV.
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FIG. 7. Same as in Fig. 6 but for the latitudes of 45°–75°N.

FIG. 8. Same as in Fig. 6 but for experiment IV.
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fore, the use of the nonlocal operator may be able to
improve the assimilation of the refractivity, as shown in
the next sections, because most data assimilation sys-
tems assume zero bias of the first guess from observa-
tions. It is noted that the smaller bias and RMS error of
the quasi phase does not indicate that the excess phase
has more useful information than refractivity.

8. Impact of the nonlocal operator in the presence
of only satellite winds

Figure 10 shows the vertical distribution of the mean
and RMS fit of the analysis of temperature to the col-
located radiosondes in experiments I, II, and III, aver-
aged for the latitudes of 15°–45°N. A large cold bias of
�	1.1 K exists at �700 and 400 hPa in the analysis
using satellite winds only. When the RO refractivity
observations are assimilated using the nonlocal opera-
tor (experiment II), the cold bias is reduced to 	0.75
and 	0.85 K, respectively. When the RO refractivity is
assimilated using the local operator, the reduction of
the cold bias is not seen. The RMS error for the analysis
assimilating only satellite winds has a minimum of �2.1
K in the middle troposphere. The RO refractivity as-
similated using the nonlocal operator reduces the error
to �1.5 K. When the local refractivity operator is used

(experiment III), however, the reduction is only �0.25
K, less than half of that for the nonlocal operator.

The vertical distribution of the mean and RMS fit of
the analysis of specific humidity is shown in Fig. 11. The
specific humidity analysis from assimilating only satel-
lite winds has a wet bias in the lower troposphere. The
RO refractivity assimilated using either the nonlocal or
local operators is able to reduce the wet bias by almost
half. The difference between using the nonlocal and
local operator is generally small.

For the high latitudes of 45°–75°N, the vertical dis-
tributions of the mean and RMS fit of the analysis of
temperature are shown in Fig. 12. The relative benefits
of using the nonlocal operator are less evident because
the horizontal variations of the refractivity of the fore-
cast are much weaker than at the lower latitudes (see
Figs. 4 and 5). The analysis of temperature using satel-
lite winds has a cold bias of 0.5 K at 600 hPa. The
assimilation of the RO refractivity using both the non-
local and local operators reduces the bias. At 800 hPa,
the assimilation of the RO refractivity using the nonlo-
cal operator slightly reduces the bias, but the one using
the local operator increases the bias below 700 hPa.
The assimilation of the RO refractivity in concert with
satellite winds also slightly reduces the RMS error of
the analysis of temperature. The performance of the

FIG. 9. Same as in Fig. 7 but for experiment IV.
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FIG. 10. Vertical distribution of (a) mean error and (b) RMS fit of temperature analysis to the collocated
radiosonde temperatures, and (c) the number of verifying radiosonde temperature observations for the assimilation
experiments in the presence of satellite cloud drift wind observations during January 2003. Values are averaged for
the latitudes of 15°–45°N. Solid line is for assimilation of only satellite wind observations, dashed line is for the
satellite wind observations plus the CHAMP RO refractivity using the nonlocal operator, and dotted line is for the
satellite wind observations and the RO refractivity using the local operator.

FIG. 11. Same as in Fig. 10 but for specific humidity.
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nonlocal operator is slightly better than the local op-
erator.

For specific humidity (Fig. 13), the analysis from as-
similating only satellite winds has a wet bias of 0.35 g
kg	1 at 600 hPa. The RO refractivity assimilated using
both the nonlocal and local operators is able to reduce
the wet bias by �0.1 g kg	1. The RO refractivity as-
similated using the two operators also reduces the RMS
error in the lower troposphere from 0.95 to 0.8 g kg	1.
The performance of the nonlocal operator is slightly
better than the local operator in the lower troposphere.

9. Impact of the nonlocal operator in the presence
of radiosondes

Assimilations of the radiosonde observations pro-
duce mean and RMS fits of the analysis of temperature
that are significantly smaller than those from assimilat-
ing only satellite wind observations. As a result, the
impact of the RO data on further improving the analy-
ses of temperature and specific humidity is reduced in
the presence of the radiosonde observations. For the
latitudes of 15°–45°N, the temperature analysis assimi-
lating radiosonde observations has a bias of only 	0.5
K at 700 hPa (Fig. 14). The RO refractivity assimilated
using the nonlocal operator reduces the bias to 	0.4 K.
The nonlocal operator performs slightly better than the
local operator in the lower troposphere. In addition, the

RO refractivity assimilated using the nonlocal operator
reduces the RMS error of the analysis in the lower
troposphere. It can be seen that use of the nonlocal
operator slightly improves the analysis compared to the
use of the local operator.

For specific humidity (Fig. 15), the RO refractivity
assimilated using both nonlocal and local operators is
able to reduce the RMS error of the analysis in the
lower troposphere. The performance of the nonlocal
operator is slightly better than that of the local opera-
tor. For the bias of the analysis, the RO refractivity
assimilated using the local operator has no evident im-
pact on reducing the small bias in the middle and lower
troposphere. The RO refractivity assimilated using the
nonlocal operator has mixed impact on the bias of the
analysis in the middle and lower troposphere.

For the high latitudes of 45°–75°N, the assimilation of
the RO refractivity using both the nonlocal and local
operator has no noticeable impact on reducing the
RMS error of the analysis of temperature in the middle
and lower troposphere (Fig. 16). The assimilation of the
RO refractivity using the nonlocal operator reduces
slightly the bias of the analysis in the lower and middle
troposphere. The assimilation of the RO refractivity
using the local operator does not have noticeable im-
pact on the bias of the analysis.

For specific humidity, the RO data modestly improve
the analysis in the lower troposphere (Fig. 17). The

FIG. 12. Same as in Fig. 10 but for the latitudes of 45°–75°N.
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FIG. 13. Same as in Fig. 12 but for specific humidity.

FIG. 14. Vertical distribution of (a) mean error and (b) RMS fit of temperature analysis to the withheld nearby
radiosonde temperature observations, and (c) the number of the withheld radiosonde temperature observations for
the assimilation experiments in the presence of radiosonde temperature, wind, and specific humidity observations
during January 2003. Results are averaged over latitudes of 15°–45°N. Solid line is for assimilation of only
radiosonde observations, dashed line is for radiosonde observations plus the CHAMP RO refractivity using the
nonlocal operator, and dotted line is for the radiosonde observations and the RO refractivity using the local
operator.

JANUARY 2008 L I U E T A L . 253



analysis from assimilating radiosonde observations has
a wet bias of 0.2 g kg	1 at 700 hPa. The RO refractivity
assimilated using the nonlocal operator reduces the wet
bias to �0.1 g kg	1. In addition, the RO refractivity

assimilated using the nonlocal operator slightly reduces
the RMS error in the lower troposphere. The perfor-
mance of the nonlocal operator is slightly better than
the local operator.

FIG. 16. Same as in Fig. 14 but for the latitudes of 45°–75°N.

FIG. 15. Same as in Fig. 14 but for specific humidity.
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10. Conclusions and discussion

In this study, a nonlocal quasi-phase operator is
evaluated in assimilation of the CHAMP GPS refrac-
tivity using the WRF ensemble data assimilation sys-
tem. Assimilation experiments are done over North
America during January 2003 in two different situa-
tions: in conjunction with dense, high-quality radio-
sonde observations and with only satellite cloud drift
wind observations. Analyses of temperature and spe-
cific humidity with the RO refractivity assimilated using
the nonlocal operator and a local one are verified
against nearby withheld radiosonde observations. It is
shown that use of the nonlocal quasi-phase operator
significantly reduced the bias departure of the first
guess (forecasts) from the CHAMP radio occultation
observations, compared with the local refractivity op-
erator for the North America domain of January 2003.
The CHAMP quasi-phase observations assimilated us-
ing the nonlocal operator reduce significantly the bias
and RMS errors of WRF analyses of temperature and
specific humidity in the troposphere in the presence of
only satellite cloud drift wind observations. On the
other hand, CHAMP refractivity assimilated using the
local operator has less reduction of the errors in the
analyses of temperature and specific humidity, espe-
cially in the middle and lower troposphere at the low
and middle latitudes. In the presence of dense and high-

quality radiosonde observations, the differences be-
tween using the local and nonlocal operators are re-
duced.

It may be concluded that use of the nonlocal RO
quasi-phase operator can significantly improve the as-
similation of RO data in the WRF ensemble assimila-
tion system in the middle and lower troposphere, espe-
cially in regions where conventional high-quality obser-
vations are sparse and satellite winds are the major data
resource. Such regions may include remote land re-
gions, much of the extratropical oceans, and most of the
tropical oceans. It should be noted, however, that the
results obtained in this study might be limited to the
WRF ensemble data assimilation system and may not
be applicable to operational assimilation systems where
many more observation types are assimilated.

We plan to further evaluate the nonlocal operator
over tropical oceans where the horizontal gradient of
refractivity is expected to be larger than for the middle
latitudes because of the existence of abundant water
vapor and small-scale convection. The WRF at a higher
horizontal resolution (�30 km) will be used in the
evaluation of the nonlocal operator. It is expected that
the nonlocal operator may have larger advantages com-
pared to the local operator at the higher resolution. In
addition, the impact of GPS RO data on surface pres-
sure will be examined later with COSMIC data, which
penetrate much deeper into the lower troposphere.

FIG. 17. Same as in Fig. 16 but for specific humidity.
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Over tropical oceans, current global analyses of tem-
perature and water vapor rely heavily on satellite radi-
ances and winds. Significant areas of cloud cover may
exist, especially in the vicinity of tropical storms. The
satellite cloud drift and scatterometer winds may be the
major data resources and the analyses of temperature
and water vapor may therefore have larger uncertainty.
The results obtained here suggest that GPS RO data
might have potential to improve the analyses and fore-
casts of temperature and water vapor over the tropical
oceans, especially in cloudy situations. That study is
under way and will be reported separately soon.
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