The radionuclide ^{10}Be is produced in the atmosphere by cosmic rays. When it filters out and settles in polar ice, it becomes a powerful tool to study the variations of the cosmic ray intensity in the distant past and, from that, solar activity before the era of systematic solar observations. The relationship between the cosmic ray intensity and the ^{10}Be concentration is, however, an inferred one, because cosmic rays have been observed only during the past 50 years or so, while there are only a few ^{10}Be records for this period. We report here on a pilot experiment to cut ice from the exposed ice shelf near the South African base, SANAE, in Queen Maud Land, Antarctica, from which this ^{10}Be/cosmic ray relationship may eventually be established experimentally.

Introduction

Cosmic rays come from the galaxy and beyond. Their intensity has been measured continuously during the past 50 to 60 years, both on Earth and in space. At energies $< 10 \text{ GeV}$ per nucleon (magnetic rigidity $P = 10 \text{ GV}$), the cosmic ray intensity varies in response to solar activity. As an example, Fig. 1 shows the counting rate of the SANAE neutron monitor (71°40'S, 2°51'W, lower cutoff rigidity 0.8 GV) from its inception in 1965. The variation, with a dominant 11-year periodicity, is called solar modulation of the galactic cosmic ray intensity. To first order, this variation is in anti-phase with solar activity as measured by the sunspot number, also shown in Fig. 1. Physically, the modulation is due to the heliospheric magnetic field (HMF) and its irregularities that are embedded in the solar wind. The charged cosmic ray particles scatter off these field irregularities, which causes an inward diffusive flux into the heliosphere. The irregularities are carried outward by the solar wind (speed $\sim 400 \text{ km/s}$), which also leads to an effective outward cosmic ray convection. When the sun is active, the HMF is more disturbed and stronger; the scattering and outward convection are more effective, and fewer cosmic rays can penetrate into the inner heliosphere, leading to a lower intensity.

Cosmic ray modulation therefore provides an indirect means to study aspects of solar activity such as the solar wind, and solar and heliospheric magnetic fields.

Solar activity has been studied systematically much further back into the past than the cosmic ray era, by observations of the number of sunspots, as shown in Fig. 2. This firmly establishes the 11-year cycle as a semi-permanent feature, as well as the 11-year cycle as a semi-permanent feature, as well as the

*Unit for Space Physics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.

2National Center for Atmospheric Research, Climate and Global Dynamics Division – Paleoclimatology, 1850 Table Mesa Drive, Boulder, CO 80305-3000, U.S.A.

3Paul Scherrer Institute, c/o Institute of Particle Physics, ETH-Hönggerberg, CH-8093 Zurich, Switzerland.

4Environmental Physics, Institute for Aquatic Sciences and Water Pollution Control, ETH-Zurich, c/o EAWAG, CH-8600, Dübendorf, Switzerland.

5Institute for Physical Science and Technology, University of Maryland, College Park, MD 27402, U.S.A.

*Author for correspondence. E-mail: fskhm@puk.ac.za
concentration in polar ice will be different if it settles fast and locally, as opposed to the situation where there is global mixing before it settles after a much longer time.10,11,12 The ratio between the amplitudes of the 11-year cycles in the 10Be and the data from a high latitude neutron monitor, each expressed as a percentage of the relevant sunspot minimum value, is a sensitive measure of this mixing effect. Thus, it varies between \textasciitilde 2.3 for local production and \textasciitilde 1.7 for global mixing, and an accurate measurement of this ratio is an important goal of the planned experiment. In addition, the distinction between wet and dry deposition13 might be necessary to explain the transfer of 10Be from the atmosphere into the firn and ice. These processes and their relative importance depend on the accumulation rate of snow at the site.1 Pits of several metres depth have been dug14,15 in the polar ice to measure the 10Be concentration deposited in recent times more accurately, while there are also other studies on shallow cores.1 These experiments have not yet yielded conclusive results on how to infer the galactic cosmic ray flux reliably, because every location seems to be unique and no one is perfect in terms of recording past changes in galactic cosmic ray intensity. To improve our knowledge about 10Be as a tool to reconstruct cosmic ray intensity, it is crucial to enlarge our database of the past few decades regarding 10Be production and its atmospheric transport. It is in this situation that the ice shelf in Queen Maud Land, Antarctica, offers a promising and cost-effective opportunity, because it is frequently visited and little investment has to be made in infrastructure and equipment to sample this ice.

Pilot experiment

Figure 3 shows the ice shelf at \textasciitilde 70°15′S, 25°0′W, where the supply vessel SA Agulhas offloads on its annual relief voyage. It is between 30 and 50 m high, and annual accumulation layers of \textasciitilde 1 m thick are clearly visible. The accumulation is mostly due to drift snow from other regions because the local precipitation is very low; from 1960 to 1994 there were, on average, only 14 snow days per year. This drift is expected to be fairly local in extent, within a few hundred kilometres, and the clearly visible annual melt layer that forms in summer is an indication that different years probably do not get mixed. Owing to the height of the shelf, an offloading ramp of between 10 and 15 m depth has to be cut every season. The aim of the main experiment is eventually to cut ice from the face of the shelf, but for the pilot experiment the offloading ramp offers an easy and safe opportunity to test equipment and techniques, and to acquire experience.

This pilot experiment was conducted during the December 2003/January 2004 voyage of the SA Agulhas. Samples were cut from the exposed annual layers within the ramp. Two techniques were tested, namely a 10-cm-diameter core driller applied horizontally, and a mechanical chain saw to cut vertical wedges of \textasciitilde 1 m height (the full thickness of the layer), \textasciitilde 30 cm wide at the front face, and \textasciitilde 50 cm deep on the two sloping faces of the wedge. This second technique proved to be the fastest and widest at the front face, and \textasciitilde 50 cm deep on the two sloping faces of the wedge. This second technique proved to be the fastest and easiest by far. It also yielded an integrated record for the whole year, not just for parts of it. Between 1 and 2 kg of the back portion of this wedge, farthest away from the face, was used as sample. After adding a spike of 0.3 mg 10Be, the samples were melted. Subsequently, the 10Be was filtered (pore size 45 µm) and separated from the water and retained, using ion-exchange columns. This allowed us to transport the samples after the expedition in a convenient way to Dubendorf (EAWAG), Switzerland, where they were processed and prepared for measurement with the Zurich AMS facility, jointly operated by the Paul Scherrer Institute and ETH Zurich.

Two ramps were actually used: the one cut for the 2003/4 season, as well as the one used for the previous 2002/3 season. Both these ramps were sampled on the same expedition, in the 2003/4 season. This gave an opportunity to test repeatability.

Results and discussion

The measurements are summarized in Table 1, showing the year level, a label, mass and thickness of ice in the sample, and the 10Be concentration. These data are plotted in Fig. 4. The error bars in the figure are the average values of those shown in the table, namely \pm 0.05 \times 10^4 \text{ atoms/g} for the 2003/4 ramp and \pm 0.02 \times 10^4 \text{ atoms/g} for the 2002/3 ramp. There are two results for the 2002/3 ramp, with and without the annual melt layer. The difference between them is marginally significant, but will not be explored here.

There is a large difference in 10Be concentration between the two ramps. In the 2003/4 ramp it is about 4 times higher than in the 2002/3 one, except for the last two years. This difference is puzzling. It would be surprising if this were due to local variations in 10Be deposition because the ramps are only \textasciitilde 300 m apart. Another explanation is that the 10Be leaks or filters out of the ice as it stands exposed. This may be due to sea spray and mist penetrating the ice and dissolving the 10Be. This does not, however, explain why the varying concentrations observed in the 2003/4 ramp leak out in such a manner as to produce a fairly constant concentration after a year of exposure in the 2002/3 ramp. It is also unclear why the concentration in the two uppermost layers are so different, and where the 10Be goes to if it dissolves. It probably cannot penetrate through the annual ice layers. There may also be processes involved which are connected to strong winds leading to air (and 10Be) movement in the firn. These questions must be addressed in follow-up experiments, in part, by taking surface samples from many different locations in the general vicinity of the SANAE base.

The time variation of the 10Be concentration in the 2003/4 ramp is approximately as expected, as is demonstrated by plotting it as a histogram onto the cosmic ray intensity of Fig. 1. It is arbitrarily normalized so that its variation has the same amplitude as that of the cosmic ray variation. In 1998 there is a big discrepancy with the cosmic ray intensity, with a much lower concentration than expected. This discrepancy cannot be attributed to any known effect. The 1994 concentration is also low. The other points are in general agreement with the cosmic ray intensity, but the 10Be concentration lags up to one year behind the cosmic ray inten-
Table 1. 10Be concentration measured in the two ramps as described in the text.

<table>
<thead>
<tr>
<th>Year</th>
<th>Label</th>
<th>Mass (g)</th>
<th>10Be (atoms/g x 10^4)</th>
<th>Mass (g)</th>
<th>10Be (atoms/g x 10^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2003/4 ramp</td>
<td>thickness (cm)/layer (cm)</td>
<td></td>
<td>2002/3 ramp with layer</td>
<td></td>
</tr>
<tr>
<td>1991(2)</td>
<td>OR1</td>
<td>1358/73/11</td>
<td>0.314 ± 0.019</td>
<td>OR2</td>
<td>1974/69/10</td>
</tr>
<tr>
<td>1992(3)</td>
<td>OR11</td>
<td>1018/69/3</td>
<td>0.264 ± 0.017</td>
<td>OR10</td>
<td>1018/69/3</td>
</tr>
<tr>
<td>1993(4)</td>
<td>OR1</td>
<td>890/69/1</td>
<td>0.982 ± 0.039</td>
<td>OR9</td>
<td>2174/82/7</td>
</tr>
<tr>
<td>1994(5)</td>
<td>NR9</td>
<td>922/94/1</td>
<td>1.431 ± 0.086</td>
<td>OR8</td>
<td>1070/77/5</td>
</tr>
<tr>
<td>1995(6)</td>
<td>NR8</td>
<td>950/108/6</td>
<td>1.531 ± 0.061</td>
<td>OR7</td>
<td>1344/94/6</td>
</tr>
<tr>
<td>1996(7)</td>
<td>NR7</td>
<td>1044/45/1</td>
<td>1.502 ± 0.046</td>
<td>OR6</td>
<td>856/477</td>
</tr>
<tr>
<td>1997(8)</td>
<td>NR6</td>
<td>890/101/a</td>
<td>0.793 ± 0.038</td>
<td>OR5</td>
<td>1320/63/3</td>
</tr>
<tr>
<td>1998(9)</td>
<td>NR5</td>
<td>1120/110/5</td>
<td>1.365 ± 0.048</td>
<td>OR4</td>
<td>2064/101/11</td>
</tr>
<tr>
<td>2000(1)</td>
<td>NR3</td>
<td>828/112/1</td>
<td>1.250 ± 0.066</td>
<td>OR3</td>
<td>2106/121/8</td>
</tr>
<tr>
<td>2001(2)</td>
<td>NR2</td>
<td>1295/85/6b</td>
<td>0.948 ± 0.035</td>
<td>OR2</td>
<td>1824/94/9</td>
</tr>
<tr>
<td>2002(3)</td>
<td>NR1B</td>
<td>1325/137/3</td>
<td>0.908 ± 0.031</td>
<td>OR1B</td>
<td>806/271</td>
</tr>
<tr>
<td>2003</td>
<td>NR1A</td>
<td>972/30/0</td>
<td>0.902 ± 0.040</td>
<td>OR1A</td>
<td>2164/150/0</td>
</tr>
</tbody>
</table>

a. Several thin layers: b, unidentified.

Conclusions

This pilot experiment has established a workable technique to sample ice from the ice shelf, but it has delivered unexpected first results which may be due to a variety of reasons. The experiment was repeated on 23–25 January 2005, using the same two ramps, but the results cannot be processed before July 2005. The first aim of this second attempt is to test repeatability and/or whether ageing effects can be seen after an additional year of exposure to the atmosphere. If these new results show that the concentration in the 2003/4 ramp is reduced to that of the 2002/3 ramp, it confirms the leakage hypothesis, and further cutting from the exposed ice shelf, as planned for the main experiment, will not be meaningful. If, however, these discrepancies are resolved and the reasons for them are properly understood, sampling from the shelf itself will begin. This will not be done in summer, but in September/October when there is still bay ice from the winter season below the shelf, so that the work, to be done in abseiling mode, can be guided from the top and bottom of the shelf.

This work was funded by the South African National Antarctic Programme through a research grant and logistical support. It was also supported by the Swiss National Science Foundation, while the Maryland component was funded by NSF grant ATM 1017181.