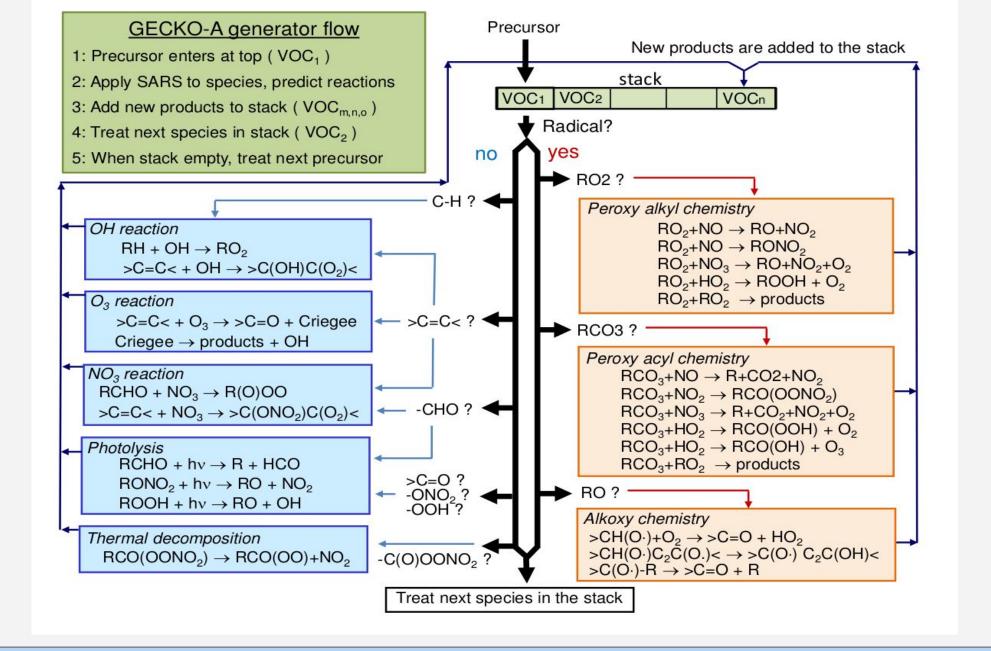
The GECKO-A Explicit Chemical Model A Developing Community Resource

Camille Mouchel-Vallon[@], Julia Lee-Taylor, Sasha Madronich NCAR/ACOM, Boulder, CO @cmv@ucar.edu

What is GECKO-A?


Based on available experimental data coupled to a set of rules and estimation methods used for unknown species, GECKO-A can generate completely explicit mechanisms for organic compounds of atmospheric interest (Aumont et al., 2005). It has been successfully applied to simulate chamber experiments (La et al., 2016; McVay et al., 2016) and urban plumes (Lee-Taylor et al., 2015).

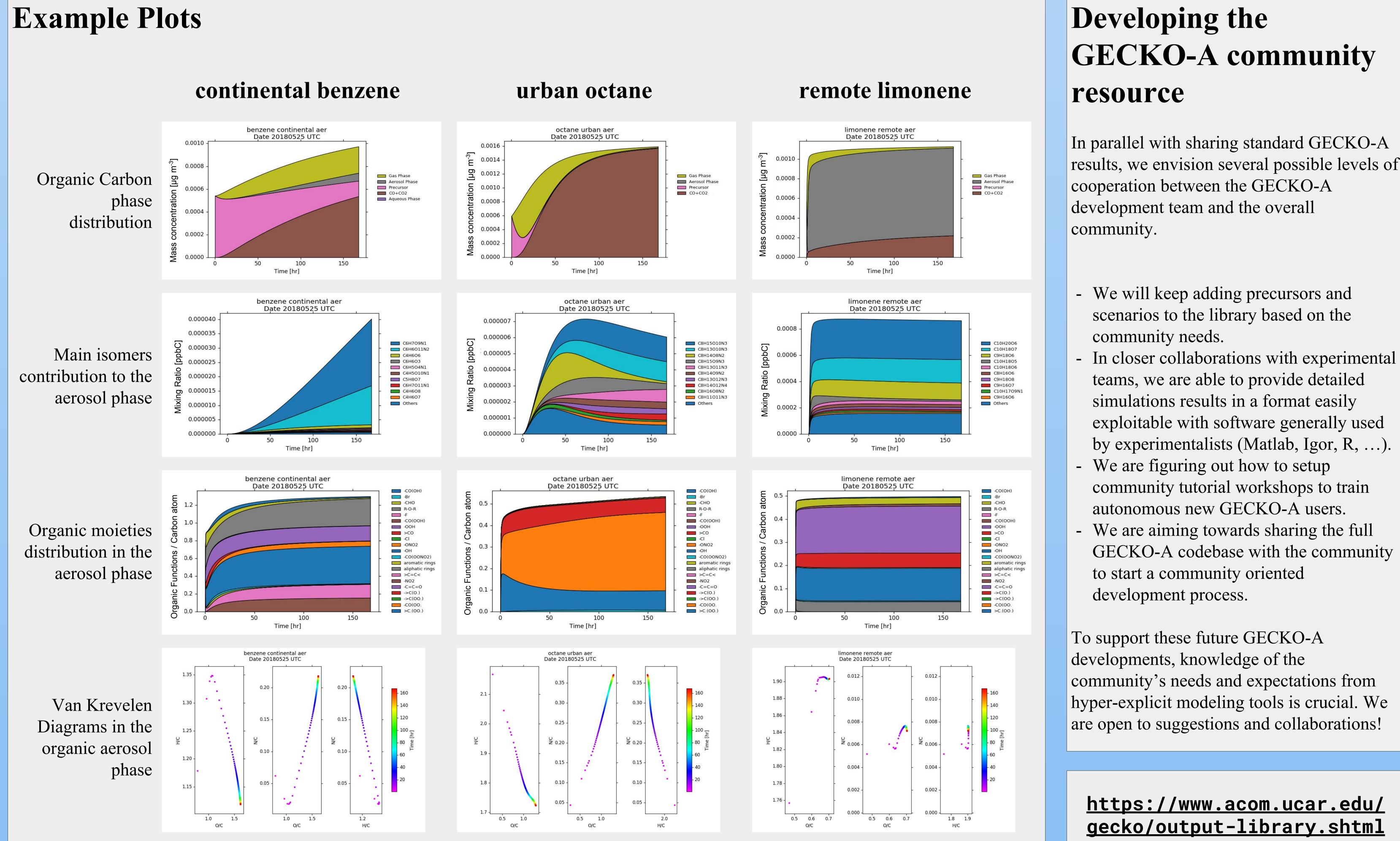
NCAR

The Library

In a first step of making GECKO-A a community resource, we are currently building a comprehensive library of hyper-explicit boxmodel outputs for an extensive list of precursors of atmospheric interest under a variety of standard chemical scenarios. This library is **available online** to the research community.

This library might be useful for multiple purposes:

- Informing chamber experiments by providing expected major constituents of gas phase VOCs.
- Providing an explicit reference to evaluate mechanism reduction efforts for 3D models.


Setup
Primary hydrocarbons of

anthropogenic and biogenic origin are included in the library. The list is open to new additions.

	Remote	Remote Continental	Continental	Polluted Continental	Urban
NO _x [ppb]	0.02	0.025	0.5	2	20
CO [ppb]	120	120	150	200	300
NMHC K _{OH} [s ⁻¹]	0	1	6	9	13
CO + NMHC K _{OH} [s ⁻¹]	0.7	1.7	6.9	10.2	14.8
HCHO [ppb]	0	0	2	5	10

	anthropogenics						biogenics					
	n-pentane	n-hexane	n-heptane	n-octane	n-decane	n-dodecane	benzene	toluene	isoprene	α-pinene	β-pinene	limonene
# Species	3.9×10 ³	7.8×10 ³	1.4×10 ⁴	2.0×10 ⁴	5.0×10 ⁴	1.0×10 ⁶	1.9×10 ³	4.0×10 ³	8.9×10 ²	2.2×10 ⁵	1.6×10 ⁵	1.1×10 ⁵
# Reactions	3.0×10 ⁴	5.7×10 ⁴	1.0×10 ⁵	1.5×10 ⁵	3.5×10 ⁵	7.2×10 ⁵	1.5×10 ⁴	3.0×10 ⁴	5.6×10 ³	1.5×10 ⁶	1.1×10 ⁶	7.9×10 ⁵

NO _v fixed
- NO/NO ₂ allowed to vary
NMHC: surrogate to constrain VOC/NO _x ratio
All simulations: $O_3 = 40$ ppb, $CH_4 = 1850$ ppb, $T = 298$ K, $RH = 70\%$,
r sza = 45°, SOA seed = 10 µg m ⁻³
1 ppt of the precursor is introduced when steady state is reached

results, we envision several possible levels of

- GECKO-A codebase with the community

We gratefully acknowledge support from DOE ASR grant DE-SC0016331

References

Aumont, B., Szopa, S., & Madronich, S. (2005). Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmospheric Chemistry and Physics, 5(9), 2497–2517. <u>https://doi.org/10.5194/acp-5-2497-2005</u>

La, Y. S., Camredon, M., Ziemann, P. J., Valorso, R., Matsunaga, A., Lannuque, V., ... Aumont, B. (2016). Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation. Atmospheric Chemistry and Physics, 16(3), 1417–1431. https://doi.org/10.5194/acp-16-1417-2016

Lee-Taylor, J., Hodzic, A., Madronich, S., Aumont, B., Camredon, M., & Valorso, R. (2015). Multiday production of condensing organic aerosol mass in urban and forest outflow. Atmospheric Chemistry and Physics, 15(2), 595–615. <u>https://doi.org/10.5194/acp-15-595-2015</u>

McVay, R. C., Zhang, X., Aumont, B., Valorso, R., Camredon, M., La, Y. S., ... Seinfeld, J. H. (2016). SOA formation from the photooxidation of α-pinene: Systematic exploration of the simulation of chamber data. Atmospheric Chemistry and Physics, 16(5), 2785–2802. <u>https://doi.org/10.5194/acp-16-2785-2016</u>

