A new workflow for CESM™ to address CMIP6 challenges

Sheri Mickelson
NCAR

3rd ENES Workshop on Workflows
13 September 2018
The Community Earth System Model (CESM)

- CESM is a fully-coupled climate model
- CESM is sponsored by the National Science Foundation and the U.S. Department of Energy, with contributions from the University community

Image credit: https://www2.cisl.ucar.edu/software/community-models

A new workflow for CESM to address CMIP6 challenges
A new workflow for CESM to address CMIP6 challenges
Lessons We Learned From CMIP5

- CESM was the first model to complete their simulations, but the last to complete publication. Why?
 - All of the post-processing was serial and it took a long time to run
 - Workflow was error prone and was time consuming to debug
 - Too much human intervention was needed between post-processing steps and time was wasted
 - There was only one person who knew the status of all of the experiments
NCAR’s CMIP6 Plans
(DECK and Tier I Experiments)

• Currently participating in about 23 MIPS
 – Just over 100 different experiments total

• Over all experiments, we will simulate roughly 23,287 years of climate

• The total cost will be roughly 230M core hours

Complexity Comparison

CMIP5
- 25 Experiments
- Timeline: 3 years
- Output size: 800TB
- Published size: 200TB

CMIP6
- 102 Experiments
- Timeline: 1 year
- Output size: 8PB (estimate)
- Published size: 2PB (estimate)
Complexity Comparison

CMIP5
- 25 Experiments
- Timeline: 3 years
- Output size: 800TB
- Published size: 200TB

CMIP6
- 102 Experiments
- Timeline: 1 year
- Output size: 8PB (estimate)
- Published size: 2PB (estimate)

We needed better methods!
A new workflow for CESM to address CMIP6 challenges
A new workflow for CESM to address CMIP6 challenges

New CESM/CMIP6 Workflow

Model Run

- CESM Model Run

Post-Processing

- Time Series Conversion (PyReshaper)
- New Data Compliance Tool (PyConform)
- Re-Designed Diagnostics (PyAverager)

Publication

- Push to ESGF

Automated Workflow Using Cylc

Increased Performance

- Wrote new versions of these tools in Python and added parallelization
- Experiments Update Their Status in Run Database
A new workflow for CESM to address CMIP6 challenges
PyReshaper
Converting files that have all variables and one time step to files that have one variable and multiple time steps

![Average Speedup Among the Simulations (Parallel/Serial)](chart.png)

- Maximum throughput in one day was 25TB
- There was a 13x speedup for monthly output
- There was an overall speedup of 6.5x across all output streams

Timing results credit: Gary Strand

A new workflow for CESM to address CMIP6 challenges
A new workflow for CESM to address CMIP6 challenges.

The climatology files are calculated in parallel and the NCL plotting scripts are ran in parallel.
PyConform - 1st Step
(Python Climate Output Formatter)

• Users need to create a text file with a “definition” that describe input variable(s) to output variable
 – Examples:
 • cfc11global=f11vmr
 • cfc12global=f12vmr
 • ch4=vinth2p(CH4, hyam, hybm, plev19, PS, P0)
 • mc=CMFMC+CMFMCMDZM

• Then users run an input generator script that matches the “definitions” to its variable information within the CMIP6 Data Request
 – The Data Request lists variables requirements:
 • Units
 • Dimensions
 • Descriptions
 • And a lot more ...
Example Input File (json format)

```
"ua": {
    "attributes": {
        ".FillValue": "1e+20",
        "cell_measures": "area: areacella",
        "cell_methods": "time: mean",
        "comment": "Eastward\" indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_air_velocity.)",
        "description": "Eastward\" indicates a vector component which is positive when directed eastward (negative westward). Wind is defined as a two-dimensional (horizontal) air velocity vector, with no vertical component. (Vertical motion in the atmosphere has the standard name upward_air_velocity.)",
        "frequency": "mon",
        "id": "ua",
        "long_name": "Eastward Wind",
        "mipTable": "Amon",
        "out_name": "ua",
        "prov": "Amon ((isd.003))",
        "realm": "atmos",
        "standard_name": "eastward_wind",
        "time": "time",
        "time_label": "time-mean",
        "time_title": "Temporal mean",
        "title": "Eastward Wind",
        "type": "real",
        "units": "m s-1",
        "variable_id": "ua"
    },
    "datatype": "real",
    "definition": "vinth2p(U,hyam, hybm, plev19, PS, P0)"
}
```

This is just a sample of one of the variable sections. There are other parts of the file that list other variables and then global attributes to be added to the output file.
PyConform - 2nd Step

(Python Climate Output Formatter)

16x to 38x speedup over our old Fortran code and CMOR

A new workflow for CESM to address CMIP6 challenges
A new workflow for CESM to address CMIP6 challenges

New CESM/CMIP6 Workflow

Automated Workflow Using CyC

Model Run

CESM Model Run

Post-Processing

Time Series Conversion (PyReshaper)

New Data Compliance Tool (PyConform)

Re-Designed Diagnostics (PyAverager)

Publication

Push to ESGF

Project Management

Each experiment updates its progress automatically in the web based database as it’s running

Experiments Update Their Status in Run Database
A new workflow for CESM to address CMIP6 challenges
A new workflow for CESM to address CMIP6 challenges

This web based database has been very helpful for managers to check simulation progress and to look at results all in one place.
A new workflow for CESM to address CMIP6 challenges

New CESM/CMIP6 Workflow

Model Run

- CESM Model Run
- Time Series Conversion (PyReshaper)
- New Data Compliance Tool (PyConform)
- Re-Designed Diagnostics (PyAverager)

Post-Processing

- Automated Workflow Using Cylc
- We’re using Cylc to coordinate the synchronization of all of the workflow tasks in order to reduce human intervention in between tasks

Publication

- Push to ESGF

Experiments Update Their Status in Run Database
Automatic Suite Generation

Why? Because our users are new to Cylc, we wanted to make the transition as easy as possible to help with positive adoption.

How? This is possible because CESM and our post-processing tools allow us to query the experiment to get the needed information to set up specific tasks, their dependencies, and how to submit each task to the queue.
A new workflow for CESM to address CMIP6 challenges

Automatic Suite Generation

Set in the CESM Experiment
XML Files:
- Run Length = 100 yrs
- Restart = Every 10 yrs
- Run diagnostics = Every 10 yrs
- Run timeseries = True
- Conform data = True

The user then runs a script to create the Cytc suite

1. Look at the XML settings in the CESM env
2. Construct a dependency graph based on what the user wants to run and when
3. Look at CESM env to find out how to run each task
4. Create a suite.rc for the user based on this information
5. Register the suite for the user

#!Jinja2
[cyclc]
[scheduling]
[[dependencies]]
 graph = ""
 case_run_0011-01 => case_st_archive_0011-01-01
 case_st_archive_0011-01-01 => case_run_0021-01-01
...
[environment]
[root]
 method = pbs
 execution time limit = PT12H
 execution retry delays = PT30S, PT120S, PT600S
 method = pbs
 execution time limit = PT12H
 execution retry delays = PT30S, PT120S, PT600S
 -q = regular
 -N = b.e21.B1850.f09_g17.CMIP6-piControl.001.run
 -r = n
 -j = oe
 -S = /bin/bash
 -l = select=120:ncpus=36:mpiprocs=12:ompthreads=3
Communication Between Cylc and the Experiment Database

We used a naïve approach of just having Cylc email the database with progress updates and we parse the emails to update the correct database entries.

Cylc Task

Experiment name

Cylic Event Email

Subject: !!cylc alert!! suite b.e21.BW1850.f09_g17.CMIP6-piControl.001.suite.cmip6 succeeded

SUITE: b.e21.BW1850.f09_g17.CMIP6-piControl.001.suite.cmip6
MESSAGE: case_run_0151-01-01.1

Status

Simulation Progress

CESM Exp DB

Exp List:
b.e21.BW1850.f09_g17.CMIP6-piControl.001

A new workflow for CESM to address CMIP6 challenges
Simple Workflows

Example of a single member simulation for our piControl CMIP6 experiment

- Simulates 1,000 years of climate under 1850 conditions, with each CESM run task simulating 10 years of climate
- Runs the model and archiving step about 100 times each
- Runs each of the diagnostic packages 10 different times during the simulation, every 100 years
- Creates the timeseries files
- Conforms data to meet CMIP6 standards

A new workflow for CESM to address CMIP6 challenges
Ensemble Workflows

Example of a 3 member ensemble of our high top historical experiment

Each member:

• Simulates the climate from year 1850 through 2014, each CESM run task simulates 2 years of climate
• Runs the model and archiving step about 82 times each
• Runs each of the diagnostic packages 5 different times during the simulation
• Creates the timeseries files
• Conforms data to meet CMIP6 standards
Other CESM Experiments That Used Cylc (non CMIP6)

- Used Cylc to complete 1,240 out of 1,860 total runs and postprocessed ~750 TB timeslice output in about 1 month

- Used Cylc to run and postprocess part of a 30 member ensemble in a couple of months

- Used Cylc to build and run over 20,000 forecast ensembles in a couple of months
Questions?

- PyReshaper
 - https://github.com/NCAR/pyreshaper

- PyAverager
 - https://github.com/NCAR/pyAverager

- PyConform
 - https://github.com/NCAR/PyConform

- CESM/Cylc WF
 - https://github.com/NCAR/CESM-WF

Contact Info mickelso .at. ucar.edu