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These lectures
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Four parts:

• An introduction to spatial statistics

• Covariance choices for large data sets

• Multi-resolution spatial model

• Spatial statistics and inverse problems

Big ideas:

• Separate what you observe from what you want to see.

• Create a model for the unknown surface or curve

• Quantify uncertainty using a statistical model.



Outline
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• Basis function

• Least squares smoothers

• Gaussian processes and covariance functions

• Kriging as penalized least squares



Estimating a curve or surface.
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An additive statistical model:

Given n pairs of observations (xi, yi), i = 1, . . . , n

yi = g(xi) + εi

εi’s are random errors and g is an unknown, smooth function.

The goal is to estimate g based
on the observations



A two dimensional example
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Predict surface ozone where it is not monitored.

Ambient daily ozone

in PPB June 16,

1987, US Midwestern

Region.

−92 −90 −88 −86 −84

38
40

42
44

0

50

100

150



Representing a curve
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Start with your favorite m basis functions {b1(x), b2(x), . . . , bm(x)}

The estimate has the form

ĝ(x) =
m∑
k=1

βkbk(x)

where β = (β1, . . . , βm) are the coefficients.

The basis functions are fixed and so the problem is to just
find the coefficients.
Many spatial statistics problems have this general form or can be ap-

proximated by it.



Example of basis functions
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• Build a basis by translating and scaling a bump shaped curve

• Not your usual sine/cosine or polynomials!



Two Bases
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Least squares.
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Xi,j = bk(xi)

(ĝ(x1), ĝ(x2), . . . , ĝ(xn))T = Xβ and y = Xβ + ε

minimize over β:

min
β

n∑
i=1

(y − [Xβ]i)
2

Solution:

β̂ = (XTX)−1XTy

Spatial estimate:

ĝ(x) =
m∑
k=1

β̂kbk(x)



A specific example
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Some synthetic data: Yk = h(xk) + ek
h(x) = 9x(1− x)3
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xk are 150 unequally spaced points in [0,1]

h(x) = 9x(1− x)3 , ek ∼ N(0, (.1)2)



Varying basis size
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Problem: How to choose number of basis functions? Uncertainty of

estimate?



Penalized least squares.
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g(x) =
∑m
k=1 βkbk(x)

minimize over β:

Sum of squares(β) + penalty on β

min
β

n∑
i=1

(y − [Xβ]i)
2 + λβTQβ

Fit to the data + penalty for complexity/smoothness

• λ > 0 a smoothing parameter

• Q a nonnegative definite matrix.



More on Q
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• Q is an identity βTQβ =
∑

(βl)
2

• Choose Q so that βTQβ =
∑

(βl − βl−1)2

• Cubic smoothing spline type: βTQβ =
∫
(g
′′
(x))2dx

i.e. Qkl =
∫
b
′′
k(x)b

′′
l (x)dx

• Spatial model: Q−1
kl = exp(−|xk − xl|/θ)



Solution to penalized problem
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β̂ = (XTX + λQ)−1XTy

Also known as ridge regression



Varying smoothing parameter
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Cubic spline-type choice with 50 basis functions

Effective number of parameters (basis functions) depends on λ.
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Problem: How to choose λ ? Uncertainty of estimate?



A Normal World
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To describe g(x) as a Gaussian process, start with a covariance function:

ρk(x1,x2) = COV (g(x1), g(x2))

For the moment assume that E(g(x)) = 0.

A Gaussian process ≡ any subset of the field locations has
a multivariate normal distribution.

Fill in the elements of the covariance matrix using the locations and

the covariance function.

Specifying the covariance function (and the mean) is the recipe for

describing the Gaussian process.
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A simple covariance function: the exponential

ρk(x1,x2) = ρe−D/θ

D is the distance between the two locations x1 and x2

In general:

ρk(x1,x2) = ρe−||x1−x2||/θ

This depends on two parameters: ρ and θ.

• VAR( g(x)) = ρ

• COV(g(x1),g(x2)) falls to ≈ .36 of ρ when the distance is equal to θ.

• Correlations are just e−||x1−x2||/θ



Correlations among ozone
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In many cases spatial processes also have a temporal component. Here

we take the 89 days over the ”ozone season” and just find sample

correlations among stations.
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Families of correlation functions
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Matern:
φ(d) = ρψν(d/θ)) with ψν a Bessel function.

ν = .5, 1.0 , 2.0
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• ν smoothness at 0.

• ψν is an exponential for ν =

1/2 as ν →∞ Gaussian.

• As ν increases the process

is smoother.

Wendland:
Polynomial that is exactly zero outside given range.

Compactly supported Wendland covariance (d=2, k=3)



What do these processes look like?
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Matern (.5) Matern(1.0)
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What do these processes look like?
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Varying the smoothness:

Matern (.5) Matern(1.0)

Matern (2.0) Wendland (2.0)



A statistical model for spatial data
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yi = g(xi) + εi

Observation = fixed component + spatial process + error

• εi’s are uncorrelated N(0, σ2)

• g(x) mean zero process V AR(g(x)) = ρ

• Covariance function ρkθ(., .) with θ some parameters.

Covariance matrix of g at observations: Ki,j = k(xi,xj)



Kriging
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Assume that the covariance parameters are known.

Traditionally:

ĝ is derived as the conditional expectation of g given y

e. g. ĝ(x) = E[g(x)|y]

Here is another way to view this estimator.



Kriging as penalized least squares:
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Key insights are

• Basis functions come from covariance function bj(x) =

k(x,xj)

• penalty comes from inverse covariance matrix Q = K−1

Find β by:

min
β

n∑
i=1

(yi − [Xβ]i)
2 + λβTQβ

Fit to the data + penalty for complexity/smoothness

λ = σ2/ρ and recall Ki,j = k(xi,xj)



Simplifying
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min
β

n∑
i=1

(yi − [Kβ]i)
2 + λβTK−1β

β̂ = (K + λI)−1y

ĝ(x) =
∑
j k(x,xj)β̂j



Uncertainty
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Closed form formula for the standard error for ĝ(x) using

• the Gaussian process assumption for g

• the normal assumption for errors.

standard error for ĝ(x):

ρ(1− u(x)T(K + λI)−1u(x))

u(x)T = [k(x, x1), k(x, x2), . . . , k(x, xn)]



Likelihood for statistical parameters
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y ∼MN(0, (ρK + σ2I))

Likelihood
1
√

2π
n e−

1
2(y)T (ρK+σ2I)−1(y) (detρK + σ2)−1/2
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log Likelihood

−
1

2
(y)T (ρK + σ2I)−1(y)−

1

2
log(det(ρK + σ2I)) + stuff

With λ = σ2/ρ

−
1

2ρ
(yT (K + λI)−1y)−

1

2
log(det(K + λI)) +−

n

2
log(ρ) + stuff

• Can maximize this analytically for ρ

• K may depend on other parameters e.g. scale, shape



log Likelihood for example
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Curve estimate with uncertainty

D. Nychka Spatial statistics 30

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

●

●
●

●●●

●●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●
●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●
●

●

Matern covariance

smoothness = 2, θ̂ = .98, σ̂ = .08



Thank you!
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