

Can high resolution climate simulations with the Community Atmospheric Model (CAM) offer a new perspective on 21st century scenarios?

Cécile Hannay, Julio Bacmeister, Rich Neale, John Truesdale, Kevin Reed, and Andrew Gettelman.

National Center for Atmospheric Research, Boulder

Motivation

Common wisdom

"The expectation is that increasing spatial resolution will generally cause the simulation to improve because of a more accurate topography, and a better large-scale circulation"

What does the high resolution buy us?
What is the impact for future projections?

At a glance

Model

Community Atmospheric Model (CAM5) CAM standalone with prescribed SSTs Horizontal resolutions: 1° and 0.25°

Time-slice experiments

Present-day conditions
 Observed SSTs: Merged Hadley-OI

• Future conditions
CESM SSTs: RCP4.5 & RCP8.5

Analysis focuses on precipitation and tropical cyclones

Precipitation, JJA

Asian Monsoon, JJA

Asian Monsoon, JJA

Red vector: Winds at 850 mb; Contour: Wind divergence

Seasonal pattern ⇔ High frequency data (daily)

• Seasonal pattern of precipitation

Precipitation frequency

Precipitation intensity

How often does it rain?

Precipitation frequency (%) = Number of rainy days (>1 mm/day)

Total number of days

How hard does it rain?

Precipitation intensity (mm/day) = $\frac{\text{Total amount of precipitation}}{\text{Number of rainy days (>1 mm/day)}}$

TRMM: Precipitation intensity and frequency (ANN)

In observations, precipitation amount is mainly determined by the precipitation frequency

Intensity and frequency: CAM (1°) versus obs

Intensity and frequency: CAM (025°) vs obs

Problem persists at higher resolution (despite some improvements)!

Extreme precipitation

PDFs of precipitation (August 2005)

Precipitation (mm/day)

CAM5 at 0.25 degree has some skills to simulate extreme precipitation

Courtesy Julio Bacmeister

Diurnal cycle of rainfall (JJA)

In observations:

Land: evening max

Ocean: early morning

max

At coarse resolution,

- Rains too early especially over land
- Diurnal cycle amplitude too weak

Diurnal cycle improves at higher resolution

Diurnal cycle of rainfall (JJA)

Tropical Cyclone Tracks

Observations: IBTrACS

- Tropical cyclone tracks identified by GFDL tracking algorithm
- CAM5 at 0.25 degree has some skills to simulate tropical cyclones

CAM5: 1 degree

CAM5: 0.25 degree

Courtesy: Kevin Reed [See also: Wehner et al. 2014, JAMES]

Storm Count: Tropical Storm, Hurricane, Major Hurricane.

What is the impact of resolution for future projections?

Time-slice experiments

- Present-day conditions
 Observed SSTs: Merged Hadley-Ol
- Future conditions
 CESM SSTs: RCP4.5 & RCP8.5

+ bias correction

We use the present-day SSTs bias as a correction for RCP SSTs (Use 12-month cycle correction).

Changes in precipitation intensity/frequency

In warmer climate: it rains harder but less frequently (Consistent with Trenberth et al. 2003)

Extreme precipitation in warmer climate

PDFs of precipitation at 0.25 degree (August)

Precipitation (mm/day)

Extreme precipitation are more intense in a warmer climate

Courtesy Julio Bacmeister

Tropical Cyclone count and intensity in warmer climate

But the most intense storms become more intense.

Courtesy: Kevin Reed

Conclusions

Mean climate:

- Mean precipitation bias is not much improved at higher resolution.
- Some biases even get worse (dry Micronesia bias, double ITCZ...)

Daily data:

- In CAM5: rains too often but not hard enough.

Despite some improvements, the problem persists at higher resolution.

Diurnal cycle

At coarse resolution, CAM fails to reproduce observed diurnal cycle

- Rains too early especially over land Diurnal cycle amplitude too weak
- Diurnal cycle improves at higher resolution but some bias remains

Extreme events

CAM at 0.25 degree has some skills to reproduce extreme precipitation and tropical cyclones

Conclusions

In a warmer climate:

- It rains harder but less frequently
- Extreme precipitation are more intense
- The number of tropical cyclones decreases but the most intense storms become more intense.

Thanks!