Gridded Forecast Verification

2011 Joint Statistical Meetings, July 30 - August 4, 2011, Miami Beach, Florida, Miami Beach Convention Center

Eric Gilleland
Research Applications Laboratory,
National Center for Atmospheric Research

Background and Motivation

Forecast Verification: High vs. Low Resolution

Fig. from E.E. Ebert

Which forecast would you prefer to use?
Forecast Verification

Timing error: Traditional grid-point to grid-point verification yields RMSE of 4.19-, 4.81- and 5.25- mb for 36-, 12- and 4-km, resp.
Background and Motivation

Traditional Approach

Based on comparing overlapping grid points...

<table>
<thead>
<tr>
<th>Score</th>
<th>1-4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation Coefficient</td>
<td>-0.02</td>
<td>0.2</td>
</tr>
<tr>
<td>Probability of Detection</td>
<td>0.00</td>
<td>0.88</td>
</tr>
<tr>
<td>False Alarm Ratio</td>
<td>1.00</td>
<td>0.89</td>
</tr>
<tr>
<td>Hanssen-Kuipers</td>
<td>-0.03</td>
<td>0.69</td>
</tr>
<tr>
<td>Gilbert Skill Score</td>
<td>-0.01</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Forecast 5 is “best"
Spatial Forecast Verification Methods

Inter-Comparison Project (ICP)

http://www.ral.ucar.edu/projects/icp
Spatial Forecast Verification Methods

Inter-Comparison Project (ICP)

http://www.ral.ucar.edu/projects/icp
Spatial Forecast Verification Methods

Inter-Comparison Project (ICP)

filtering

neighborhood

scale-separation

displacement

feature-based

field deformation

http://www.ral.ucar.edu/projects/icp
Filter Methods: Neighborhood

Model: \(M_j(O(x,y)) = B_j(F(x,y)) + \varepsilon_j \)

Goal: Examine forecast performance in a region without requiring exact grid-point to grid-point matches.

Advantages: Generally straightforward; Provide useful information about forecast performance. Less sensitive to small localized errors. Physical interpretations possible (e.g., scales where forecasts have skill).

Disadvantages: Limited diagnostic information. Do not inform about specific error types, but may be sensitive to them. Do not inform about spatial structure errors.

Examples: Simplest example is upscaling. Many such methods have been proposed (Ebert, 2008 gives a nice review).
Filter Methods: Neighborhood

Fractions Skill Score (Robert and Lean, 2008)

\[
\text{FSS} = 1 - \frac{\sum_{i=1}^{N} (P_{\text{fcst}} - P_{\text{obs}})^2}{\sum_{i=1}^{N} P_{\text{fcst}}^2 + \sum_{i=1}^{N} P_{\text{obs}}}
\]
Filter Methods: Scale Separation

Similar to neighborhood methods, can inform about scale, but now scales are independent.

Examples of filters: Fourier decomposition, Wavelets, etc.

Variograms (Marzban and Sandgathe, 2009)

Power spectra (Harris et al., 2001)

Wavelets (Briggs and Levine, 1996)

Intensity Scale (IS): (Casati et al., 2004) (wavelets applied to binary event fields)

Multi-scale variability (Zapeda-Arce et al., 2000; Harris et al., 2001; Mittermaier 2006)
Displacement Methods: Features based

Model: $O_A(x, y) = F_B(x, y) + \varepsilon$

Goal: Measure and compare user-relevant features in the forecast and observed fields.

Examples:

CRA (e.g., Ebert and McBride, 2000; Ebert and Gallus, 2009)
MODE (e.g., Davis et al., 2006, 2009)
Procrustes (Lack et al., 2009)
Cluster Analysis (e.g., Marzban and Sandgathe, 2006; Marzban et al., 2008, 2009)
SAL (e.g., Wernli et al., 2008, 2009)
Composite (e.g., Nachamkin, 2006, 2009)
Displacement Methods: Features based

Advantages: Provide information about location errors, and certain structure errors. Vector fields provide diagnostic information. Physically meaningful. Directly inform about small localized errors and larger-scale errors. Informs on individual features. Identify hits, misses and false alarms.

Disadvantages: Often need to merge and match features, which can be tricky.
Displacement Methods: Field deformation

Model: \(O(x, y) = F(\Phi(x, y)) + \varepsilon \)

Goal: Inform about how well the forecast captures spatial extent/patterns.

Examples:

- **Binary Image Metrics** (Venugopal et al., 2005; G. 2011; Schwedler and Baldwin, 2011; Zhu et al., Submitted)

- **Optical Flow** (e.g., Keil and Craig, 2008, 2009)

- **Image Warping** (e.g., Alexander et al., 1998; G., Lindström and Lindgren, 2010)

- **Distortion representation** (e.g., Hoffman et al., 1995)

- **Gaussian mixtures** (Lakshmanan and Kain, 2009)
Displacement Methods: Field Deformation

Field Deformation Methods: Image Warping

\[O(x, y) = F(W_x(x, y), W_y(x, y)) + \varepsilon \]

- \(W \) is a warping function that acts on both coordinates \(x \) and \(y \) of an image, and is applied to both coordinates;
- Many choices for \(W \), e.g.,
 - polynomials (e.g., Alexander et al., 1999; Dickinson and Brown, 1996)
 - B-splines (e.g., Engel in prep?)
 - Thin-plate splines (e.g., G., Lindström and Lindgren, 2010)
- Find optimal warp by optimizing a likelihood function.
Displacement Methods: Field Deformation

Field Deformation Methods: Image Warping
Can warp all pixels in an image, but usually choose a subset (control points). Entire deformation is determined by these points, but is applied to all points. Optimize (log) likelihood:

$$\ell(p^F|O, F, p^O) = \log p(O|F, p^F, p^O) + \log p(p^F|p^O)$$
Displacement Methods: Field Deformation

Field Deformation Methods: Image Warping

For the TPS Warp, the likelihood leads to the following loss function. The optimization of which yields the optimal warp.

\[
Q(p^F) = \frac{1}{2\sigma_\varepsilon^2} \sum (O(s) - F(W(s)))^2 + \frac{1}{2\sigma_\Delta} \left[(p_x^F - p_x^O)^T (I - C)(p_x^F - p_x^O) + (p_y^F - p_y^O)^T (I - C)(p_y^F - p_y^O) \right]
\]

ICP Test Cases

MSE(before) = 17,508

\[
\frac{17,508 - 9,316}{17,508} \approx 47\%
\]
Observation
Forecast
Deformed forecast
MSE 671.32
MSE 0.27
Warp 3.39×10^{-3}
x: 33.3
y: 0.1
s_x: 0.252
s_y: 1.029

≈ 100 grid points west
Squeezes horizontally.

Geometric 3; 125 grid points too far east and larger spatial coverage
Space-Time Image Warp

Industrial Mathematical and Statistical Modeling Workshop for Graduate Students

July 19-27, 2010
North Carolina State University, Raleigh, NC

Sponsored by
Statistical and Applied Mathematical Sciences Institute (SAMSI), RTP, NC

Center for Research in Scientific Computation, Raleigh, NC

Space-Time Image Warp

For a given *initialization time*, a forecast model will give predictions, say every hour, up to some distance in time. Timing error implies that the forecast at time $t - 1$ (or $t + 1$) is better than that at time t. But, maybe only for one storm feature or area. Can these errors be distinguished from true spatial displacement errors?

Extension of 2-d spatial warping to space-time

Equations about the same, but with the added dimension. Tri-harmonic basis functions instead of 2-d TPS radial basis functions.
Reduction in RMSE is over 50% after applying space-time warp. Most errors were spatial only.
Final Remarks

http://www.ral.ucar.edu/projects/icp

- See ICP web page under References and Special Collection for full references from these slides.

- Special collection of Weather and Forecasting for ICP.

- So far, geometric, perturbed and real test cases have focused on QPF fields over the central and eastern United States. Need to look at other regions and other field types (e.g., wind, pressure, etc.).

- Participation in the ICP is encouraged. Sign up to receive emails at the web site.

- Expand ICP to other verification issues (e.g., ensembles, spatial-temporal)?