

10th International Carbon Dioxide Conference 2017 Interlaken, Switzerland, 21 - 25 August 2017

> Fifteen years after TransCom3: are global CO₂ inverse calculations robust?

> > Benjamin Gaubert¹, Britton B. Stephens¹,

Andrew R. Jacobson², Sourish Basu², Frederic Chevallier³, Christian Roedenbeck⁴, Prabir Patra⁵, Tazu Saeki⁵, Ingrid van der Laan-Luijkx⁶, Wouter Peters⁶, David Schimel⁷ and the HIPPO Measurements Team

¹National Center for Atmospheric Research, NCAR, Boulder, CO, USA

²University of Colorado Boulder and NOAA Earth System Research Laboratory Boulder, CO, USA.

³Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre-Simon Laplace, CEA-CNRS-UVSQ, Gif sur Yvette, France.

⁴Max Planck Institute for Biogeochemistry, Jena, Germany.

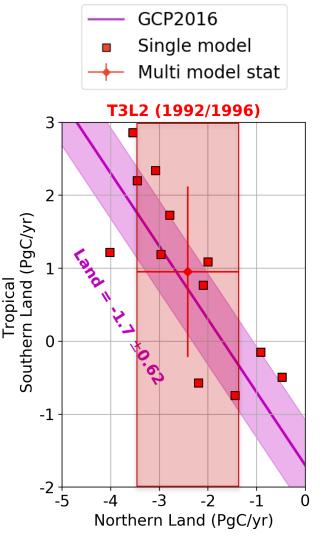
⁵Department of Environmental Geochemical Cycle Research, JAMSTEC, Yokohama, Japan.

⁶Meteorology and Air Quality, Wageningen University, Wageningen, Netherlands.

⁷Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.

Towards robust regional estimates of CO₂ sources and sinks using atmospheric transport models

Kevin Robert Gurney*, Rachel M. Law†, A. Scott Denning*, Peter J. Rayner†, David Baker‡, Philippe Bousquet§, Lori Bruhwiler||, Yu-Han Chen¶, Philippe Ciais§, Songmiao Fan#, Inez Y. Fung[†], Manuel Gloor**, Martin Heimann**, Kaz Higuchi††, Jasmin John[†], Takashi Maki‡‡, Shamil Maksyutov§§, Ken Masarie||, Philippe Peylin§, Michael Prather|||, Bernard C. Pak|||, James Randerson¶¶, Jorge Sarmiento#, Shoichi Taguchi##, Taro Takahashi^{††} & Chiu-Wai Yuen**


🚧 © 2002 Macmillan Magazines Ltd

NATURE VOL 415 7 FEBRUARY 2002 www.nature.com

The ensemble approach: the multi-model mean and standard deviation suggest a strong northern land carbon uptake

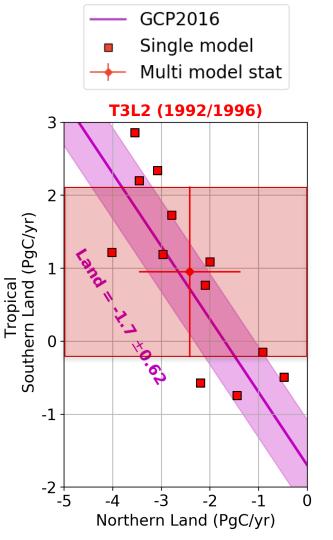
Northern Extra-tropical land flux: -2.42 +/- 1.09 PgC/yr

Gurney et al. 2002, 2004

Towards robust regional estimates of CO₂ sources and sinks using atmospheric transport models

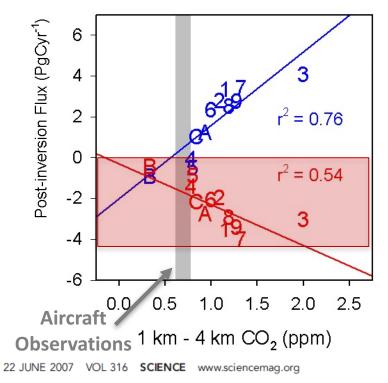
Kevin Robert Gurney*, Rachel M. Law†, A. Scott Denning*, Peter J. Rayner†, David Baker‡, Philippe Bousquet§, Lori Bruhwiler||, Yu-Han Chen¶, Philippe Ciais§, Songmiao Fan#, Inez Y. Fung^{*}, Manuel Gloor**, Martin Heimann**, Kaz Higuchi††, Jasmin John^{*}, Takashi Maki‡‡, Shamil Maksyutov§§, Ken Masarie||, Philippe Peylin§, Michael Prather|||, Bernard C. Pak|||, James Randerson¶¶, Jorge Sarmiento#, Shoichi Taguchi##, Taro Takahashi^{**} & Chiu-Wai Yuen**

🚧 © 2002 Macmillan Magazines Ltd

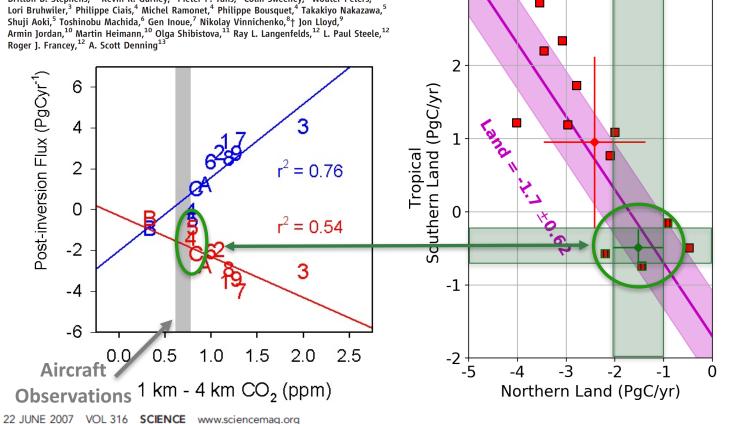

NATURE | VOL 415 | 7 FEBRUARY 2002 | www.nature.com

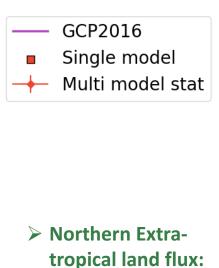
The ensemble approach: the multi-model mean and standard deviation suggest a strong northern and a weak tropical land carbon uptake

Northern Extra-tropical land flux: -2.42 +/- 1.09 PgC/yr


Tropical and southern land flux: 0.95 +/- 1.22 PgC/yr

Gurney et al. 2002, 2004


Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO₂


Britton B. Stephens, ¹* Kevin R. Gurney,² Pieter P. Tans,³ Colm Sweeney,³ Wouter Peters,³ Lori Bruhwiler,³ Philippe Ciais,⁴ Michel Ramonet,⁴ Philippe Bousquet,⁴ Takakiyo Nakazawa,⁵ Shuji Aoki,⁵ Toshinobu Machida,⁶ Gen Inoue,⁷ Nikolay Vinnichenko,⁸† Jon Lloyd,⁹ Armin Jordan,¹⁰ Martin Heimann,¹⁰ Olga Shibistova,¹¹ Ray L. Langenfelds,¹² L. Paul Steele,¹² Roger J. Francey,¹² A. Scott Denning¹³

Weak Northern and Strong Tropical Land Carbon Uptake from Vertical **Profiles of Atmospheric CO₂**

Britton B. Stephens,^{1*} Kevin R. Gurney,² Pieter P. Tans,³ Colm Sweeney,³ Wouter Peters,³ Lori Bruhwiler,³ Philippe Ciais,⁴ Michel Ramonet,⁴ Philippe Bousquet,⁴ Takakiyo Nakazawa,⁵ Shuji Aoki,⁵ Toshinobu Machida,⁶ Gen Inoue,⁷ Nikolay Vinnichenko,⁸† Jon Lloyd,⁹ Armin Jordan,¹⁰ Martin Heimann,¹⁰ Olga Shibistova,¹¹ Ray L. Langenfelds,¹² L. Paul Steele,¹² Roger J. Francey,¹² A. Scott Denning¹³

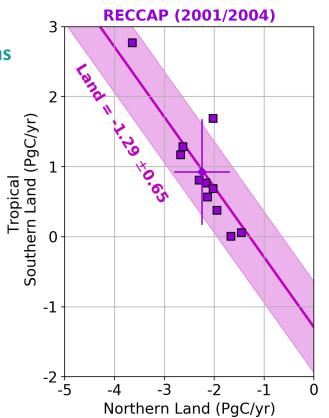
T3L2 (1992/1996)

> Tropical and southern land flux: -0.49 +/- 0.3 PgC/yr

-1.52 +/- 0.64

PgC/yr

Global atmospheric carbon budget: results from an ensemble of atmospheric CO₂ inversions


P. Peylin¹, R. M. Law², K. R. Gurney³, F. Chevallier¹, A. R. Jacobson⁴, T. Maki⁵, Y. Niwa⁵, P. K. Patra⁶, W. Peters⁷, P. J. Rayner^{1,8}, C. Rödenbeck⁹, I. T. van der Laan-Luijkx⁷, and X. Zhang³

"Four-year mean fluxes are <u>reasonably</u> consistent across inversions at global/latitudinal scale"

Northern Extra-tropical land flux: -2.25 +/- 0.58 PgC/yr
 Tropical and southern land flux: 0.93 +/- 0.9 PgC/yr

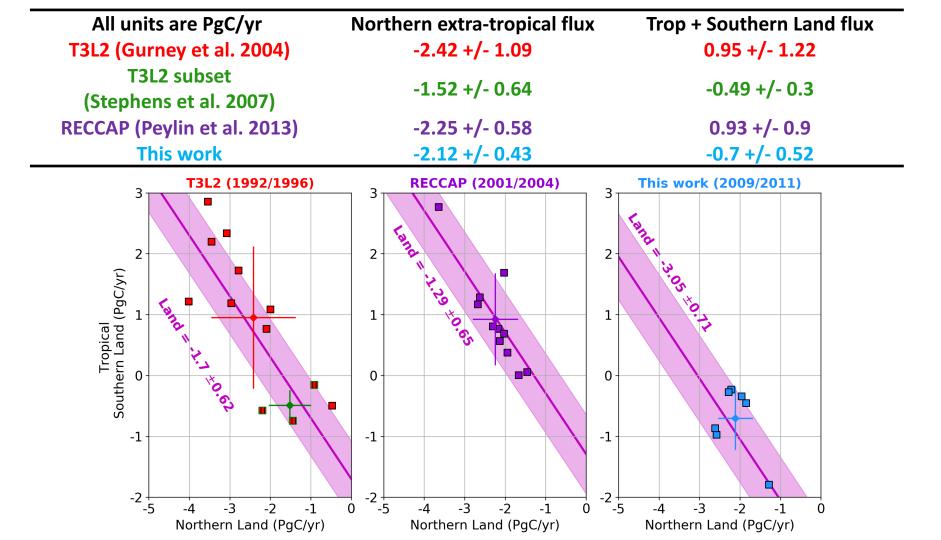
Biogeosciences, 10, 6699–6720, 2013 www.biogeosciences.net/10/6699/2013/ doi:10.5194/bg-10-6699-2013 © Author(s) 2013. CC Attribution 3.0 License.

NIVERSITÄT ERN	10th International Carbon Dioxide Conference 2017
ESCHGER CENTRE IMATE CHANGE RESEARCH	Interlaken, Switzerland, 21 - 25 August 2017

Are inverse models still highly dependent on transport errors and a priori assumptions ?

1. Intercomparison of modelled a posteriori fluxes

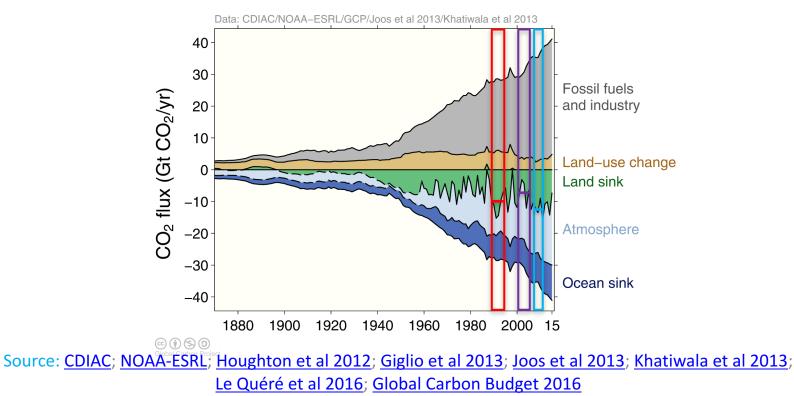
- > Large-scale constraints presented by Global Carbon Project included for comparison
- 2. CO₂ modelled after flux optimisation is compared to HIPPO observations


UNI	VERSITÄT	
0.00		

10th International Carbon Dioxide Conference 2017

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

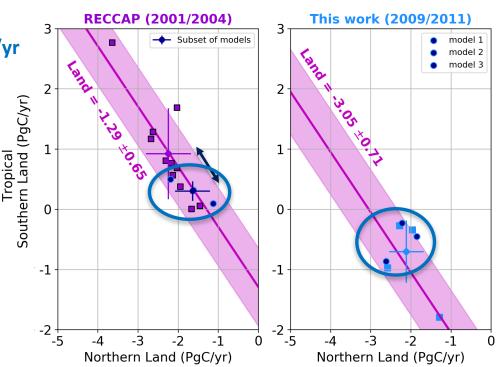
Interlaken, Switzerland, 21 - 25 August 2017

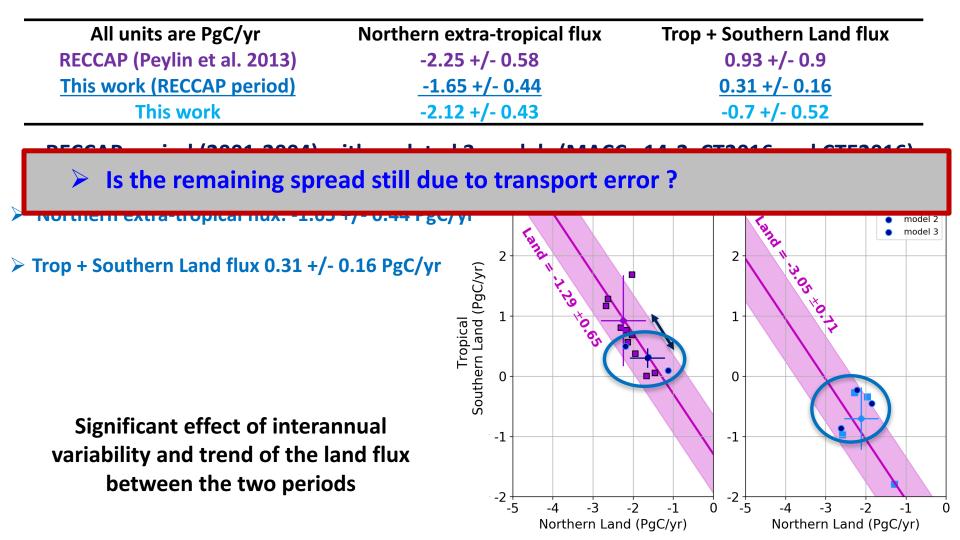

Modelling system	References	Grid Spacing	Transport Model	Meteorological fields
MACC-II (v14r2) CAMS (Copernicus)	Chevallier et al. (JGR 2010; GMD 2013)	3.75° x 1.875°	LMDZ	ECMWF wind
Jena (S04_v4.1)	Rödenbeck (2005)	4° x 5°	TM3	ERA interim
CTE2016	van der Laan-Luijkx et al. (2017)	1° x 1°	TM5	ERA interim
CT2016	Peters et al. (2007) with updates documented at http://carbontracker.noaa.gov	1° x 1°	TM5	ERA interim
ACTM (IEA & CDIAC FF)	Saeki and Patra (2017)	T106 (1.125° x 1.125°)	ACTM	NCEP2
TM5-4DVar	Basu et al. (2013)	3° x 2°	TM5	ERA interim

GLOBAL CARBON

Global carbon budget

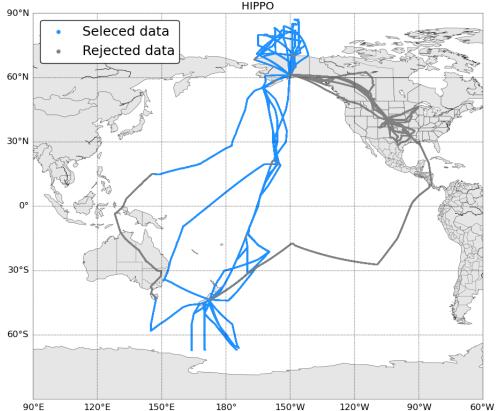
The carbon sources from fossil fuels, industry, and land use change emissions are balanced by the atmosphere and carbon sinks on land and in the ocean


All units are PgC/yr	Northern extra-tropical flux	Trop + Southern Land flux
RECCAP (Peylin et al. 2013)	-2.25 +/- 0.58	0.93 +/- 0.9
This work (RECCAP period)	<u>-1.65 +/- 0.44</u>	<u>0.31 +/- 0.16</u>
This work	-2.12 +/- 0.43	-0.7 +/- 0.52


RECCAP period (2001-2004) with updated 3 models (MACC v14r2, CT2016 and CTE2016)

Northern extra-tropical flux: -1.65 +/- 0.44 PgC/yr

Trop + Southern Land flux 0.31 +/- 0.16 PgC/yr

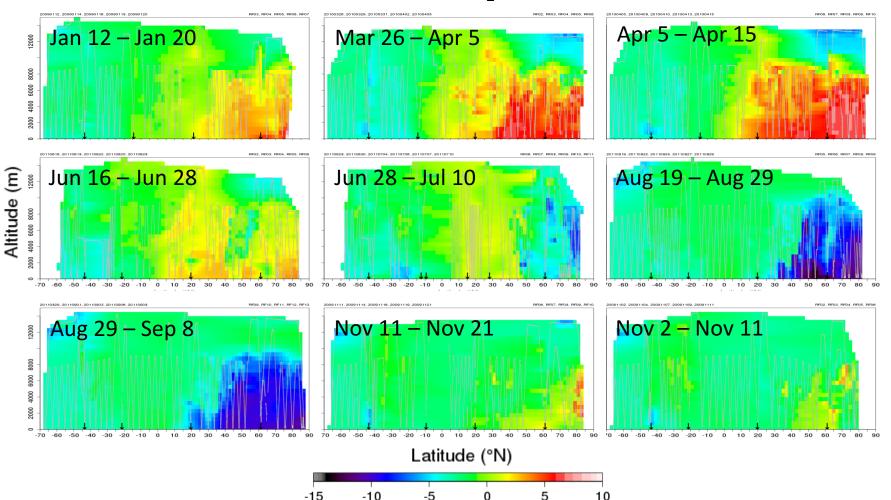

Significant effect of interannual variability and trend of the land flux between the two periods

Evaluation of posterior CO₂ concentration vs. HIPPO data

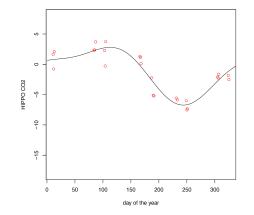
Provide large scale CO₂ measurements with a good coverage coverage in latitude, time, and vertical gradients

≻Filter out:

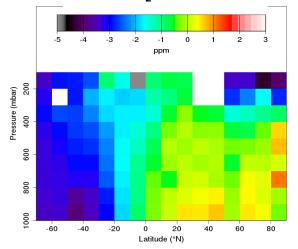
continental boundary layer,

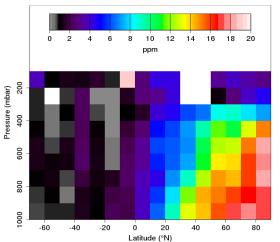

✤ airports local pollution,

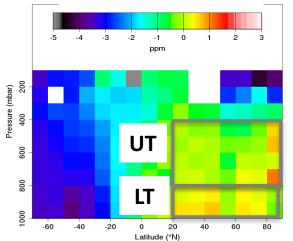
✤ stratospheric air



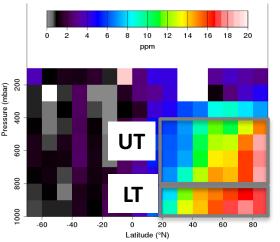
Wofsy SC. 2012. HIPPO Merged 10-second Meteorology, Atmospheric Chemistry, Aerosol Data (R_20121129). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., U.S.A. doi: 10.3334/CDIAC/hippo_010 (Release 20121129) 1. Detrend the CO2.X mask (recommended) time series using Mauna-Loa trend component

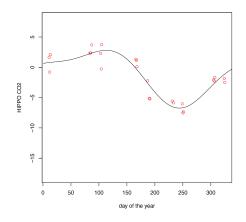

Detrended HIPPO CO₂ Observations

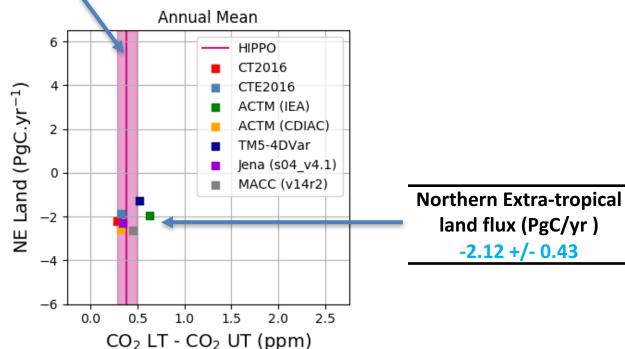

- 1. Detrend the CO2.X mask (recommended) time series using Mauna-Loa trend component
- Fit of the time series for each box (5 degrees latitude and 100 hPa), using 2 harmonics

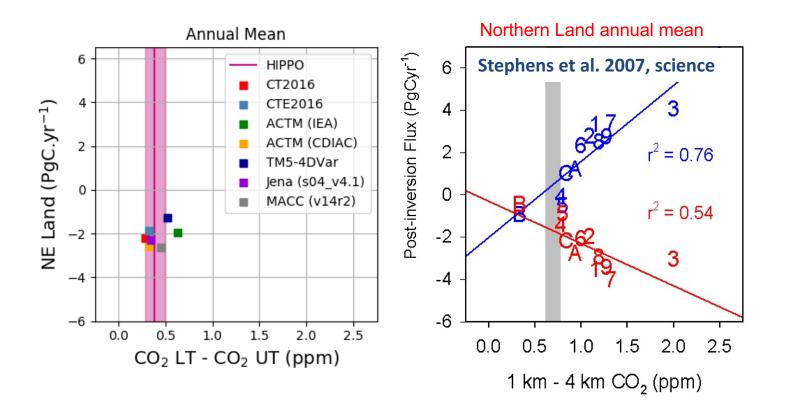

HIPPO CO₂ Annual Mean

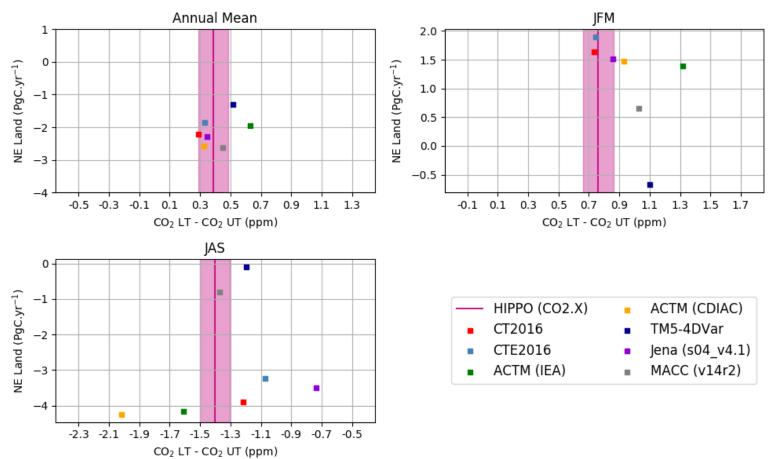
HIPPO CO₂ Seasonal amplitude

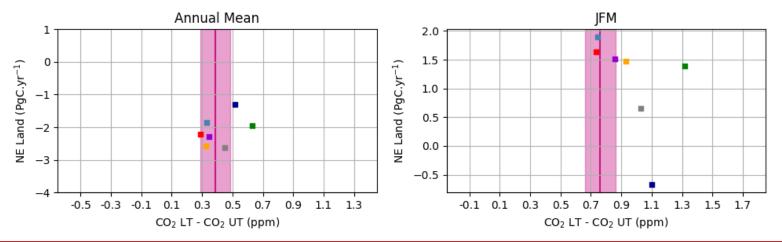



- 1. Detrend the CO2.X mask (recommended) time series using Mauna-Loa trend component
- Fit of the time series for each box (5 degrees latitude and 100 hPa), using 2 harmonics
- 3. Focus on vertical gradients
 - Northern Extratropical Lower Troposphere (LT, surface to 800hPa) and Upper Troposphere (UT, 800hPa to 400hPa)
- 4. Weighting average using cos(latitude)
- 5. Repeat this for every model output using CO2.X mask

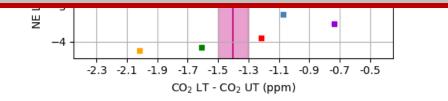

HIPPO CO₂ Annual Mean

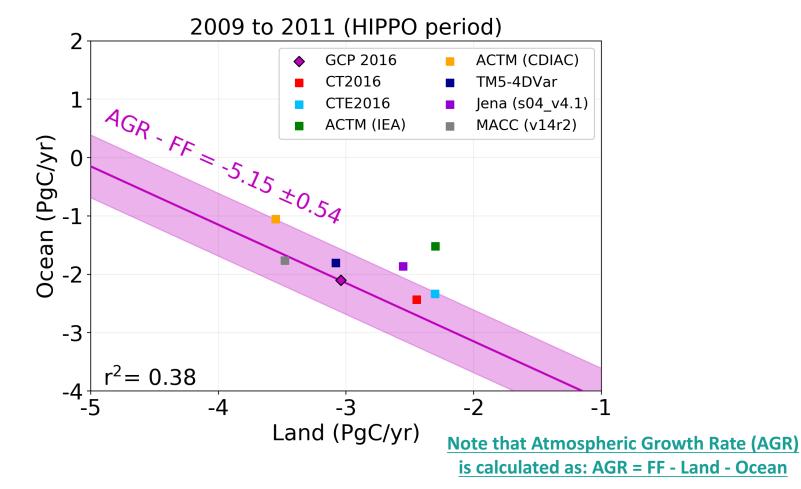


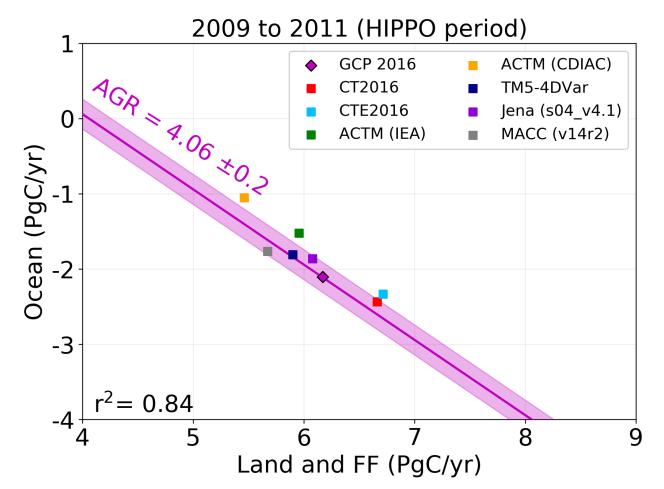


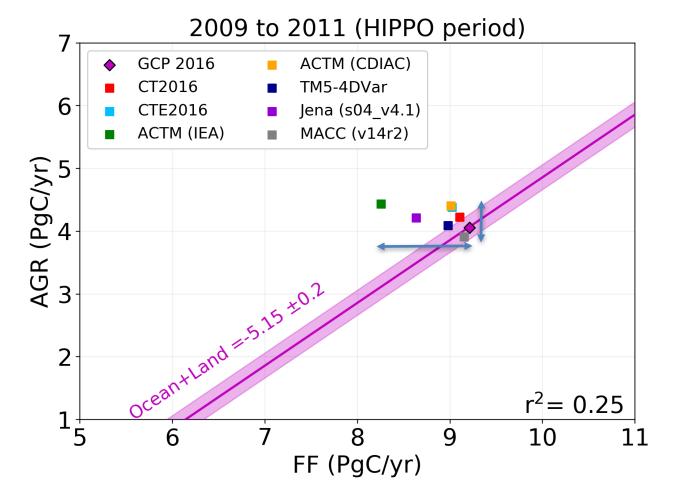


Observations of NE CO₂ vertical gradients







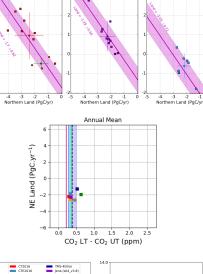

Large improvements in representing annual mean CO₂ vertical gradients
 Retrieved fluxes do not show vertical error dependence

 what is driving remaining spread in annual mean model estimates?

Years

Atmospheric Growth Rate

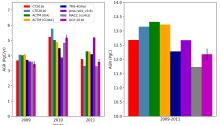
2009-2011 14.0 CT2016 TM5-4DVar 7 -CTE2016 Jena (s04_v3.8) ACTM (IEA) MACC (v14r2) 13.5 -ACTM (CDIAC) GCP 2016 6 -13.0 -5 -12.5 -AGR (PgC/yr) AGR (PgC) 12.0 11.5 -2 · 11.0 -1 -10.5 -10.0 0 -2009-2011 2009 2010 2011


ICDC 10

Take home messages

10th International Carbon Dioxide Conference 2017 Interlaken, Switzerland, 21 - 25 August 2017

- ➢ Analysis of carbon fluxes estimated by a set of inverse models show convergence on latitudinal distribution NE land flux of -2.12 +/- 0.43 and a tropical + southern land of -0.7 +/- 0.52. Both NE and Trop/SE model spread have been reduce by 60 % since the Transcom experiment
- > The transport errors are not clearly responsible for those fluxes differences


- Error in prior Fossil Fuel emissions is compensated by changes in other estimates such as AGR, or land sink [Saeki and Patra 2017]
- ➢ The spread in prior FF emissions and AGR (~1PgC/yr) are larger than GCP uncertainty estimates (~0.5 PgC/yr) and of similar magnitude to spread in land and ocean fluxes

RECCAP (2001/2004)

This study (2009/2011

T3I 2 (1992/1996

Thanks for your attention

