The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models

A. M. Aghedo,1 K. W. Bowman,1 H. M. Worden,2 S. S. Kulawik,1 D. T. Shindell,3 J. F. Lamarque,2 G. Faluvegi,3 M. Parrington,4,5 D. B. A. Jones,4 and S. Rast6

Received 23 March 2010; revised 5 October 2010; accepted 3 November 2010; published 13 January 2011.

[1] We evaluate the instantaneous radiative forcing (IRF) of tropospheric ozone predicted by four state-of-the-art global chemistry climate models (AM2-Chem, CAM-Chem, ECHAM5-MOZ, and GISS-PUCCINI) against ozone distribution observed from the NASA Tropospheric Emission Spectrometer (TES) during August 2006. The IRF is computed through the application of an observationally constrained instantaneous radiative forcing kernels (IRFK) to the difference between TES and model-predicted ozone. The IRFK represent the sensitivity of outgoing longwave radiation to the vertical and spatial distribution of ozone under all-sky condition. Through this technique, we find total tropospheric IRF biases from −0.4 to +0.7 W/m² over large regions within the tropics and midlatitudes, due to ozone differences over the region in the lower and middle troposphere, enhanced by persistent bias in the upper troposphere-lower stratospheric region. The zonal mean biases also range from −30 to +50 mW/m² for the models. However, the ensemble mean total tropospheric IRF bias is less than 0.2 W/m² within the entire troposphere.

1. Introduction

[2] Tropospheric ozone is important to both atmospheric chemistry and climate through its role as a primary oxidant, air pollutant and as a greenhouse gas. Ozone in the troposphere is produced by photochemical oxidation of its precursors, namely carbon monoxide (CO), methane (CH₄) and nonmethane hydrocarbons (NMHC), in the presence of nitrogen oxides (NOₓ = NO + NO₂). Tropospheric ozone concentration is also modulated by the downward transport from the stratosphere [e.g., Wang et al., 1998]. Since the preindustrial time, there has been a large increase in anthropogenic emissions of ozone precursors, leading to an increase in tropospheric ozone concentration worldwide [e.g., Volz and Kley, 1988; Marenco et al., 1994; Wang and Jacob, 1998]. Based on the multimodel median, the radiative forcing of anthropogenically produced tropospheric ozone presented in the fourth assessment report of the IPCC, Climate Change 2007 [Forster et al., 2007] is 0.35 W/m² (with a spread of between 0.25 and 0.65 W/m²), making the greenhouse effect of tropospheric ozone the third largest, following carbon dioxide and methane.

[3] The traditional way for calculating the radiative forcing of tropospheric ozone from models follows two steps: the first step is to calculate the change in ozone concentration due to changes in ozone precursor emissions and stratosphere-troposphere exchange. This is straightforward in chemical transport models (CTMs) and chemistry climate models, because they accept as input bottom-up emissions of ozone precursors for preindustrial (usually taken as year 1850s) and present day (usually year 2000s) in separate simulations to calculate the respective tropospheric ozone concentrations. There are, however, large uncertainties in emissions of ozone precursors for preindustrial conditions [Mickley et al., 2001]. The second step is to calculate the radiative forcing due to the change in present-day ozone relative to the preindustrial era by using a radiative transfer model (RTM). Two popular methods exist for the radiative forcing calculation within a RTM. The first method follows the definition of Ramaswamy et al. [2001], which allows the stratospheric temperature to readjust to equilibrium following radiative perturbation, while the second method is called the instantaneous radiative forcing (IRF), which calculates the net flux, either at the tropopause or at the top of the atmosphere (TOA), without allowing stratospheric temperature to adjust. In addition to the uncertainty in the emissions, there are additional uncertainties associated with...
the RTM used in the radiative forcing calculation [e.g., Gauss et al., 2006], and the definition of the tropopause adopted in models (e.g., “flat tropopause” set at 100, 150 or 200 hPa, “zonally invariant and linear with latitude tropopause,” as used by Hansen et al. [1997] and Naik et al. [2005], “chemical tropopause” using 150 ppbv ozone level, and the thermal tropopause which follows the definition of the World Meteorological Organization [1957]). In general, the difference in the tropospheric ozone IRF forcing calculated at the tropopause is anywhere between 10 and 22% larger than the stratospheric adjusted forcing [Haywood et al., 1998; Gauss et al., 2006; Forster et al., 2007], depending on the model. Using either of the radiative forcing methods, the difference of the total forcing (shortwave and longwave) generated by the present-day and preindustrial ozone gives the radiative forcing of tropospheric ozone since the preindustrial era [e.g., Berntsen et al., 2000; Hauglustaine and Brasseur, 2001; Mickley et al., 2001; Shindell et al., 2003; Gauss et al., 2006].

4 The estimates of tropospheric ozone radiative forcing reported in the IPCC assessment reports are calculated as described above and have only indirectly benefited from remotely sensed observations of tropospheric ozone, which have become available in the last three decades [Fishman et al., 2008, and references therein]. Recently, Worden et al. [2008] used the reduction in clear-sky outgoing longwave radiation (OLR) due to ozone, directly observed from Tropospheric Emission Spectrometer (TES) to estimate the greenhouse effect of tropospheric ozone over the tropical and midlatitudes ocean in 2006. Another less direct method based on combining several satellite products and assimilated meteorology to derive an estimate of the net change in radiance at the tropopause produced by tropospheric ozone was also presented by Joiner et al. [2009].

5 The accurate estimation of tropospheric ozone radiative forcing is contingent on the ability of models to simulate the spatial and vertical distribution of ozone within the entire troposphere [Lacis et al., 1990]. This study uses spectrally resolved OLR sensitivity from TES under all-sky condition (which we referred to as instantaneous radiative forcing kernels, IRFK [H. M. Worden et al., Observed instantaneous radiative kernels for tropospheric ozone from the NASA Aura Tropospheric Emission Spectrometer (TES), submitted to Journal of Geophysical Research, 2010]), ozone data retrieved from TES, and the ozone concentrations from four global chemistry climate models to derive the vertically resolved instantaneous radiative forcing bias of tropospheric ozone in August 2006. The observationally constrained IRFK are computed from the sensitivity of the top of the atmosphere radiances to ozone vertical distribution, which are called Jacobians, as a part of the ozone retrieval process for TES [Clough et al., 2006]. The IRFK present a new and consistent observationally based method for evaluating the instantaneous radiative impact of ozone from chemistry climate models. This approach is similar to the definition and application of the radiative kernels by Soden et al. [2008], but is directly constrained by satellite measurements. The instantaneous radiative forcing derived by applying TES IRFK is different from the tropospheric ozone radiative forcing presented in the IPCC [Forster et al., 2007], which includes both shortwave and longwave forcing of changes in tropospheric ozone due to anthropogenic emissions from preindustrial to present day. Our definition is consistent with the fundamental definition of radiative forcing which calculates the change in the radiative fluxes at the top of the atmosphere [e.g., Ramanathan et al., 1989].

6 This paper shows the potential of global satellite observations and observationally derived IRFK to quantify the impact of discrepancies in climate model-predicted ozone on instantaneous radiative forcing. A brief description of each model is provided in section 2. In section 3, we discuss TES data and observation operators and how they are applied to model predicitions in order to provide a consistent comparison between TES and each of the models. Also in section 3, we present the derivation of the IRFK. In section 4, we evaluate the models tropospheric ozone against TES. The instantaneous radiative forcing is presented in section 5. The conclusions and summary are in section 6.

2. Model Descriptions

7 This study employs four global chemistry climate models (CCM) to simulate the ozone concentration of August 2006. The models include AM2-Chem, CAM-Chem, ECHAM5-MOZ and GISS-PUCCINI. Each of the models is briefly described below. We decided that all modeling groups should use their own emissions inventories because these emissions have been tested for the models. However, in order to capture the dynamics and the synoptic features of year 2006, the simulated meteorology of each model was constrained by prescribed assimilated analysis data, except the CAM-Chem model, which uses prescribed sea surface temperatures and sea ice fields from the Hadley Centre [Rayner et al., 2003]. Table 1 provides the summary of model configurations.

2.1. The AM2-Chem Model

8 The AM2-Chem model contains the general circulation model AM2 [GFDL GAMDT, 2003] with reduced tropospheric chemistry of MOZART-2 chemical transport model [Horowitz et al., 2003]. The AM2-Chem has only tropospheric chemistry. The model has a horizontal resolution of 2° latitude by 2.5° longitude, and 24 vertical levels from the surface to approximately 3 hPa. The model dynamics was constrained by nudging to reanalysis data [Kalnay et al., 1996] from the National Centers for Environmental Prediction (NCEP).

9 The model tropospheric chemistry consists of ozone-NOx-CO-hydrocarbon, and sulfate and carbonaceous aero- sols. The chemical reactions involving isoprene oxidation is simplified to approximate the production of ozone and peroxyacetyl nitrate (PAN) from isoprene. The model excludes higher-order NMHC. The model has 41 chemical species and 100 chemical reactions. The emissions used in the model simulation are the same as used in the MOZART-2 CTM fully described by Horowitz et al. [2003], and represent emissions of the 1990s, with the exception of lightning NOx, which is parameterized within the model based on the work by Price et al. [1997], with the vertical distribution based on the work of Pickering et al. [1998]. The model has no stratospheric chemistry, but stratospheric ozone distribution is represented by a HALOE climatology
Table 1. Summary of Model Configurations

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Configuration</th>
<th>Underlying GCM</th>
<th>Tropospheric Chemistry</th>
<th>Stratospheric Chemistry</th>
<th>Global Emission Inventory</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOZART</td>
<td>2 CTM emissions</td>
<td>MOZART 2.0</td>
<td>Ctrl emissions, lightning NO, and N2O calculated online</td>
<td>MOZART 2.0 mechanism; lightning NO, and N2O calculated online</td>
<td>lightning NO emissions; stratospheric concentrations of O3, N2O, HNO3, N2O5, and N2O6 were relaxed to climatological values from Brasseur et al. (1997) and Naeimi et al. (2006)</td>
<td>[2008]</td>
</tr>
<tr>
<td>AM2</td>
<td>CAM3.5</td>
<td>CAM3.5</td>
<td>CBM4 hydrocarbon scheme and RACM stratospheric chemistry</td>
<td>IPCC AR4, anthropogenic GFED v2 biomass burning emissions</td>
<td>Anthropogenic GFED v2 biomass burning emissions</td>
<td>[2008]</td>
</tr>
<tr>
<td>GISS-PCM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[2007]</td>
</tr>
</tbody>
</table>

[2] The chemical mechanism used in this study is formulated to provide a representation of both tropospheric and stratospheric chemistry [Lamarque et al., 2008]. Specifically, to successfully simulate the chemistry above 100 hPa, a representation of stratospheric chemistry was included, as described by Lamarque et al. [2008] (including polar ozone loss associated with stratospheric clouds) from version 3 of MOZART [Kinnison et al., 2007]. The tropospheric chemistry contains the standard methane reactions of MOZART 2 [Horowitz et al., 2003] and a reduced nonmethane hydrocarbon scheme similar to Carbon Bond Mechanism–4 [Houweling et al., 1998]. This reduced volatile organic compounds chemistry was extended to include isoprene and terpene oxidation. Also the chemical kinetic rates were updated from those of JPL–2002 [Sander et al., 2003] to JPL–2006 [Sander et al., 2006]. Because of a significant underestimation of the formation of peroxyacetyl nitrate (PAN) due to the Houweling et al. [1998] chemical scheme, the scheme was modified to include PAN formation from reaction of OH with aldehydes. This leads to a very reasonable simulation of PAN and other important chemical species as compared to aircraft observations [see Lamarque et al., 2008]. In order to simulate the formation of secondary organic aerosols (SOA) from monoterpenes, several additional chemical equations describing the oxidation path of monoterpenes, as done in MOZART [Lack et al., 2004] were included; other hydrocarbons leading to SOA forma-
2.3. The ECHAM5 Model

The ECHAM5 model is a general circulation model embedded in the Model of the Global Atmosphere–ECHAM5 (MAGNUS) climate model. It is a tropospheric chemistry model containing the tropospheric chemistry of the MOZART2.4 model [Horowitz et al., 2003], which is fully embedded in the ECHAM5 model [Roeckner et al., 2003]. The setup used in this paper has a horizontal resolution of 2.3° latitude by 2.5° longitude, and 31 hybrid sigma pressure vertical levels, from the surface to 0.1 hPa (80 km). The model temperature, vorticity, divergence, surface pressure and sea surface temperature was constrained toward the operational forecast data of the European Centre for Medium Range Weather Forecast (ECMWF) through the nudging technique [Jeuken et al., 1996].

The tropospheric chemistry model of MOZART includes reactions involving NO$_x$, OH, HO$_2$, and other hydrocarbons, including oxygenated hydrocarbons. The heterogeneous reaction of N$_2$O$_5$ on sulphate aerosols is also included. The model includes both dry and wet deposition, which are formulated according to Ganzeveld [2001] and Stier et al. [2005], respectively. The upper boundary concentrations for ozone, NO, N$_2$O$_5$, and N$_2$O$_5$ were fixed at the top levels higher than 30 hPa in the model, and are prescribed based on climatological zonal and monthly mean values described by Horowitz et al. [2003]. The concentrations above the model tropopause are relaxed toward these climatological values with a constant relaxation time of 10 days. The photolysis rates are derived from tabulated values from the Tropospheric Ultraviolet and Visible radiation model [Madronich and Flocke, 1999], with an update for O(1D) from the photolysis of ozone as described by Horowitz et al. [2003]. The full chemical scheme in the ECHAM5-MOZ model contains 168 chemical reactions and 63 transported species.

The simulation employs the anthropogenic and biomass burning emissions of year 2000, which are created during the Reanalysis of the Tropospheric Chemical Composition over the past 40 years (RETRO) project [Schultz et al., 2007]. Lightning NO$_X$ and vegetation emissions are calculated interactively within the model based on the parameterization of Grew et al. [2001] and the Model of Emissions of Gases and Aerosols from Nature (MEGAN) [Guenther et al. 2006], respectively. The ECHAM5-MOZ model has been extensively evaluated against sondes and aircraft data [Aghedo, 2007; Aghedo et al., 2007]. ECHAM5-MOZ is able to simulate the observed seasonal variation of tropospheric ozone, with positive bias of not more than 30 ppbv in comparison with sondes and aircraft data in the free troposphere [Aghedo, 2007; Aghedo et al., 2007].

2.4. The GISS-PUCCINI Model

The GISS-PUCCINI model is the NASA Goddard Institute for Space Studies (GISS) atmospheric composition and climate model. It consists of the model for Physical Oceanography, Atmospheric Chemistry, and Impacts (PUCCINI) [Shindell et al., 2006a], which is fully embedded in the GISS modelE climate model [Schmidt et al., 2006]. The model contains both tropospheric and stratospheric chemistry. The model was run at 2° latitude by 2.5° longitude Cartesian horizontal resolution, with increased effective resolution for tracers by carrying higher-order moments at each grid box. This configuration has 40 vertical hybrid sigma layers from the surface to 0.1 hPa (80 km). Simulations were performed using observed sea surface temperatures [Rayner et al., 2003] and linear relaxation of winds toward NCEP/NCAR reanalysis [Kolay et al., 1996].

Tropospheric chemistry includes basic NO$_x$, HOx, CO, and OH reactions as well as PAN, isoprene, alkyl nitrates, aldehydes, alkenes, paraffins, and other hydrocarbons. The lumped hydrocarbon family scheme was derived from the Carbon Bond Mechanism-4 [Gery et al., 1989] and from the more extensive Regional Atmospheric Chemistry Model, following [Houweling et al., 1998]. The stratospheric chemistry includes chlorine- and bromine-containing compounds, and CFC and N$_2$O source gases. The main additions to the previous versions are the addition of acetone to the hydrocarbons following [Houweling et al., 1998], polar stratospheric cloud formation now depends upon the abundance of nitric acid, water vapor and temperature [Hanson and Mauersberger, 1988], and the addition of a reaction pathway for HO$_2$ + NO to yield HNO$_3$ [Bukovskaya et al., 2007]. Photolysis rates are calculated using the Fast-J2 scheme [Bian and Prather, 2002], whereas other chemical reaction rate coefficients are from Sander et al. [2000]. Tracer transport uses a nondiffusive quadratic upstream scheme [Prather, 1986]. The full scheme includes 156 chemical reactions among 50 species.

Year 2000 emissions were used from the data set assembled for the IPCC fifth assessment report simulations [Lamarque et al., 2010]. The GISS-PUCCINI model has been compared with observations [e.g., Dentener et al., 2006; Shindell et al., 2006a, 2006b] and other models [Stevenson et al., 2006]. It performs well at simulating ozone concentrations. However, it has a general tendency to be negatively biased to measurements and has the strongest biases in the upper troposphere.

3. Tropospheric Emission Spectrometer

3.1. TES Ozone Data

The Tropospheric Emission Spectrometer (TES) provides the vertical profiles of tropospheric ozone on a global-scale. TES is an infrared, high-resolution, Fourier transform spectrometer covering the spectral range from 650...
to 3050 cm$^{-1}$ (15.4–3.3 μm) with an apodized spectral resolution of 0.1 cm$^{-1}$, and an averaged nadir footprint of about 5 km by 8 km [Beer et al., 2001]. TES operates in a polar Sun-synchronous orbit with a repeat cycle of 16 days. The spectral radiances measured by TES are used to retrieve the atmospheric profiles through a nonlinear optimization algorithm that minimizes the difference between observed radiances and those calculated with an RTM, subject to the condition that the solution is consistent with an a priori description of the atmosphere [Rodgers, 2000; Bowman et al., 2002, 2006]. The retrieved ozone profile \hat{x} is an estimate of the true atmospheric profile x and it can be expressed as

$$\hat{x} = x_a + A(s - x_a) + \epsilon$$ \hspace{1cm} (1)

where x_a is the a priori profile, A is the averaging kernel matrix, ϵ is the observational error, whose covariance account for the random and systematic errors and errors associated with joint retrieval of dependent states [Worden et al., 2004]. The profiles: x_a, x and \hat{x} are expressed as natural logarithm of the volume mixing ratio. TES ozone profiles have 67 vertical levels with varying layer thickness, which are a subset of the pressure levels of the TES radiative transfer forward model [Clough et al., 2002].

[23] The analysis presented in this paper employs TES version 3 data. We use TES ozone data collected in August 2006 from the standard global survey mode (with 16 day repeat cycle, which is the number of days before TES samples about the same latitude and longitude) and a less frequent special observations mode (using the step and stare with nadir viewing of approximately 1/6 of an orbit, zooming in on a particular region). The global survey mode includes both daytime and nighttime ozone measurements. We compared model monthly mean sampled across TES profiles and averaged to the model’s original resolution with the individual model original monthly mean. We found that despite the coarse diurnal sampling by TES, the monthly mean calculated from the sampled profiles is able to capture the synoptic-scale variability of ozone in the month of August. The bias associated with sampling is less than 10% within the free troposphere below 350 hPa, and could be up to 20% in the Southern Hemisphere midlatitude upper troposphere-lower stratosphere (UTLS). The detail analysis of errors associated with sampling will be the focus of another paper. We use all TES data collected in the global surveys and special observations of August 2006 with the exception of data with bad quality flags (i.e., master retrieval quality \neq 1.0 (for additional details, see Osterman et al. [2009]). TES ozone data have been evaluated by comparison to ozonesondes [e.g., Bowman et al., 2009; Nassar et al., 2008; Worden et al., 2007], aircraft data [e.g., Richards et al., 2008], and ozone measured by other satellite instruments, for example, OMI and MLS [e.g., Osterman et al., 2008]. These studies show that TES ozone has a positive bias, and within the troposphere, the bias varies between 3–10 ppbv [Nassar et al., 2008]. We account for this bias with the same approach used by Worden et al. [2008] by reducing TES ozone abundance by 15% everywhere.

3.2. Applying TES Operators to Model Data

[22] The procedure for comparing model with TES was originally developed by Jones et al. [2003]. This procedure has been extensively used in the comparison of TES ozone against in situ measurements, such as sondes and aircraft [e.g., see Worden et al., 2007; Richards et al., 2008], and assimilation of TES data [Parrington et al., 2008, 2009; Jones et al., 2009]. The main objective is to account for TES limited vertical resolution. This involves applying TES a priori profile and averaging kernels (which are together referred to as TES operators) to models ozone concentration. The averaging kernels (see example in Figure 1) and a priori profile are included in every TES HDF-EOS metadata product. The TES a priori ozone profiles are derived from the climatology based on the MOZART model, which was regridded to 10 degree latitude by 30 degrees longitude.

[23] Due to the difference in spatial and temporal resolution between TES and the models, we use TES spatiotemporal information to extract model ozone profiles whose grid overlaps with TES, before we apply TES operators to the extracted model profiles. The temporal resolution for all models is 3 hourly. These extracted ozone profiles from models were then interpolated from the individual model pressure levels to TES pressure levels, which consists of 67 levels from the surface to 0.1 hPa. The linear interpolation was performed on the natural logarithm of the models’ ozone volume mixing ratios. The models containing only tropospheric chemistry and lower top-of-model pressure than TES top-of-atmosphere exhibit anomalous ozone concentrations in the upper stratosphere, especially at pressure levels above 10 hPa because the extrapolation linearly stretches the values at the respective model top (e.g., 10 hPa in the ECHAM5-
MOZ model, 4 hPa in CAM-Chem) to 0.1 hPa. In these models (i.e., the AM2-Chem, ECHAM5-MOZ, and CAM-Chem models), we replace the unavailable stratospheric ozone concentrations with TES a priori above 30 hPa. TES operators were then applied to these modified and interpolated vertical profiles from each of the models. Subsequently in this paper, model ozone refers to model profiles sampled at TES locations, and corrected for TES sensitivity as explained in this section.

The logarithm of the ozone mixing ratios from the model x^m (i.e., extracted and vertically interpolated model ozone) replaces the true atmospheric profile in equation (1):

$$\tilde{x}^m = x_a + A(x^m - x_a)$$ \hspace{1cm} (2)

The comparison between the “retrieved” model ozone \tilde{x}^m and TES \tilde{x} is not biased by TES a priori, and account for the vertical smoothing of the retrieval. Note that x in equation (2) is the natural logarithm of ozone volume mixing ratio as shown in equation (3).

Figure 2 shows an example of ozone vertical profiles at latitude 30°N and longitude 91°W. Figure 2 shows TES ozone (black solid lines), the a priori (black dashed lines), and the models ozone profiles: before TES operators (red solid lines), and after TES operators were applied (blue lines). Figure 2 shows that TES retrieved profile is significantly different from the a priori profile below 100 hPa. This indicates that TES has sensitivity over most of the troposphere, as shown by the averaging kernel for this location (see Figure 1). It is important to bear in mind that the
averaging kernel varies with location, and it is vital to understanding the regions of the vertical profile where TES is sensitive. When the averaging kernel goes to zero, TES measurements will revert to the a priori values, as shown in equation (1).

3.3. TES IRF Kernels

[26] We decompose the variability of the OLR observed by TES to the product of sensitivity of the OLR to variations in ozone, and to variation of ozone concentration itself. We termed the sensitivity of OLR to variation in ozone the instantaneous radiative forcing kernels (IRFK). We calculate these IRFK at the top of the atmosphere due to changes in the ozone concentration at any level, and derive a three-dimensional satellite-based products that could be used to evaluate tropospheric ozone OLR forcing in global chemistry climate models. The detailed description of TES IRFK calculations is presented by Worden et al. (submitted manuscript, 2010). In this paper, we focus on the comparison of IRF from TES and the global chemistry climate models that participated in the project for the purpose of characterizing an observational constraint error in the predicted climate forcing of tropospheric ozone by models.

[27] Note that these kernels provide a more detailed description of OLR sensitivity than those presented by Worden et al. [2008], which were derived from empirical calculations of OLR reduction due to upper tropospheric ozone and were only possible for ocean surface and clear-sky conditions.

[28] Converting TES (and model) ozone \(\tilde{x} \) in equation (1) (and equation (2)) from logarithm of volume mixing ratio to \(q \) in units of ppbv gives

\[
q_i(z) = 10^i \exp(\tilde{x}_i(z))
\]

where \(i \) denotes the time-dependent horizontal location (i.e., particular latitude, longitude at a given time), and \(z \) is the pressure level, which extends from the surface up to 0.1 hPa.

[29] At the top-of-the-atmosphere (TOA), changes in radiance \(L \) due to changes in ozone volume mixing ratio \(q \) is given in units of \(\text{W m}^{-2} \text{m}^{-1} \text{str}^{-1} \text{ppbv}^{-1} \) by

\[
\frac{\partial L_{\text{TOA}}^{\text{TOA}}(z, \nu, \theta, \phi, q_i(z))}{\partial q_i(z)} = \frac{1}{q_i(z)} \frac{\partial L_{\text{TOA}}^{\text{TOA}}(z, \nu, \theta, \phi, q_i(z))}{\partial (\ln q_i(z))}
\]

where \(\nu \) represents the spectral frequency, \(\theta \) is the satellite viewing zenith angle, and \(\phi \) is the relative azimuth angle, which defines the position of the satellite relative to the solar plane. The TOA flux, \(F_i^{\text{TOA}} \) is given by

\[
F_i^{\text{TOA}}(z, \nu, q_i(z)) = \int_0^{2\pi} \int_0^\pi L_{\text{TOA}}^{\text{TOA}}(z, \nu, \theta, \phi, q_i(z)) \cos \theta \sin \theta \, d\theta \, d\phi
\]

where the angular integrals account for directional dependency of radiance observed by a satellite instrument, i.e., anisotropy [e.g., see Loeb et al., 2003]. The details of the anisotropy calculation for TES are given by Worden et al. (submitted manuscript, 2010). The finite difference approximation of TOA flux with respect to ozone volume mixing ratio, \(q \) is given by

\[
F(z, \nu, q + dq) - F(z, \nu, q) \approx \frac{1}{q} \frac{\partial F(z, \nu, q)}{\partial \ln q} \, dq
\]

[30] Integrating the derivative of the flux with respect to ozone volume ratio over the entire ozone spectral band yields the instantaneous radiative forcing kernel, \(H \) in units of \(\text{W m}^{-2} \text{ppbv}^{-1} \):

\[
H_i(z, q_i(z)) = \frac{1}{q_i(z)} \int_{\nu_2}^{\nu_1} \frac{\partial L_{\text{TOA}}^{\text{TOA}}(z, \nu, q_i(z))}{\partial (\ln q_i(z))} \, d\nu
\]

and \(\nu_1 = 9.26 \) \(\mu \text{m} \) through \(\nu_2 = 10.2 \) \(\mu \text{m} \) spans the 9.6 \(\mu \text{m} \) ozone band. We accounted for the systematic bias in TES ozone abundance in the calculation of the instantaneous radiative forcing kernels. This correction resulted in 18% increase in the IRFK with respect to the values not corrected. This is further described by Worden et al. [2008] and Worden et al. (submitted manuscript, 2010).

[31] The direct observations of infrared radiance at high spectral resolution by the TES instrument provide a satellite-based estimate of the OLR sensitivity to ozone. Moreover, this approach provides the first three-dimensional characterization of OLR forcing by ozone from space, with immediate applications in chemistry-climate model evaluation. TES profiles of ozone IRFK are derived for both clear and cloudy sky conditions.

[32] Figure 3 shows the zonal mean of the instantaneous radiative forcing kernels for both clear sky and total sky in August 2006. The clear-sky IRFK are higher than the total-sky IRFK, showing that clouds reduce the overall IRFK values. Figure 3 also shows that clouds shift the peak sensitivity from 450 hPa to 400 hPa. Soden et al. [2008] also found that clouds reduce the overall water vapor kernel values and shift the peak sensitivity to the upper troposphere and to the subtropical regions where there are fewer high-level clouds. Clouds have a strong effect on total OLR by reducing the sensitivity of the OLR to absorption and emission in the lower troposphere for all gases, including ozone [Lelieveld and Crutzen, 1990]. This feedback is highly nonlinear and depends on the location of the clouds [Zhu et al., 2001]. Figure 3 shows that outgoing longwave radiation is mostly sensitive to variations in the tropical and midlatitudes ozone, and also to changes in middle tropospheric ozone. This midtropospheric sensitivity is a consequence of change in volume mixing ratio concentrations having a larger effect on total column in the middle troposphere than at the upper troposphere. The largest IRF kernel values, those greater than 0.5 mW/m²/ppbv, were located in between 200 hPa and 650 hPa. Outside of this altitude range, the kernels decrease almost linearly (see Figure 3).

4. Models Tropospheric Ozone Evaluation

4.1. Models Evaluation With Respect to TES Ozone

[33] Figure 4 shows the zonal mean distribution of tropospheric ozone concentrations measured by TES and the zonal mean bias of each of the models with respect to TES in August 2006. The multimodel mean ozone bias shows the
average ozone bias in the four global chemistry climate models. The ozone magnitude simulated by each of the models reveals various discrepancies.

[34] In comparison to TES ozone, the AM2-Chem model shows a negative bias of about −20 ppbv over the northern tropical and midlatitudes within the entire troposphere. The model also shows negative bias of up to −55 ppbv in the northern polar upper troposphere. The AM2-Chem model has positive bias of about 35 ppbv in the upper troposphere Southern Hemisphere (Figure 4b) in comparison with TES. The CAM-Chem model shows the least bias of all the models, of about 10 ppbv in the entire free troposphere. Close to the tropopause, the CAM-Chem model shows predominantly negative bias of between 20 and 30 ppbv (Figure 4c).

[35] The ECHAM5-MOZ model overestimates ozone concentrations by up to 40 ppbv in the lower to middle troposphere, especially at the tropical and northern latitudes (Figure 4d). The ECHAM5-MOZ model bias can increase to more than 60 ppbv in the upper troposphere. The GISS-PUCCINI model underestimates ozone concentrations almost everywhere, except at the southern latitudes in the lower to middle troposphere, where the positive bias are generally low (Figure 4e). The GISS-PUCCINI model bias reaches −20 ppbv in the lower to middle troposphere, and −60 ppbv in the upper troposphere.

[36] The multimodel mean zonal mean ozone (Figure 4f) shows the lowest absolute bias in the Southern Hemisphere throughout the troposphere, due in part to the cancelation of the biases from a model by another model. The multimodel zonal mean ozone has negative biases in the Northern Hemisphere, because ECHAM5-MOZ positive biases do not fully compensate for the negative biases of the three remaining models.

[37] In Figure 5, we show the spatial correlation of models and ozone concentrations at all pressure levels in the troposphere. The AM2-Chem model exhibits the lowest correlation among all the models throughout the troposphere. This low spatial correlation of AM2-Chem model is due to positive bias in the Southern Hemisphere and negative bias in the Northern Hemisphere, which lead to inconsistent spatial distributions in comparison to TES. The ECHAM5-MOZ model has the highest spatial correlation of about 0.7 below 500 hPa. Above 450 hPa, GISS-PUCCINI spatial pattern is the most similar to those of TES, and it shows a spatial correlation ranging from 0.66 to 0.94 with increasing vertical height. The relatively low spatial correlation exhibited in the AM2-Chem model around 550–250 hPa was improved in the AM2-Chem-assim (red dashed lines), due to the improvement in the Northern Hemisphere at these pressure levels. Equally, the multimodel mean (black dashed lines) has correlation higher or equal to 0.7 from 650 to 350 hPa, and also has the highest correlation of all models, except ECHAM5-MOZ in the entire troposphere.

4.2. Sources of Model Differences

[38] There are several sources of differences among the models. These include differences in spatial and vertical resolutions, emissions (since every model uses different emissions), different levels of details in chemistry (for example all models except GISS-PUCCINI use varied versions of MOZART tropospheric chemistry, v2 in AM2-Chem, v2.4 in ECHAM5-MOZ and v3 in CAM-Chem. In addition, CAM-Chem and GISS-PUCCINI models have stratospheric chemistry, while the other two are mainly tropospheric chemistry climate models), different number of chemical reactions incorporated into the models, and meteorology (AM2-Chem and GISS-PUCCINI were constrained by NCEP reanalysis, ECHAM5-MOZ was nudged to the ECMWF operational forecast data, and CAM-Chem performs no nudging). It is therefore very difficult to characterize which of these differences makes the largest contribution to the biases we see in Figure 4. Since the aim of this paper is not to characterize model differences (as reflected in our model setup), but how those differences will influence the instantaneous radiative forcing calculations, we therefore provide very generalized explanations.

[39] Lightning NOx emissions have been shown to drive about 20% of total ozone column variability [Martin et al.,
Figure 4. (a) The zonal mean distribution of ozone concentration measured by TES and the zonal mean ozone bias in the (b) AM2-Chem, (c) CAM-Chem, (d) ECHAM5-MOZ, and (e) GISS-PUCCINI models in August 2006. The zonal mean ozone bias of the (f) multimodel mean and (g) AM2-Chem-assim models are also shown. The biases are calculated as models minus TES.
the influence of prescribed meteorology fields on the transport of tracers, Aghedo et al. [2008] shows that the use of ECMWF forecast data causes up to 70% increase in the downward transport from the stratosphere, and about a factor of 2.5 increase in surface tracers that get transported to the stratosphere. This ECMWF data artifact was also found by Van Noije et al. [2004] in a different model simulation that investigates the stratosphere–troposphere exchange sensitivity to meteorological data. In a separate sensitivity analysis, we found that this intense Brewer-Dobson circulation due to the ECMWF data could cause between 30 and 40% additional ozone in the midlatitudes upper troposphere, and up to 30% more ozone throughout the tropical troposphere, relative to free run simulation. The ECHAM5-MOZ model has also been shown to have a relatively lower surface deposition in comparison to similar chemistry climate models (see MOZECH and MOZECH2 model performance in the work by Stevenson et al. [2006]). The combination of this low deposition and high mixing may be the largest driver of ECHAM5-MOZ high positive bias in comparison to TES measurement.

[42] The influence of prescribed meteorology on the simulation of ozone stated above may not represent model performance in general, since this study is only for one month. The impact of nudging will be studied over longer times in a subsequent paper.

5. Tropospheric Ozone Instantaneous Radiative Forcing

5.1. TES IRF and Models’ IRF Biases Calculation

[43] The discrete form of the ozone profiles \(q(z) \) in equation (3) and the IRFK \(H_i(z) \) given in equation (6) across a discrete altitude dimension \(z_k \) where \(k = 1, \ldots, N \) and \(N = 67 \) is the highest level of TES and model profiles (i.e., 0.1 hPa) is given by \(H_i(z_k) \) and \(q_i(z_k) \), respectively. Then, the total-sky three-dimensional instantaneous radiative forcing, IRF is given by

\[
\text{IRF}^i_{\text{TES}}(z) = H_i(z_k) \left\{ q_{\text{TES}}^i(z_k) \right\}
\]

According to equation (5), equation (7) can be interpreted as the instantaneous forcing of a 100% change in ozone. The respective instantaneous radiative forcing discrepancies \(\Delta \text{IRF} \) in each of the models \(m \) is equally given by

\[
\Delta \text{IRF}^m_i(z_k) = H_i(z_k) \left\{ q_{i}^m(z_k) - q_{\text{TES}}^i(z_k) \right\}
\]

The instantaneous radiative forcing discrepancies calculated according to equation (8) represent the radiative impact of differences in ozone distribution calculated by models with respect to TES. Applying TES observed OLR sensitivity (i.e., the IRF kernels) to the biases in models’ ozone distribution provide an observationally based platform for standardization across multimodels.

[44] The integration of equations (7) and (8) over the pressure levels within the troposphere gives the total tropospheric IRF, which is given by

\[
T\text{IRF}^i_{\text{TES}} = \sum_{k=1}^{K} \text{IRF}^i_{\text{TES}}(z_k)
\]
\[\Delta \text{IRF}^a_I = \sum_{k=1}^{K} \Delta \text{IRF}^a_I(z_k) \]

(10)

where \(K \) represents the thermal tropopause following the definition of WMO calculated from TES.

[45] Zonal mean IRF profiles, ZIRF are also calculated from equations (7) and (8) as

\[\text{ZIRF}^\text{TES}_I(z_k) = \sum_{i \in I} \text{IRF}^\text{TES}_I(z_k) \]

(11)

\[\Delta \text{ZIRF}^a_I(z_k) = \sum_{i \in I} \Delta \text{IRF}^a_I(z_k) \]

(12)

where \(I \) and \(J \) denote the latitude and longitude dimensions, respectively. The vertical profile of the global average of IRF biases in models, \(\Delta \text{VIRF} \) is calculated as

\[\Delta \text{VIRF}^a_I(z_k) W_i = \sum_{i \in I} \Delta \text{IRF}^a_I(z_k) W_i \]

(13)

where \(W \) is the surface area of the earth bounding \(i \) and \(j \) within a box.

5.2. TES Instantaneous Radiative Forcing

[46] TES tropospheric IRF defined in equation (9) is shown in Figure 6a. Figure 6a shows that the instantaneous OLR forcings are strongest in tropical and midlatitudes from 30°S to 60°N latitudinal band. TES shows slightly higher instantaneous radiative forcing values over the Northern Hemisphere than the Southern Hemisphere, due to higher summer temperature and other conditions that favor higher ozone concentrations, such as slightly higher stratospheric intrusion at the Northern Hemisphere (see Figure 7a).

[47] Comparing the zonal mean IRF (as defined in equation (11)) shown in Figure 7a and the total-sky IRF kernel in Figure 3 reveal that OLR is mostly sensitive to the tropical middle-tropospheric ozone, largest values of IRF are located at the polar UTLS region. This is due to the large concentration of ozone in the polar UTLS, which compensates for low sensitivity to OLR. For example, the total-sky zonal mean IRF kernels recorded throughout the polar UTLS region is only up to 0.3 mW/m²/ppbv, and we calculate zonal mean instantaneous radiative forcing of up to 70 mW/m² there, whereas within the tropical and extratropical middle troposphere, zonal mean IRF kernels are up to 0.7 mW/m²/ppbv with a maximum zonal mean IRF of less than 40 mW/m².

5.3. Observational Constraint Instantaneous Radiative Forcing Bias in Models

[48] Figures 6b–6e show the global distribution of total tropospheric IRF biases calculated in the models, based on equation (10). Figures 6b–6e reveal regionally varying total tropospheric IRF biases between ~400 to 700 mW/m² in the tropical and midlatitudes covering 40°S–60°N. The zonal mean IRF biases calculated from equation (12) and shown in Figures 7b–7e equally reveal zonal mean IRF biases between ~30 and +50 mW/m², with the largest bias at the upper troposphere-lower stratosphere region.

[49] This demonstrates the ability of large concentration (or biases) of ozone to compensate for low sensitivity of OLR to ozone. These results also show the need for accurate simulation of magnitude, distribution and variability of ozone concentrations by models, especially from the middle troposphere to lower stratospheric region, where large model biases could have high climate radiative forcing impact (as shown in Figures 7b–7e and summarized by the result of equation (13) shown in Figure 8).

[50] The multimodel average plots shown in Figures 6f and 7f reveal the least total tropospheric and zonal mean IRF bias with respect to TES compared to any of the individual models, with the exception of CAM-Chem model IRF bias over certain regions. The models’ ensemble mean total tropospheric IRF bias is within the range of ~100 to +300 mW/m² (Figure 6f), while the zonal mean IRF bias is between ~10 to +20 mW/m² (Figure 7f). The global mean multimodel average ozone IRF of 0.42 W/m² over the whole troposphere is better than 0.61 and 0.28 W/m² calculated in the ECHAM5-MOZ and GISS-PUCCINI models, respectively. The global mean tropospheric IRF calculated in AM2-Chem and CAM-Chem models are 0.41 and 0.38, respectively. This result shows that multimodel average estimate depends on the individual models used in the averaging. In this case, the positive biases in ECHAM5-MOZ northern latitudes could not fully compensate for negative biases in GISS-PUCCINI and AM2-Chem models. Also in the Southern Hemisphere, the negative biases in GISS-PUCCINI model is too low to cancel out the combination of positive biases in the AM2-Chem and ECHAM5-MOZ models. This yields a multimodel mean tropospheric IRF that is not the best estimate in comparison to TES global mean tropospheric IRF of 0.37 W/m² (Figure 8).

5.4. The Influence of TES Assimilation on Ozone and IRF in the AM2-Chem Model

[51] The assimilation of TES v2 data into the AM2-Chem model was able to significantly improve most of the negative anomaly observed in the model at the Northern Hemisphere within the free troposphere (compare AM2-Chem plot in Figure 4b with AM2-Chem-assim plot in Figure 4g). This improvement of simulated ozone within the AM2-Chem-assim model also led to a better spatial correlation (\(r > 0.7 \)) above 550 hPa, and \(r \geq 0.5 \) below 550 hPa) between AM2-Chem-assim model and TES, in comparison to the spatial correlation of AM2-Chem model with TES (\(r < 0.55 \) from the surface up to 250 hPa) as shown in Figure 5. However, due to low thermal contrast during the Southern Hemispheric winter season (as evidence by lower degree of freedom for signals (DOFS) in the Southern Hemisphere in comparison to Northern Hemisphere DOFs [see Farrington et al., 2008, Figure 1]), assimilation of TES data does not significantly influence the Southern Hemispheric ozone concentration, and this causes the positive bias recorded there to persist (compare AM2-Chem plot in Figure 4b with AM2-Chem-assim plot in Figure 4g).
Figure 6. (a) TES total tropospheric ozone instantaneous radiative forcing and the difference in the respective models (b) AM2-Chem, (c) CAM-Chem, (d) ECHAM5-MOZ, and (e) GISS-PUCCINI under all-sky conditions in August 2006. We also show the total tropospheric ozone IRF biases in the (f) multimodel mean and (g) AM2-Chem-assim model. These plots are based on equations (9) and (10) as explained in the text.
Figure 7. The zonal mean distribution of (a) TES instantaneous radiative forcing (IRF) and models IRF bias for (b) AM2-Chem, (c) CAM-Chem, (d) ECHAM5-MOZ, and (e) GISS-PUCCINI, under all-sky conditions. We also show the zonal mean (f) multimodel mean and (g) AM2-Chem-assim IRF biases. These plots are based on equations (11) and (12) as explained in the text.
sky instantaneous radiative forcing kernels, which were directly estimated from TES top-of-the-atmosphere outgoing longwave radiative flux. The instantaneous radiative forcing derived by applying TES kernels is different from the tropospheric ozone radiative forcing presented in the IPCC [Forster et al., 2007] because it does not include the shortwave forcing of tropospheric ozone, which is not negligible especially over the polar region.

[55] The evaluation of tropospheric ozone concentrations simulated by each of the models against TES were performed, and we show that each of the models has discrepancies with respect to TES, both in capturing the magnitude and spatial distribution of ozone. In the lower and middle troposphere, the models have the largest disagreement with TES over the tropical and the midlatitudes regions, where they show a zonal mean bias of up to ±40 ppbv. In the UTLS region, the models show zonal mean absolute bias of more than ±30 ppbv. Our initial analysis with GISS-PUCCINI and ECHAM5-MOZ models reveal that during this particular month, prescribed meteorology of NCEP and ECMWF are partially responsible for the anomalous UTLS ozone bias, and this may explain why CAM-Chem shows a relatively low bias in comparison to other models, since it includes no nudging. Further study is needed to understand the prevailing circumstances and triggers of this extrinsic influence on the simulation of chemical composition.

[56] Our results show the necessity for accurate simulation of both magnitude and spatial distribution of ozone within models, since large concentrations of ozone and ozone biases could compensate for low sensitivity of OLR to ozone (that is, low IRF kernels), to produce relatively large instantaneous radiative forcing, as seen around the tropopause of the polar region. We calculate a spatially varying total tropospheric IRF bias of between −400 to +700 mW/m² over the entire tropical and midlatitudes regions. The zonal mean ozone IRF bias also ranges from −30 to +50 mW/m², with the largest bias in the upper troposphere and lower stratosphere. The global mean multimodel average ozone IRF of 0.42 W/m² over the whole troposphere does not provide the best estimate in comparison to TES global mean tropospheric ozone IRF of 0.37 W/m² in August 2006, due to inability of AM2-Chem, ECHAM5-MOZ and GISS-PUCCINI models to completely cancel out their opposing biases.

[57] The improved tropospheric ozone distribution in AM2-Chem following assimilation, as shown by Parrington et al. [2008], leads to a more comparable ozone distribution and IRF relative to those derived directly from TES measurements. The resulting IRF biases calculated in the AM2-Chem with assimilation are comparable to low bias recorded in the multimodel IRF. This demonstrates the potential of chemical data assimilation to reduce uncertainties in modeled tracer distributions and their subsequent impact on radiative forcing calculations.

[58] This paper demonstrates the application of TES instantaneous radiative forcing kernels under all-sky conditions in August 2006. The kernels provide a unique way for an observationally constrained evaluation of ozone calculated by models. The kernels also reveal the radiative impact of differences in model-predicted ozone concentrations. The availability of spatial and vertical information for modelers has an immediate consequence for exposing regions necessary for model improvements.
Acknowledgments. We appreciate comments from Luca Pozzoli at the Joint Research Centre, Italy; Martin G. Schultz at ICG-2, Research Centre, Jülich, Germany; Larry Horowitz at NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, United States; and colleagues in the Tropospheric Emission Spectrometer (TES) group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States. A. M. A. Held, S. Bauer, and M. J. G. G. Hemes of the supercomputing group at JPL and also Louis Kornblueh, Johann Feichter, Uwe Schulzweida, Erich Roeckner, and Monika Esch of Max Planck Institute for Meteorology, Hamburg, Germany, for their support at different stages of porting, compiling, and running ECHAM5-MOZ on the JPL supercomputer. The research described in this paper was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a NASA ROSES contract received by K.W.B. and H.M.W. United States government sponsorship acknowledged.

References

Aghedo, A. M., S. Rast, and M. G. Schultz (2008), Sensitivity of tracer transport to model resolution, forcing data and tracer lifetime in the general circulation model ECHAM5, Atmos. Chem. Phys. Discuss., 8, 137–166.

Bowman, K. W., D. A. Jones, J. A. Logan, H. Worden, F. Boersma, R. Chang, S. Kulawik, G. Osterman, P. Haner, and J. Worden (2009), The zonal structure of tropical O3 and CO as observed by the Tropospheric Emission Spectrometer in November 2004 Part 2: Impact of surface emissions from the Tropospheric Emission Spectrometer group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States; and colleagues in the Tropospheric Emission Spectrometer group, Jet Propulsion Laboratory, California Institute of Technology, under a NASA ROSES contract received by K.W.B. and H.M.W. United States government sponsorship acknowledged.

