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[1] Optimal estimation methods, such as the “maximum a posteriori’’ solution, are
commonly employed for retrieving profiles of atmospheric trace gases from satellite
observations. To complement the information actually contained in the measured
radiances, such methods exploit a priori information describing the gases’ variability
characteristics. We show that in situ surface-based data sets for carbon monoxide (CO)
volume mixing ratio (VMR) indicate that the variability of CO is more accurately modeled
in terms of a “lognormal” probability distribution function (PDF) than a “VMR-normal”
PDF. The VMR-normal PDF is particularly poor at describing CO variability in
unpolluted conditions. We also compare retrievals of carbon monoxide (CO) vertical
profiles based on Measurements of Pollution in the Troposphere (MOPITT) observations
for 1 day using both VMR-normal and lognormal statistical models. Use of the lognormal

model improves retrieval convergence and yields fewer profiles with unphysically
small VMR values. Generally, these results highlight the importance of properly
representing the variability of trace gas concentrations in optimal estimation-based

retrieval algorithms.
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1. Introduction

[2] By themselves, radiance measurements from passive
satellite instruments are not usually sufficient to determine
trace gas atmospheric profiles; additional constraints are
typically required. In retrieval methods based on the “max-
imum a posteriori” (MAP) solution, these external con-
straints are provided by the a priori profile and the a priori
covariance matrix [Rodgers, 2000]. In the Measurements of
Pollution in the Troposphere (MOPITT) version 3 (or
“V3”’) product for carbon monoxide (CO), the state vector
used in the MAP-based retrieval algorithm includes surface
temperature, surface emissivity, and CO volume mixing
ratio (VMR) values at 7 levels from the surface up to
150 mb [Deeter et al., 2003]. To simplify interpretation of
the MOPITT CO product, the V3 retrieval algorithm was
designed to clearly distinguish information contained in the
observations from a priori information. Thus a single
“global” a priori profile and covariance matrix are
employed in V3 retrievals. The V3 a priori profile and
covariance matrix were obtained by analyzing a set of
525 CO profiles drawn from field experiments and fixed
measurement sites around the world.

[3] Both the MOPITT calibrated radiances and CO
retrieved profiles were validated globally using in situ profiles
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measured from aircraft [Deeter et al., 2004a; Emmons et al.,
2004]. Analysis of MOPITT averaging kernels indicated that
V3 retrievals are typically most sensitive to CO in the mid-
troposphere and contain less than two pieces of independent
information [Deeter et al., 2004b]. Nevertheless, the vertical
resolution is sufficient to distinguish CO in the midtroposphere
and upper troposphere, at least in tropical regions [Deeter et
al., 2004b; Edwards et al., 2006]. Sensitivity to surface-level
CO is typically lower than for the midtroposphere because of
low thermal contrast between the Earth’s surface and the
boundary layer. Thus the effects of the assumed a priori are
typically much stronger for retrieved surface-level CO
concentrations than for higher levels.

[4] For simplicity and speed of convergence, MAP-based
retrieval algorithms usually assume Gaussian (“normal”)
probability distribution functions (PDFs) to describe the a
priori variability of the retrieval parameters contained in the
retrieval state vector. In the V3 MOPITT product, CO
concentrations are represented in the state vector in terms
of VMR. The operational retrieval algorithm for the Micro-
wave Limb Sounder (MLS) also employs a VMR-based
state vector [Livesey et al., 2006].

[5s] Alternatively, the state vector in the MAP framework
can be based on values of log(VMR) [Engelen and Stephens,
1999; Rodgers, 2000]; the VMR PDF is then assumed to be
“lognormal.” Like the simple Gaussian PDF, the lognormal
PDF is characterized by two parameters which describe the
peak and width of the distribution. Trace-gas profiles
retrieved from tropospheric emission spectrometer (TES)
observations are currently based on lognormal statistics

1 of 9



D11311

DEETER ET AL.: LOGNORMAL RETRIEVALS OF CO

D11311

Table 1. GMD Surface Stations for Which VMR Histograms are Plotted in Figure 1

Station Name Latitude Longitude Altitude, m Observation Period Number of Observations
American Samoa 14.24°S 170.57°W 42 19882004 2114
Ascension Is. 7.92°S 14.42°W 54 1989-2004 2207
Seychelles 4.67°S 55.17°E 7 1990-2004 1355
Mt. Waliguan 36.29°N 100.90°E 3810 1990-2004 1178
Niwot Ridge 40.05°N 105.58°W 3523 1988-2004 1487
Baltic Sea 55.42°N 17.07°E 28 1992-2004 2044

[Bowman et al., 2006]. Lognormal statistics are often used
to describe physical parameters which exhibit a skewed
frequency distribution. This occurs, for example, when (1)
the retrieved parameter is physically restricted to positive
values and (2) the variability (for example, standard devi-
ation) of the retrieval parameter is comparable to (or even
larger than) the mean value.

[6] Relative to the VMR-normal PDF, the lognormal PDF
decreases more sharply at low VMR and decreases more
gradually at high VMR. Negative VMRs, which are
unphysical, are permissible in the VMR-normal PDF but
are disallowed by the lognormal PDF. As demonstrated in
section 3, these differences produce fundamentally different
constraints in VMR-based and log(VMR)-based retrievals.
Differences are most apparent at very low and very high
VMR. At low VMR values, retrievals based on log(VMR)
are confined to a narrower range than VMR-based retrie-
vals. This results in a stronger a priori constraint for
the log(VMR)-based retrievals. Conversely, at high VMR,
log(VMR)-based retrievals will naturally extend over
a broader range of VMR values compared to VMR-
based retrievals. This yields a weaker constraint for the
log(VMR)-based retrievals. These differences in the under-
lying constraints imply that the relative weighting between
information from the observed radiances and a priori
information should be different in the two schemes.

[7] In the following, we investigate the effects of repre-
senting CO variability in the MOPITT retrieval algorithm in
terms of lognormal statistics. In section 2, arguments are
presented which motivate the use of lognormal statistics in
the MOPITT retrieval algorithm. We find that the lognormal
model approximates statistics of observed in-situ measure-
ments significantly better than the VMR-normal model. In
section 3, we apply both the operational retrieval algorithm
and an adapted lognormal version to one day of MOPITT
observations in order to analyze differences in retrieval
results associated with the use of lognormal statistics.
Conclusions are offered in section 4.

2. The Lognormal Model
2.1. Observed Variability of Surface-Level CO

[8] Previously, studies based on in situ measurements of
urban pollution indicated that pollutant concentrations
(including CO) are well represented by the simple two-
parameter lognormal distribution [Bencala and Seinfeld,
1976]. However, for a retrieval algorithm to be applied
globally, the validity of the assumed PDF should be demon-
strated generally. Within the National Oceanic and Atmo-
spheric Administration (NOAA), the Global Monitoring
Division (GMD, formerly the Climate Monitoring and
Diagnostics Laboratory) conducts an ongoing program to
monitor surface-level ¢ rations of CO (and other trace

gases) at observation sites around the world [Novelli et al.,
1998]. Histograms based on archived data from these sites are
useful for evaluating PDF models for CO concentration.

[o] For defining long-term variability, especially at the
extreme values of observed VMR, data sets with records
lasting at least 10 years and including at least a thousand
discrete observations are especially valuable. Below, VMR
histograms are analyzed for the six GMD surface stations
listed in Table 1. The list includes both oceanic and
continental surface sites and sites in both the Northern
and Southern Hemispheres. The list includes sites mainly
affected by biomass burning (for example, Ascension Island
[Gregory et al., 1996; Edwards et al., 2006]) and sites
mainly affected by fossil fuel consumption (for example, the
Baltic Sea [Karisdottir et al., 2000]). With respect to the
general shape of the VMR histograms, the VMR statistics
for these sites represent the majority of GMD surface
stations with continuous records of a decade or more.

[10] VMR histograms for the locations and observation
periods listed in Table 1 are shown in Figure 1. Histograms
are shown for both VMR (using bins of fixed AVMR) and
log(VMR) (using bins of fixed Alog(VMR)). VMR and
log(VMR) histograms are shown in blue and red, respec-
tively. (Total areas for the VMR- and log(VMR)-based
histograms are unequal because their bin sizes are neces-
sarily unequal.) Within the same figure are shown normal-
ized VMR and log(VMR) Gaussian functions (dashed
curves) based on the mean and variance of the VMR and
log(VMR) data.

[11] The similarity of the fitted Gaussian curves to their
corresponding histograms indicates the validity of the PDF
models. In all of the VMR histograms (blue) shown in
Figure 1, the underlying PDF is clearly asymmetric. Rela-
tive to the peak of the histogram, the frequency of low CO
values decreases much more sharply than the frequency of
high CO values. This asymmetry characterizes VMR histo-
grams for the vast majority of GMD surface stations.
Consequently, the Gaussian fits to the VMR histogram
(i.e., the dashed blue curves) tend to decrease too slowly
toward low CO VMR values and too rapidly toward high
CO VMR values. Conversely, in terms of log(VMR), the
lognormal fits (the dashed red curves) reasonably approx-
imate the actual histograms at both the low and high ends of
the range of VMR values. When considered with previous
findings [Bencala and Seinfeld, 1976], these results indicate
that the lognormal distribution describes the variability of
tropospheric CO over widely varying atmospheric condi-
tions in diverse geographical settings. In particular, for
describing the variability of CO in relatively unpolluted
conditions (for example, VMRs less than 70—80 ppbv), the
lognormal model is clearly superior to the VMR-normal
model.
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Histograms of CO VMR measurements at GMD monitoring sites listed in Table 1. Blue plots

show histograms and Gaussian fits (dashed) for VMR statistics. Red plots show corresponding results
based on log(VMR) statistics. Areas of VMR and log(VMR) histograms are unequal because of unequal
bin sizes. For all sites, the log(VMR) Gaussian fit (in red) approximates the actual observations much

better than the VMR Gaussian fit (in blue).

[12] Physically, the asymmetry in the VMR histograms
might be linked with characteristics of CO sources. For
example, methane oxidation produces a global ‘“back-
ground” concentration of approximately 40—50 ppbv [e.g.,
Hauglustaine et al., 1998]. Since methane is relatively well
mixed in the troposphere, this source of CO exhibits

relatively weak temporal and spatial variability. In contrast,
surface-based emissions of CO (such as biomass burning,
fossil fuel consumption, etc.) are characterized by high
degrees of temporal and spatial variability. Thus CO vari-
ability should be small in relatively clean conditions (where
methane oxidation dominates) and large in relatively pol-

30f9



D11311

luted conditions (where surface-based emissions dominate).
The asymmetry in the VMR histograms might also be
linked with wind speed statistics [Bencala and Seinfeld,
1976].

2.2. Limitations of the Mopitt V3 Product

[13] The MOPITT global a priori used in V3 retrieval
processing includes a surface-level CO VMR of 119 ppbv
and a surface-level standard deviation (calculated as the
square-root of the diagonal element of the covariance
matrix) of 94 ppbv. Under the assumption of a VMR-normal
PDF (as in V3), these values would suggest that a VMR of
25 ppbv is entirely realistic, since such a value would fall
only one standard deviation below the mean (a priori) value.
In fact, however, such low values are never actually
observed in in situ data sets. The lowest CO VMR values
generally observed in the troposphere are in the range of
40—50 ppbv and are determined by methane oxidation. As
described above, this contradiction is a natural consequence
of the assumption that CO VMR variability obeys a normal
(Gaussian) PDF; this PDF fails to properly represent the
sharp dropoff in observed VMRs at the low end. With
respect to the MOPITT product, this problem allows
retrieved VMR values to fall below physically realistic limits.
Conversely, the same problem might unnecessarily suppress
very high VMR values, for which there is no well-defined
physical maximum.

[14] In the MOPITT retrieval algorithm, the retrieved
profile is derived iteratively [Deeter et al., 2003]. Due to
the nonlinear nature of the radiative transfer model,
several iterations (typically three to five) are required
before the profile for a particular observation converges.
After each iteration, the new profile is fed to the
operational forward radiative transfer model [Edwards et
al., 1999] to calculate new theoretical radiances. This
forward model requires that the input CO profile be
consistent with the “training-set” profiles used in its
development (which, like the a priori, are based on in
situ data sets). Model-calculated radiances for profiles
outside the envelope of training-set profiles would be
characterized by unacceptably large radiance errors.
Therefore if a profile containing unphysically small (or
large) CO VMR values is fed to the model, the retrieval
processing for that observation will cease. We refer to
such retrievals as “unconverged.” Thus if VMR variabi-
lity is substantially overestimated (as described in the
preceding paragraph), a natural consequence would be a
significant number of unconverged retrievals. In fact,
up to about 10% of MOPITT retrievals fail in this
manner in particularly unpolluted regions. As described
in section 3.2.3, this effect can effectively bias ensembles
of retrieved profiles.

2.3. Log(VMR)-Based Weighting Functions

[15] In the MOPITT retrieval algorithm, expressing the
CO profile in the state vector in terms of log(VMR) rather
than VMR will modify fundamental properties of the
MOPITT weighting functions and, by association, the
MOPITT averaging kernels. For MAP-based retrieval algo-
rithms, the relationship between the retrieved profile x4, the
true profile xu., and a priori profile x, can be expressed
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through the averaging kernel matrix 4 [Rodgers, 2000].
Specifically,

Xty R Axue + (I — A)x, (1)

where / is the identity matrix. Thus 4 defines the relative
weights of the true profile and a priori profile in the
retrieved profile. 4 is dependent on the radiance error
covariance matrix C,, a priori covariance matrix Cy, and
weighting function matrix K through the relation

A= (K"C;'K+c) KTC K 2)
Ultimately, therefore, the relative weight of the true profile
in the retrieved profile depends strongly on K. The
weighting function matrix K quantifies the sensitivity of
the observed radiances to perturbations in each element of
the state vector, i.e.,

OR;
Ky = o (3)

where R; is the ith element of the measurement vector and x;
is the jth element of the state vector.

[16] In MOPITT V3 retrievals, K"* is mathematically
defined as the radiative sensitivity to absolute VMR
changes (for example, in units of parts per billion by
volume). Thus

V3 IR

o) Y

In the log(VMR) retrieval scheme, however, K-°¢ quantifies
the radiative response to perturbations in log(VMR), i.e.,
fractionally based perturbations. In this case,

Log OR; -~ V3
Kij - a(loglo (VMRj)) - (10g10 6’) VMR.IK[/ (5)
This relationship between K“°¢ and K’ suggests that
fundamental differences should be expected between VMR-
based and log(VMR)-based retrievals. Specifically, because
of the proportionality of K¢ and VMR, log(VMR)-based
retrievals should be characterized by weighting functions
which increase in magnitude along with increasing VMR.
As K increases or decreases, equation (2) dictates that
A4 must also increase or decrease. For example, as |K]
approaches 0, so does A. As A decreases, so does the
degrees of freedom for signal (DFS), which is an index for
information content [Rodgers, 2000; Deeter et al., 2004b].
DFS is simply the trace of the averaging kernel matrix A.

[17] This effect may be demonstrated through numerical
simulations using the MOPITT operational forward radia-
tive transfer model [Edwards et al., 1999]. Calculated
weighting functions for the MOPITT Channel 1 Difference
(“1D”) signal for VMR-based and log(VMR)-based state
vectors are compared in the two panels in Figure 2. In each
panel, weighting functions are shown for four “base” CO
profiles produced by applying one of four profile scaling
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Figure 2. Comparison of normalized weighting functions
for MOPITT 1D signal for state vectors based on CO
VMR (top panel) and log(VMR) (bottom panel). Response
of weighting function to increasing CO concentration
(as produced through a profile scaling factor between 0.5
and 2.0) indicates opposite trends for VMR-based and
log(VMR)-based state vectors. (Actual weighting functions
are negative, normalized weighting functions do not
indicate this.)

factors (0.5, 1.0, 1.5, and 2.0) to the global a priori profile
used in V3 processing. Weighting functions in each panel
were normalized to the peak value for the a priori profile
weighting function (scaling factor of 1.0). Normalizing the
weighting functions this way results in strictly positive
values; the actual weighting functions K are negative.

[18] For the VMR-based weighting functions shown in
Figure 2a, higher concentrations of CO decrease |K|. This
decrease indicates the asymptotic behavior of the depen-
dence of thermal channel radiances on CO concentration; as
CO concentrations increase without bound, [K| must
approach 0. In contrast, the log(VMR) weighting functions
shown in Figure 2b increase with increasing CO concen-
tration as indicated by equation (5). These results suggest
that log(VMR)-based retrievals should yield averaging
kernels which tend to be smaller in regions of low CO
concentrations, and larger in regions of high CO concen-
trations. These trends will apply to DFS also, since DFS is
simply the trace of 4. Therefore the retrieval information
content (as indicated by the DFS) should generally be
different in VMR-based and log(VMR)-based retrievals.
Physically, however, this difference is associated with the
different underlying constraints associated with the assumed
PDF (as described in section 1) and is not related to the
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Table 2. A Priori Mean Profile Based on log(VMR), Base 10

Surface 850mb 700 mb 500 mb 350 mb 250 mb 150 mb
—7.0115 —7.0438 —7.0668 —7.0892 —7.0931 —7.1301 —7.2445

sensitivity of the radiances to absolute changes in CO
concentration.

3. Retrieval Comparisons
3.1. Implementation

[19] Differences between VMR-based and log(VMR)-
based retrievals were analyzed after processing one day of
MOPITT observations with both the V3 algorithm and an
adapted algorithm based on log(VMR) statistics. The
selected day, 18 March 2001, was chosen arbitrarily, but
exhibits features (for example, large hemispheric differences
in zonal-mean CO) commonly observed in MOPITT
retrievals. Details of the MOPITT V3 retrieval algorithm
were described previously [Deeter et al., 2003]. Several
modifications were made to that algorithm to enable the use
of lognormal statistics. First, the global a priori profile x,
and a priori covariance matrix Cy used in V3 were recalcu-
lated after converting all in situ profile data from profiles of
VMR to profiles of log(VMR), base 10. (Base 10 loga-
rithms were used because they can be more readily inter-
preted than natural logarithms; for example, a log(VMR)
value of —7.0 corresponds exactly to a VMR value of 100
ppbv. Physically, the choice of logarithm base is irrelevant.)
The resulting “global” log(VMR) a priori profile and a
priori covariance matrix are listed in Tables 2 and 3. In
addition, all references to the MOPITT state vector x in the
retrieval code were converted from VMR to log(VMR).

3.2. Potential Systematic Retrieval Differences

[20] A variety of effects are likely to contribute to syste-
matic differences between VMR-based and log(VMR)-based
retrieval results. These differences should be largest where
the influence of a priori on the retrieved profile is greatest.
Thus VMR-based and log(VMR)-based retrievals should
exhibit the closest agreement in the middle-troposphere grid
levels (for example, 500 and 700 mb), and should exhibit the
largest differences at the surface. At least four distinct effects
might contribute to systematic differences between VMR-
and log(VMR)-based retrievals.

3.2.1. The A Priori Profile Effect

[21] First, as indicated by equation (1), retrieval differ-
ences will result directly from the different a priori profiles
X, in the two methods. For example, at the surface, the
VMR-based a priori value is 119 ppbv [Deeter et al., 2003],
whereas the log(VMR)-based a priori value corresponds to a

Table 3. A Priori Covariance Matrix C, Based on log(VMR),
Base 10°

Surface 850 mb 700 mb 500 mb 350 mb 250 mb 150 mb
Surface 0.0685 0.0508 0.0349 0.0224 0.0185 0.0165 0.0139
850 mb 0.0505 0.0362 0.0234 0.0187 0.0160 0.0138
700 mb 0.0344 0.0208 0.0167 0.0129 0.0101
500 mb 0.0199 0.0149 0.0101 0.0067
350 mb 0.0159 0.0118 0.0091
250 mb 0.0135 0.0124
150 mb 0.0173

“Elements below matrix diagonal are not shown, since C, is symmetric.
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VMR value of 97 ppbv. This effect will tend to produce
log(VMR)-based retrievals with smaller VMR values
compared to the V3 product. The magnitude of this effect
depends on the weighting of the a priori profile in the
retrieved profile [as defined in equation (1)]. Differences
associated with this effect should be most evident in
situations where a priori influence is particularly strong,
such as nighttime scenes over land [Deeter et al., 2003].
As demonstrated in section 3.3, this effect can be
quantified without interference from the other three
effects described immediately below. Specifically, VMR-
based and log(VMR)-based retrieval results may be
obtained using the same a priori profile (for example,
the log(VMR)-based a priori profile) and compared.
3.2.2. The PDF Shape Effect

[22] Second, the fundamentally different shapes of the
VMR-normal PDF and lognormal PDF produce different
effects depending on the context. In very clean regions,
VMR-based retrievals extend to unphysically small VMR
values, as noted above. In the log(VMR)-based method, these
same retrievals should shift to higher CO concentrations,
thereby raising the mean retrieved value. Likewise, in regions
of very high CO concentrations, the lognormal PDF decays
slower than the VMR-normal PDF, potentially increasing the
mean VMR in those regions as well. Regions with moderate
CO concentrations should not change as significantly.
3.2.3. The Convergence Effect

[23] Third, in especially clean regions, a small but sig-
nificant fraction (usually less than 10%) of V3 retrievals
fails when the profile falls outside of boundaries of mini-
mum physical VMR imposed by the operational forward
model (as described in section 2.2). In log(VMR)-based
retrievals, these observations are much more likely to result
in converged retrievals but will probably produce VMR
values well below the local mean value. The absence of
these low-VMR retrievals in the VMR-based product may
therefore act as a source of positive bias which is eliminated
in log(VMR)-based retrievals.

3.2.4. The DFS Effect

[24] Finally, as described in section 2.3, differences in the
underlying constraint associated with the assumed PDF lead
to different dependences of DFS on VMR for VMR-based
and log(VMR)-based retrieval methods. In particularly
clean regions, this effect should be manifested as a reduc-
tion in DFS (compared to the V3 product). Conversely, in
regions of relatively high CO, the same effect could produce
log(VMR)-based retrievals with apparently higher DFS
values. As DFS increases, retrievals are less constrained
by the a priori, and relatively more sensitive to the true CO
profile.

[25] Depending on the relative magnitudes of these four
effects, log(VMR)-based retrievals could either be system-
atically smaller or larger than corresponding VMR-based
retrievals. As indicated by DFS, information content could
also be affected. These effects have been quantitatively
studied both globally and regionally after processing
one day of MOPITT data with two versions of the retrieval
algorithm.

3.3. Zonal-Mean Comparisons

[26] Zonal-mean VMR values calculated for 10°-wide
latitudinal bins for 1 rch 2001 are compared in
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Figure 3. Comparisons of zonal-mean retrieval results for
one day (18 March 2001). Results for the standard VMR-
based algorithm are shown in blue. Results produced by the
log(VMR)-based algorithm with the log(VMR)-based a
priori profile are plotted in green. Results for the log(VMR)-
based algorithm with the VMR-based a priori profile are
plotted in red. See text in section 3.3.

Figure 3. Retrieval results over both ocean and land were
included. For clarity, only results for the surface, 700 and
350 mb levels are plotted. Results are shown for (1) the V3
product (VMR-based algorithm with the VMR-based a
priori profile, shown in blue), (2) the log(VMR)-based
algorithm with the V3 a priori profile (red), and (3) the
log(VMR) algorithm with the log(VMR)-based a priori
profile (green). For log(VMR)-based results presented in
both this section and the following section, means were
calculated in “log-space,” and then converted to VMR.
Differences between the three products are much larger for
the surface level VMR than for the two higher levels for two
reasons. First, because the MOPITT weighting functions are
often weaker near the surface than at higher levels, the
influence of a priori is generally larger at the surface than at
either of the other two levels. Second, as indicated by both
the VMR-based a priori covariance matrix (listed in the
work of Deeter et al. [2003]) and the log(VMR)-based a
priori covariance matrix (listed in Table 3), a priori variance
values peak sharply at the surface. Generally, as a priori
variance values increase, so does the relative weight of the a
priori in the retrieved profile.

[27] Comparing surface-level zonal means for the V3
product (blue) and results based on the log(VMR) algorithm
and V3 a priori profile (red) in Figure 3 is useful because
these retrievals share the same a priori profile. Any differ-
ences in these retrievals should therefore be the result of the
effects described in sections 3.2.2, 3.2.3, and 3.2.4. Surface-
level zonal means for these two are typically within about
10 ppbv, except in SH midlatitudes. In the NH, the slightly
larger zonal mean values produced by the log(VMR)-based
retrievals are consistent with the effects described in sec-
tions 3.2.2 and 3.2.4. In relatively polluted conditions, both
the PDF shape effect and increased DFS values should yield
larger retrieved VMR values in the log(VMR)-based algo-
rithm. In SH midlatitudes, the smaller surface-level zonal

6 of 9



D11311

100 ' ' '

(a) VMR-based

)

E

[0

5

)]

1]

j

o

1000 :
0 50 100 150 200
Retrieved CO VMR (ppbv)
100 ' ' '

(c) log(VMR)-based

o)

E :

o N = 2093

=]

)]

%]

<t

o

1000

0 50 100 150 200
Retrieved CO VMR (ppbv)

DEETER ET AL.: LOGNORMAL RETRIEVALS OF CO

D11311
100 : : :
(b) DFS =1.525
+ 350 mb
g O 700 mb
° <& Surface
5
[)]
(2]
o
o
1000 ! s
-0.2 0.0 0.2 0.4 0.6
Mean CO Averaging Kernels
100 : : :
(d) DFS = 1.247
=)
E
o
>
[)]
(2]
o
o
1000 L .
-0.2 0.0 0.2 0.4 0.6

Mean CO Averaging Kernels

Figure 4. VMR-based daytime retrieved profiles and mean averaging kernels for Southern Hemisphere
oceans (between 50°S and 40°S) for 18 March 2001. (a) Top left panel and (c¢) bottom left panel show all
retrieved profiles (in grey) for operational (VMR-based) and log(VMR)-based retrievals, respectively.
Mean and standard deviation values at each level are indicated by black line and error bars. (b) Top right
panel and (d) bottom right panel show mean averaging kernels for same region for retrieved VMR, and
retrieved log(VMR), respectively. Averaging kernels are shown for surface (diamonds), 700 mb
(squares), and 350 mb (plus symbol). “N” and “DFS” refer to the total number of retrievals and the

mean degrees of freedom for signal, respectively.

means for the log(VMR)-based retrievals are consistent with
increased retrieval convergence as described in section
3.2.3. Evidently, the convergence effect dominates the
PDF shape effect and the DFS effect which should both
yield higher retrieved VMR in log(VMR)-based retrievals in
unpolluted conditions.

[28] The effect of the a priori profile described in section
3.2.1 is demonstrated in Figure 3 by comparing zonal means
for the log(VMR)-based algorithm (green) and log(VMR)-
based algorithm with V3 a priori profile (red). At the
surface, the smaller VMR associated with the log(VMR)-
based a priori profile results in zonal means smaller by
about 10 to 25 ppbv. Zonal mean differences associated
with the a priori profile appear to scale with the zonal mean
VMR. Fractionally, the smaller VMR values associated with
the log(VMR)-based a priori profile result in surface level
zonal means smaller by about 15%. The magnitude of these
differences is roughly comparable to the difference in the

surface-level VMRs indicated by the V3 and log(VMR)-
based a priori profiles (22 ppbv).

3.4. Regional Comparisons

[29] As observed in Figure 1, differences between VMR-
based and log(VMR)-based PDFs are most apparent at the
extremes of CO VMR. Similarly, differences between
retrievals based on VMR and log(VMR) state vectors
should be most apparent in especially clean regions and
polluted regions. Comparisons of the retrieval results, both
in terms of the retrieved profiles and associated averaging
kernels were analyzed for both one typically clean region
and one typically polluted region.

[30] To evaluate retrieval differences in particularly clean
conditions, all daytime oceanic retrievals for 18 March 2001
were extracted between 40°S and 50°S. Retrieved profiles
and mean averaging kernels for the VMR-based and
log(VMR)-based algorithms are shown in Figure 4.
Retrieved profiles (plotted as dotted grey lines), mean
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Figure 5. VMR-based and log(VMR)-based daytime retrieved profiles and mean averaging kernels for
E. China (between 25°N, 35°N, 110°E, and 120°E) for 18 March 2001. See caption of Figure 4.

profiles (solid black lines), and standard deviations are
plotted in Figures 4a and 4c. Mean averaging kernels for
the surface (diamonds), 700 mb (squares), and 350 mb (plus
symbols) levels are plotted in Figures 4b and 4d. The total
number of converged retrievals N and mean DFS values are
also indicated in the figures.

[31] For the selected region in the Southern Hemisphere,
the retrieval yields (i.e., convergence rates) for the VMR-
based and log(VMR)-based algorithms are 89.0 and 99.2%,
respectively. Moreover, the fraction of unphysical con-
verged retrievals (defined by the fraction of converged
retrievals exhibiting a minimum VMR in the lower tropo-
sphere of less than 40 ppbv) for the two algorithms are 16.5
and 7.7%, respectively. The higher yield and lower fraction
of unphysical retrieved profiles for the log(VMR)-based
algorithm are both the result of better representation of CO
variability in clean regions, as predicted in section 2.2.

[32] The mean surface-level VMR for the log(VMR)-
based retrievals (60 ppbv) is substantially smaller than for
the corresponding VMR-based retrievals (75 ppbv). As
indicated by the results in section 3.3, both the higher
convergence rate for the log(VMR)-based algorithm and
the difference in a priori profiles contribute to this observed
difference. Differences in retrieval statistics for the levels

above 500 mb are substantially smaller than for the lower
levels. For the lower levels, log(VMR)-based retrievals
indicate weaker vertical gradients compared to VMR-based
retrievals. This more accurately depicts observed vertical gra-
dients in unpolluted SH oceanic regions [e.g., Pougatchev
et al., 1999]. The difference in DFS values supports the
prediction in section 2.3 that log(VMR)-based retrievals
should exhibit weaker averaging kernels in relatively clean
regions compared to VMR-based retrievals.

[33] To compare retrieval results in particularly polluted
conditions, all daytime retrievals were extracted for a region
of eastern China bounded by 25°N, 35°N, 110°E, and
120°E. For this scene, retrieval yields for both algorithms
exceed 99%. Neither algorithm produced significant numb-
ers of unphysical converged retrievals. Retrieved profiles
and mean averaging kernels for this subset are compared in
Figure 5. Results for both algorithms clearly indicate the
sharp vertical gradient in VMR in the lower troposphere
which is typical for this region [e.g., Wang et al., 2004]. For
the surface level, mean VMR and variability are both
substantially larger for log(VMR)-based retrievals. In con-
trast to the results for the SH oceans, mean DFS in this
region is slightly higher for the log(VMR)-based retrievals
than for the VMR-based retrievals. This again supports the
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idea that log(VMR)-based averaging kernels depend on the
VMR, as discussed in section 2.3.

4. Conclusions

[34] Long-term observations in diverse settings indicate
that the lognormal model better represents the variability
of tropospheric CO than the VMR-normal model. Such an
analysis of in situ observations is useful for deciding how
to best represent trace gas concentrations in optimal
estimation-based retrieval algorithms. In these algorithms,
VMR-based and log(VMR)-based state vectors imply
fundamentally different a priori constraints and can lead
to retrievals with substantially different characteristics (for
example, DFS). Benefits of the log(VMR)-based model for
CO profile retrievals were verified in a comparison of
VMR-based and log(VMR)-based algorithms applied to
one day of MOPITT observations. In relatively unpolluted
regions, the comparison indicated higher retrieval conver-
gence for the log(VMR)-based algorithm and fewer con-
verged retrievals with unphysically small VMR values.

[35] Even greater benefits are anticipated if the lognormal
model is applied in parallel with other algorithm enhance-
ments. For example, future MOPITT products may exploit
spatially and/or temporally variable a priori profiles instead
of the “global” a priori profile used in the V3 product.
Consequently, retrieved profiles will probably exhibit great-
er variability than in the V3 product. In regions of low
VMR (as indicated by the a priori profiles), the convergence
problems associated with VMR-based retrievals (discussed
in section 2.2) would probably be exacerbated. In contrast,
the convergence of log(VMR)-based retrievals (which is
greater than 99% when applied with the V3 uniform a priori
profile) appears to be much less sensitive to the VMR.

[36] Future MOPITT products may also exploit larger
subsets of the observed MOPITT radiances in order to
increase retrieval information content. (In the V3 product,
radiance bias problems prevented the incorporation of all
MOPITT channels into the retrieval product [Deeter et al.,
2004a].) As the relative weight of information from the
radiances in the retrieved profile increases, the relative
weight of the a priori profile in the retrieval decreases. This
enhancement, like variable a priori, will tend to increase
retrieval variability. Again, the benefits of lognormal statis-
tics should become more evident as the variability of the
retrievals increases.
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