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Introduction

e Rainfall and Regional climate NARCCAP
e An additive model and Hilbert spaces.

e Some cartoons and a spatial model

e LatticeKrig — properties

e Future changes in the seasonality

e Tomography of the solar corona
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Observed mean summer precipitation
1720 stations reporting, "mean’” for 1950-2010

Observed JJA Precipitation (.1 mm)
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T he statistical problem

Observed JJA Precipitation (.1 mm)

What is the summer rainfall at places
where there is no datar

What is the uncertainty in the esti-
mates?
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A climate model grid box (7?)
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An approach to Regional Climate

e Nest a fine-scale weather model in part of a global model’s
domain.

Regional model simulates higher resolution weather based on the global
model for boundary values and fluxes.

A snapshot from the
3-dimensional RSM3
model (right) forced
by global observa-
tions (left)

Jan/1/2000 0:00

0.54 B4 54

e Consider different combinations of global and regional mod-
els to characterize model uncertainty.
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NARCCAP — the design

4GCMS x 6RCMs:

12 runs — balanced half fraction design

e Driven by observations
B 2x 2 subset

GLOBAL REGIONAL MODELS
MODEL

MM5I | WRF | HADRM | REGCM | RSM | CRCM
GFDL o o O
HADCM3 O ® ®
CCSM ® N H
CGCM3 N ® H
Reanalysis [ [ ® ® o o

A designed experiment is amenable to a statistical analysis
and can contain more information.
But just 2-d temperatures fields are 72Gb of data.
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Climate change

How will the seasonal cycle for temperature change in
the future?
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Additive model for curve fitting

Connection with data:

Y; = g(z;) + e
or

Yy, — Li(g) +e;
e Observations made at irregular locations
— Or as a linear functional

e ... and some random error added.

Representing the surface: g(x) = ¥; ¢;(x)c;
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Building a curve from bumps
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Single bump
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Building a curve from bumps
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Building a curve from bumps
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Building a curve from bumps
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Building a curve from bumps
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Building a curve from bumps
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16 bumps — all different heights
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Building a curve from bumps
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Adding them together

bumps = basis functions, bump heights = coefficients
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Going to two dimensions

Example of a 2-d bump
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A lattice example

e [ hree levels

ize edges effects

Inm

e Extra points on margins to m

ints
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A statistical model for y and g

D. Nychka LatticeKrig

19



e X a regression matrix with X; ; = ¢;(x;)
—or some other linear operator applied to g, X, ; = L;(¢;)
Observations:
y=Xc+e e~ MN(0,o°I)
Process;

9(x) = Y ¢j(a)ej, e~ MN(0,pQ 1)
J

Potential Priors:
[p, 02, Q]

D. Nychka LatticeKrig
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Part of a Gibbs sampler

“Full conditional for coefficients”: [cl|y, p,o?, Q]

Multivariate normal with mean:
c=(X"X+(c2/p)Q) X"y

Precision:

(1/eHX X +(1/p)Q
e Create a model where all matrices are sparse and finding ¢ is fast
e Sampling from full conditional is also fast.

e Likelihood/posterior computation for p, o2, @Q dominated by
det((1/02) X1 X + (1/p)Qu))

D. Nychka LatticeKrig 21



More about Q

Some coefficients: Some weights:
N e By e h
€O Cx €37 v =l e =il

C4 -, ol

A spatial autoregression:
B a matrix where each row has 4 nonzero weights corresponding to the
first order neighbors and diagonal element, a

Bc = iid N(0,1)
e a needs to be greater than 4, related to a range parameter.

e Precision matrix Q@ = BT B Covariance matrix = Q 1 =B~ 1B~
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Applying the basis functions

16x16 example with a = 4.01

Coefficients on the lattice Expanding with basis functions

=
=2

Cp.— 2 Opla oy
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More than one level:

Adding different resolutions together:

00 05 10 15
I I

NP
\I/ g(x) = p(arg91(x)+asgo(x)+azgsz(x)+...)
=N - a1B1 By 0 0
\VW Q@ = (1/p) 0 ap B By 0
Lo ) 0 azBi B3 |

0:0'.2'015;, 1.0 £155 ) ~--150

L

e p marginal variance of the process

-1.0

e a1,an, 3 relative weight for each level.
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Danie G. Krige
South African Mining Engineer who pioneered the field of geostatistics.

Kriging= Krigle] + ing
Methodology for estimating a surface based on irregular observations.

A view of Kriging as a minimization problem
Kimeldorf and Wahba (1970)

(fit of the surface to the data) + (roughness of the surface)

e Want a surface that tracks the observations but is not overly rough
and irregular.
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T he equivalent variational problem:
mcin(y — XC)T(y — Xec) + )\CTQC

e y the data, X matrix of basis functions, ¢ coefficients, @

roughness matrix.

e () is a penalty matrix for ¢
Minimizer: ¢ = (X1TX 4 (62/p)Q) 1 X1y

X is really any matrix that connects the data to the coeffi-
cients,. (E g Li(qg))
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Benefits of a multi-resolution

Approximating an exponential covariance
Correlation functions for 6 levels and a target exponential
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distance

Weighting by 2~/€vel/2

Correlation functions adding levels and the target exponential

correlation
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0.0

0.1

0.2 0.3 0.4 0.5

distance
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Timing
On my mac laptop and in R
— i.e. a single core and LatticeKrig

e Computation may be dominated by : matrix setup
normalization to stationarity
Cholesky decomposition

e For 20,000 observations:
the standard Kriging (dense Cholesky) is &~ 20 minutes
LatticeKrig (sparse Cholesky) is &~ 10 seconds.
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NA Summer rainfall
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T hree levels of resolution

e ~ 4000 basis functions total.

likelihood

kriging”

parameters found by maximum

e coefficients found by

e Sstatistical

e uncertainty found by Monte Carlo ensemble
e includes linear adjustment for elevation
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Estimated summer rainfall

Predicted JJA rainfall (cm)

(@) (b)

1%

5 10 15 20 25 30
cm

Pointwise standard errors (percent)

6 8 10 14 18
Percent
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Climate change

How will the seasonal cycle for temperature change in
the future?
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Back to NARCCAP

e A 2 x 2 subset of NARCCAP (4 global/regional combinations)
e (Future - Present) seasonal cycle expand in 4 principle components

. gives 4 "amplitude” spatial fields for each model.

e Approximately 9000 spatial locations

Seasonal PCs
(future - present)

Standardized Component

0.0

0.2

T T
0.4 0.6

fraction of year

0.8

1.0

NARCCAP domaln
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Coefficient fields — CRCMccsm

coefficient 1 coefficient 2

There are four of thesel
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Example for Boulder grid box

change in season = a1 PC1 4+ --- + a4 PCy

Results for one regional model (CRCM /ccsm)

4.0

3.0 % %35
|

2.5

Change in degrees C

2.0

1=5

fraction of year

Solid - Raw, Dashed - projection to 4 EOFS/PCs,
With spatial smoothing
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Spatial model

e Four coefficients of seasonal profile for the four model
combinations — and at each grid box

4x 4 = 16 fields total each with 9K locations.

e Smooth the 16 fields with LatticeKrig model using covariance close
to a thin plate spline.
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Results for Boulder grid box and CRCM /ccsm

4.0

3.0

Change in degrees C
2.5

2.0

15

fraction of year

Solid - Raw, Dashed - projection to4 EOFS/PCs,
With spatial smoothing
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Results

e Thin plate spline-like model (1 level 120 x 55 ~ 6000 basis functions)
e )\ found by MLE (equivalent to sill and nugget)
e Conditional simulation of fields ( facilitates nonlinear statistics)

R?2 for first PC Inference for Boulder grid box
CRCMccsm CRCMcgcm3

CRCMcgcmS
WRFGcesm  WRFGegem3

1.00

0.95

Change in degrees C

0.90

15 20 25 30 35 40

0.85 0.0 0.2 0.4 0.6 0.8 1.0

fraction of year

0.80
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Electron density in the corona

(Luke Burnett, Kevin Delmasse, Sarah Gibson)
e Observations are integrals through corona.
e Goal is reconstruction of the density based on different viewing angles.

Equitorial slice for electron density
(Predictive Science product time = 2144t" Carrington rotation)

I I I I I I I
12 0 50 100 150 200 250 300 350

6 8. w10 8. . 10
log10 intensity log10 intensity

Degrees
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Observations of Corona
Two viewing angles each with 16 lines of sight: (2/16)




Reconstructions of simple phantom

LatticeKrig with ~ 5000 basis functions,
50 angles with 40 lines of sight each.

True Estimate 50/40 views
Estimate first 16/40 views Estimate with 5% error

Q00

41



Summary

e Computational efficiency gained by compact basis
functions and sparse roughness (precision) matrix.

e Multi-resolution can approximate standard covariance
families (e.g. Matern)

e Easy to generate uncertainty measures.

Exploit parallel strategies for larger problems

See LatticeKrig contributed package in R
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T hank you!
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