Verification within Complexity: Comparing Spatial Fields

Eric Gilleland
Research Applications Laboratory
National Center for Atmospheric Research
Forecasting from Complexity Workshop
Institute for Mathematics and its Applications (IMA)
Wednesday, 25 April 2018
Minneapolis, Minnesota, U.S.A.
National Center for Atmospheric Research

Background

Above Figure from Beth Ebert

Background

Traditional score	geom001/002/004	geom003	geom005
Accuracy	0.95	0.87	0.81
Frequency bias	1.00	4.02	8.03
Multiplicative intensity bias	1.00	4.02	8.04
RMSE (mm)	3.5	5.6	6.9
Bias-corrected RMSE (mm)	3.5	5.5	6.3
Correlation coefficient	-0.02	-0.05	0.20
Probability of detection	0.00	0.00	0.88
Probability of false detection	0.03	0.11	0.19
False alarm ratio Hanssen-Kuipers discriminant (H-K)	-0.00	1.00	0.89
Threat score or CSI	0.00	-0.11	0.69
Equitable threat score or GSS	-0.01	-0.00	0.11
HSS	-0.03	-0.04	0.16

Background

Fig. 2 from G. et al. (2010, 10.1175/2010BAMS2819.1)

Distance Measures

Pratt's Figure of Merit (FoM) =

centroid distance (CD)

$$
\operatorname{FoM}(\mathrm{A}, \mathrm{~B})=\frac{1}{\max \{n(A), n(B)\}} \sum_{x \in B} \frac{1}{1+\kappa d(x, A)}
$$

Distance Measures

$d(x, A)$

$d(x, B)$

Distance maps for A and B. Note dependence on location within the domain.

Distance Measures

$$
T=|\omega(d(x, A))-\omega(d(x, B))|
$$

Baddeley's Δ Metric

- $p=1$ gives the arithmetic average of T
- $p=2$ is the usual choice
- $p=\infty$ gives the max of T (Hausdorff distance, H)
Δ is the L_{p} norm of T
$d(x, A)$ and $d(x, B)$ are first transformed by a function ω. Usually,
$\omega(x)=\max (x$, constant $)$, but the picture here uses " ∞ " for the constant term.
$\Delta(\mathrm{B}, \mathrm{A})=\Delta(\mathrm{B}, \mathrm{A})=\left[\Sigma_{\mathrm{x} \text { in } D} \mathrm{~T}^{p}\right]^{1 / p} /|\mathrm{N}|$
$|\mathrm{N}|$ is the size of the domain, D.

Distance Measures

Zhu's metric (Z) from Zhu et al. (2011, doi: 10.1016/j.atmosres.2011.09.004)

Between forecast F and observation O :
$\mathrm{Z}=\lambda_{1} \mathrm{D} 1+\lambda_{2} \mathrm{D} 2$
D1 = root sum of squared differences between the two binary fields (overlap measure)
$D 2=M E D(F, O)$ (or MED miss) provided the product of the number of points in either set is not zero. If no 1-valued points are in both F and O. Otherwise, it is set to a large number.

ICP Phase 1

MesoVICT

MesoVICT

WWRP COPS (RDP, Wulfmeyer, et al., 2008, BAMS) and D-PHASE (FDP, Rotach, et al., 2009, BAMS), data available: (http://cera-www.dkrz.de/WDCC/ui/Index.jsp)

Observations-Joint D-PHASE COPS (JDC) data-set

- 32 data providers
- GTS-Stations: 1232
- NGTS-Stations: > 13000
- Mean station distance: GTS: ~

36 km
GTS+Non-GTS: ~ 12km
Frames: D-PHASE (large)
\& COPS (small) areas

MesoVICT

Case 1 (core case): 20-22 June 2007 (COPS IOP case)
Storng convective developments north of the Alps followed by a cold front the next day. Cold air mass could not spill over the Alps.

Precipitation analysis for the 3hperiod ending at 21 June 2007, 00 UTC.

Equivalent potential temperature analysis for 21 June 2007, 12 UTC.

New Geometric Cases

Pathological Cases

P1: Null Case

P2: Full Case

New Geometric Cases

Pathological Cases

New Geometric Cases

$\Delta=Ð=\mathrm{H}=\mathrm{CD}=\mathrm{MED}=\mathrm{Z}=0.00$, FoM undefined

FoM(P2, P1) undefined MED(P2, P1) undefined
$\Delta=\mathrm{H}=400.00$
$\mathrm{Đ}=401.99$
$C D=142.13$
$Z=200$
rP1P2: Perfectly bad (all errors = 1)
$\operatorname{FoM}(\mathrm{P} 1, \mathrm{P} 2)=0.00$
$\operatorname{MED}(\mathrm{P} 1, \mathrm{P} 2)=400.00$

$$
\Delta=Đ=H=C D=M E D=Z=0.00, F o M=1.00
$$

New Geometric Cases

P1P3: Exactly one grid cell with error $=-1$ and all else are zero. $\Delta=246.29$ $D=322.12, H=400.00$ $C D=1.41, Z=100.50$ $M o M(P 1, P 3)=0.00$ $M E D(P 1, P 3)=400.00$	FoM(P3, P1) undefined $M E D(P 3, P 1)$ undefined

P1P4: Same as P1P3, but different placement of the error.

$$
\begin{aligned}
& \Delta=246.29 \\
& Đ=322.12, H=400.00 \\
& C D=282.84, Z=100.50
\end{aligned}
$$

P2P5: Same as P1P5 but the one

 grid square is the only non-error.

$$
\Delta=320.51
$$

$\mathrm{D}=322.12, \mathrm{H}=400.00$
$C D=141.42, Z=100.50$
$\operatorname{FoM}(P 1, P 5)=0.00$
$\operatorname{MED}(P 1, P 5)=400.00$
MED(P5, P1) undefined
$\Delta=86.21$
Đ = 86.62, $\mathrm{H}=142 . .13$
$C D=0.71, Z=140.44$
$\operatorname{FoM}(P 2, P 5)=0.01$
$\operatorname{MED}(\mathrm{P} 2, \mathrm{P} 5)=0.00, \operatorname{MED}(\mathrm{P} 5, \mathrm{P} 2)=80.88$
$\operatorname{FoM}(\mathrm{P} 1, \mathrm{P} 4)=0.00$
$\operatorname{MED}(\mathrm{P} 1, \mathrm{P} 4)=400.00$
MED(P4, P1) undefined

$$
\mathrm{F}-\mathrm{O}
$$

New Geometric Cases

Circle Cases

New Geometric Cases

New Geometric Cases

C1-C2

C2-C4

MED(False Alarm) $=$ MED(Miss) $=21.92$
FoM $($ False Alarm $)=\mathrm{FoM}($ Miss $)=0.07$

New Geometric Cases

C1-C9

$\mathrm{F}-\mathrm{O}=\mathrm{C} 1-\mathrm{C} 9$
Baddeley's $\Delta=38.13$
$\mathrm{Đ}=38.17$
Hausdorff $=43.43$
Centroid distance $=0.00$
Zhu's metric $=50.5$

MED(Miss) $=21.72$
$\operatorname{MED}($ False Alarm $)=0.00$
FoM(Miss) $=0.12$
FoM(False Alarm) $=0.18$

New Geometric Cases

New Geometric Cases

rE4E8

Complex Terrain Cases

New Geometric Cases

$\Delta=22.53$
$\mathrm{Đ}=22.52, \mathrm{H}=25.13$
$C D=25.00, Z=36.41$
E1E9

FoM $=0.05$
$\mathrm{MED}=17.09$
$\Delta=14.15$
Đ = 14.18, H=25.13
$C D=0.00, Z=20.02$
E3E7

FoM(Miss) $=0.5$
FoM(False Alarm) $=0.25$ MED(Miss) $=0.00$
MED(False Alarm) $=5.86$

FoM(Miss) $=0.19$
FoM(False Alarm) $=0.14$
MED(Miss) $=3.10$
$\operatorname{MED}($ False Alarm $)=12.01$

$$
\Delta=23.51
$$

$$
\mathrm{Đ}=23.53, \mathrm{H}=40.2
$$

$$
C D=0.00, Z=27.16
$$

$$
\text { FoM }=0.34
$$

$$
\text { MED }=13.30
$$

$\Delta=32.16$
$\mathrm{D}=31.18, \mathrm{H}=65.38$
$C D=25.00, Z=35.23$

$$
\mathrm{F}-\mathrm{O}
$$

FoM(Miss) $=0.32$
FoM(False Alarm) $=0.30$
MED(Miss) $=14.08$
MED(False Alarm) 20.76

New Geometric Cases

Random Rain Cases

New Geometric Cases

$\Delta=1.91$
$\mathrm{Đ}=1.78, \mathrm{H}=9.12$
$C D=1.30, Z=10.59$

Random Rain Cases

FoM $=0.62$
MED(False Alarm) $=2.37$
$\operatorname{MED}($ Miss $)=2.56$

$\Delta=63.39$
$\mathrm{D}=63.49, \mathrm{H}=104.42$
$C D=99.11, Z=45.06$
$\mathrm{FoM}=0.00$
MED (False Alarm) $=70.04$
MED(Miss) $=70.60$

New Geometric Cases

Additional Cases include:

- Holes (inverted C1 and C2)
- C1C4 with noise added
- C1C4 with P3 added
- C1C4 with P5 added

Summary

- Overview paper of project accepted to BAMS (available at Early online release:
https://journals.ametsoc.org/doi/pdf/10.1175/BAMS-
D-17-0164.1).
- Special Collection of Papers for Monthly Weather Review
- SpatialVx (R package for performing many of the spatial methods; still in beta form-use at your own risk!)
- All test cases and other information (including preliminary results) available at MesoVICT web site (https://ral.ucar.edu/projects/icp/)
- New geometric cases available soon (paper in progress).

Thank you

EricG "at" ucar "punto" edu
https://ral.ucar.edu/staff/ericg/

