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Summary

Regional Climate models
Precipitation extremes
Adding a spatial element
High performance computing

Challenges: NonGaussian distributions, functional data

How do we reduce dimensions? How do we borrow strength?

See Climate Extremes chapter (Zwiers et al ) in Climate Science for Serving Society:
Research, Modeling and Prediction Priorities
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Precipitation extremes for Boulder, CO

Daily precipitation amounts for Boulder
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25 year daily return level:
In any given year daily precipitation has a 1/25 chance of exceeding this
level.

How does this vary over space?
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PART 1: ;
Climate change and regional

climate models
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An approach to Regional Climate

e Nest a fine-scale weather model in part of a global model’s
domain.

Regional model simulates higher resolution weather based on the global
model for boundary values and fluxes.

A snapshot from the
3-dimensional RSM3
model (right) forced
by global observa-
tions (left)

Jan/1/2000 0:00

0.54 B4 54

e Consider different combinations of global and regional mod-
els to characterize model uncertainty.
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Regional simulations for N. America

North American Regional Climate Change and Assessment Program

(NARCCAP)

4GCMS x 6RCMs:
12 runs — balanced half fraction design

Global observations x 6 RCMs
X High resolution global atmosphere

GLOBAL REGIONAL MODELS
MODEL

MM5I | WRF | HADRM | REGCM | RSM | CRCM
GFDL o o O
HADCM3 o o o
CCSM ® o @
CGCM3 o o o
Reanalysis [ = o [ H o

NCAR grid over land is ~ 8-9K grid points.
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Study region

NARCCAP domain and Rocky Mountain MMJ5I grid cells.

(About 800 grid points in subregion.)
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How do extremes of daily summer rainfall vary over space
and and over climate models?
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PART 2:
Estimates of climate extremes
leading to spatial fields

e [ hree parameters of Generalized Pareto

e Nonparametric density estimates
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Precipitation extremes for Boulder

Daily precipitation amounts for Boulder
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25 year daily return level:
In any given year daily precipitation has a 1/25 chance of exceeding this
level.

D. Nychka Climate Extremes, Computing Extremes 10



Generalized Pareto Fit:

e
o

Fit to observations >
2 Cm

with 95% CI for
25 year return level
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Generalized Pareto: depends on three parameters:

=
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e (1) scale (o), (2) shape( &) and (3) probability of exceeding threshold
(P(Z > p)) -

e With these one can find all quantiles, means and return levels.
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Functional data and space.

How do to manage the estimated
distributions at many locations?

e Borrow strength from neighboring
locations

e Reduce dimensions to the three
Generalized Pareto parameters.

u a location in the region:
e scale(u)
e shape(u)
e prob exceedence (u)
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Beyond the Pareto

Probability density function:
pdf () = /%)

Estimate g as a flexible spline function

and in the log scale of precipitation. i.e. x = log( precip)

e Constrain the spline function to extrapolate as a linear function — this
implies polynomial tail behavior for the density in the untransformed

scale.
e logspline — Kooperberg R package, Stone et al (1997)
e Chong Gu spline density estimate

e Adapt gam, mgcv — S. Woods R packages
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Approximate, but fast, log densities

e Apply a Possion generalized linear model to a finely binned histogram
of counts

e Use a penalized, cubic spline smoother and estimate the smoothing
parameter by approximate cross validation.

e Normalize estimate of g to integrate to one.
With lots of knots this is also a spatial process model.

log Penalized likelihood,

N
ming (Z —el9) 4 Yidj — log(yj!)> — A (/[x
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z; bin midpoints, y; bin counts, g; = g(z;)
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Fit to Boulder data
T hree different smoothing parameters:

LLog scale Raw scale:
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Cross validation choice for M\ is effected by discretization at
small precipitation amounts.
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log densities
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log spline rough , log spline smooth, Generalized Pareto
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Return Levels

Boulder daily rainfall
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D. Nychka Climate Extremes, Computing Extremes 17



PART 3: Back to NARCCAP
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Back to I\_IARCCAP
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e Four regional models (MM5I, RCM3, WRFP, ECPC) that are driven
by observed atmosphere at the boundaries of the NARCCAP domain.

Elevation (m)

e 20 years of daily downscaled weather about 800 grid points for each
model.

How do extremes of daily summer rainfall vary over space
and and over climate models?
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Fitted log spline densities
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Functional boxplots
See Yang and Genton (2011)

MMB5I fbplot RCM3 fbplot
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Principle components

First three principle components
of log densities
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Use these as basis functions to refit models using standard
GLM maximum likelihood
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T he spatial problem

Coefficients vary over space, are noisy and are correlated.
We have 4 Models x 3 coefficients = 12 spatial fields.

First coefficient for MM5I

=20 e Transform each climate models
coefficients to be uncorrelated.

e Smooth transformed coefficients
using spatial statistics.
-100 (Approximate thin plate spline.)

- —80

-120
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Reconstucting the Boulder grid box

log spline , GLM with 3 basis functions,
smoothed coefficients
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25 year return surface

" posterior mode” for MM5I model.
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Uncertainty
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Boulder grid box 25 year return

Precip (cm)
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Summary

e Statistical methods for estimating and quantifying uncertainty in the
tail behavior of climate distributions.

e [ hese are different from traditional climate statistics and require bor-
rowing strength and dimension reduction to make them work
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PART 4:

Large spatial data sets

If I have to wait too long for my answer I forget my question.
— Rich Loft
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T he Yellowstone supercomputer.

L, ~72K cores = 4536 (nodes) x 16 (cores)
and each core with 2Gb memory
16 Pb parallel file system

e Core-hours are available to the NSF geosciences community with a

friendly application process for student allocations.
e Supports R in both interactive and batch mode.
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T he Master R session.

In R ...
library (Rmpi)
# Spawn 4 slaves
mpi.spawn.Rslaves(nslaves=4)
# Broadcast the function to all slaves

mpi.bcast.Robj2slave(lambdaKrig)
# apply this function to 100 tasks (each slave will get about 25)

output <- mpi.iapplyLB(1:100, lambdaKrig)
output is a list (100 components) with the result for each case.
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Are many R slave processes are feasible?

e Rmpi used to initiative many parallel, slaved R sessions

from within a master R session.

e [ime to initiate 100 - 1000 slaves nearly constant at 3 seconds
e Slaves lose little time reading common data files.

e Median execution time of task per slave is nearly constant.
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Is a standard spatial analysis possible?

Embarrassing parallel steps:

Parameter estimation: Searching parameter space to maximize a like-
lihood or minimize cross validation mean square error.

Computing prediction error: Monte Carlo sampling from the error
distribution (a.k.a. conditional simulation).

Iterate between spatial fitting and temporal fitting for space-time
data
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T hank you!

=
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