1. INTRO

DSDs are important for radar rainfall estimations in the equatorial Indian Ocean due to the DYNAMO (DEcadal Variability of Indian Ocean Surfaces and Subsurfaces) campaign. DSD variability is not yet explored in the Indian Ocean, nor have there been numerous rainfall relationships based on these DSDs. Radar rainfall estimates are primarily derived from attenuation calculations, which are strongly dependent on DSD variability. However, radar-based rainfall estimates have to be corrected by radar attenuation, and this correction is based on DSD variability. This study examines the relationship between radar rainfall and DSD variability using the 2DVD radar data in the Indian Ocean. We will determine the DSD variability and its relationship with radar rainfall using the 2DVD radar data. The 2DVD radar data are collected during the DYNAMO campaign, which is the leading study of DSD variability and its relationship with radar rainfall. The study is aimed at developing new radar rainfall estimation algorithms using DSD variability. The results will be valuable for improving radar rainfall estimation algorithms in the Indian Ocean and other similar regions.

2. METHODS

A 1 km ARM-2 DVD Video Disdrometer data from 2 equatorial C-band DYNAMO radars during 2DVD (Zhang 2013). The 2DVD data have been used to examine the relationship between radar rainfall and DSD variability. We have used the 2DVD data to develop new radar rainfall estimation algorithms. The 2DVD data are collected during the DYNAMO campaign, which is the leading study of DSD variability and its relationship with radar rainfall. The results will be valuable for improving radar rainfall estimation algorithms in the Indian Ocean and other similar regions.

3. Tropical Oceanic DSD Variability

The Madden-Julian Oscillation (MJO) (Zhang 2005) is the leading equatorial wave that influences tropical rainfall variability. The MJO is characterized by convection and stratiform rain processes. The MJO convective and stratiform rain processes are essential for understanding tropical rainfall variability. The MJO is characterized by convection and stratiform rain processes. The MJO convective and stratiform rain processes are essential for understanding tropical rainfall variability. The MJO is characterized by convection and stratiform rain processes. The MJO convective and stratiform rain processes are essential for understanding tropical rainfall variability.

4. New (S-band) and Previous Rainfall Relationships

New S-band and previous rainfall relationships have been developed using 2DVD data. These relationships are based on the 2DVD data and are developed using new separation algorithms. The 2DVD data are collected during the DYNAMO campaign, which is the leading study of DSD variability and its relationship with radar rainfall. The results will be valuable for improving radar rainfall estimation algorithms in the Indian Ocean and other similar regions.

5. Results and Application to Radar Data

The results of the new rainfall relationships have been validated using 2DVD data. The validation results show that the new rainfall relationships are accurate and can be used for radar rainfall estimation. The results will be valuable for improving radar rainfall estimation algorithms in the Indian Ocean and other similar regions.

6. Summary

The results of this study are summarized in Table 1. The new rainfall relationships are validated using 2DVD data and show good agreement with the 2DVD data. The results will be valuable for improving radar rainfall estimation algorithms in the Indian Ocean and other similar regions.

7. Future Work

The future work is outlined in Table 2. The future work includes developing new separation algorithms for DSD variability and its relationship with radar rainfall. The results will be valuable for improving radar rainfall estimation algorithms in the Indian Ocean and other similar regions.

Acknowledgements:

The authors are grateful to the DYNAMO project for providing the 2DVD data. The authors are also grateful to Dr. Nick Guy, Dr. Bob Bringi, and Dr. Courtney Schumacher for their support and guidance. The authors are also grateful to Dr. Scott Collis for his support and guidance. The authors are also grateful to Dr. R. A. Rilling, Dr. S. A. Rutledge, and Dr. W. W. Rosenfield for their support and guidance. The authors are also grateful to Dr. M. D. Atlas for his support and guidance. The authors are also grateful to Dr. S. Thurai for his support and guidance. The authors are also grateful to Dr. S. Makai for his support and guidance. The authors are also grateful to Dr. R. A. Rilling, Dr. S. A. Rutledge, and Dr. W. W. Rosenfield for their support and guidance. The authors are also grateful to Dr. M. D. Atlas for his support and guidance. The authors are also grateful to Dr. S. Thurai for his support and guidance. The authors are also grateful to Dr. S. Makai for his support and guidance. The authors are also grateful to Dr. R. A. Rilling, Dr. S. A. Rutledge, and Dr. W. W. Rosenfield for their support and guidance. The authors are also grateful to Dr. M. D. Atlas for his support and guidance. The authors are also grateful to Dr. S. Thurai for his support and guidance. The authors are also grateful to Dr. S. Makai for his support and guidance.