Turbulence Forecasts for Manned and Unmanned Aerial Vehicles

BACIMO 2010
13 April 2010

Francois Vandenberghe
Robert Sharman
NCAR/RAL
Boulder, CO USA
vandenb@ucar.edu
sharman@ucar.edu
Aviation turbulence prediction - Motivation

- Turbulence has significant safety, economic and capacity impacts
 - In US, causes 75% of Part 121 accidents (OFCM Aviation weather Programs/projects 2004 update)
 - Structural damage
 - Economic cost of nearly $200 million per year (MCR Federal, 2003)
 - Second leading factor affecting the NAS (MOSAICATM/AvMET ARTCC/TRACON survey of wx factors impacting NAS)
Background – known turbulence sources

Clear-air Turbulence (CAT)

Mountain wave Turbulence (MWT)

Low level Terrain-induced Turbulence (LLT)

Cloud-induced or Convectively-induced Turbulence (CIT)

In-cloud turbulence

Convective boundary Layer turbulence

Turbulence forecasting procedure

- Aircraft turbulence ~ few meters to couple km
- Much smaller than present operational NWP model resolutions
- Cannot directly predict aircraft scale turbulence
- Only hope is to infer turbulence potential from larger resolved scales
 - Assumes downscale cascade of energy
 - Turbulence in mid-upper altitudes is in a stably-stratified environment where subgrid scale turbulence parameterizations do not work very well
- Multiple causes require multiple forecasting strategies

Graphical Turbulence Guidance Product (GTG)
Graphical Turbulence Guidance Product (GTG)

- Resolved scale “turbulence diagnostics” are automatically computed from standard weather model output (e.g., winds, temperature)

 \[GTG = W_1D_1^* + W_2D_2^* + W_3D_3^* + \ldots \]

- R&D problems:
 - Develop Ds
 - Determine weights W based on comparisons to observations
 - Performance is NWP model dependent

- Calibration
 - Output is EDR (actually \(\epsilon^{1/3} \) m^{2/3} / s)
 - Rigorously tested against 100,000s of PIREPs and in situ EDR data
Some common turbulence diagnostics

- Frontogenesis function (good at upper levels)
 \[F = \frac{D}{Dt} |\nabla \theta| \propto \frac{D}{Dt} \left| \frac{\partial \tilde{v}}{\partial \theta} \right| \text{ or } \frac{D}{Dt} \left| \frac{\partial \tilde{v}}{\partial p} \right| \]

- Unbalanced flow (Koch et al., McCann, Knox et al.)
 \[R = -\nabla^2 \Phi + 2J(u, v) + f \zeta - \beta u \]

- Deformation X shear or speed
 \[I = DEF |\tilde{v}|, \quad DEF = \left(D_{SH}^2 + D_{ST}^2 \right)^{1/2} \]
 \[D_{SH} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}, \quad D_{ST} = \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \]

- Eddy dissipation rate \((\varepsilon^{1/3}) \) computed from second order structure functions of velocity and/or temperature
 \[D_q(s) = \langle [q(x) - q(x + s)]^2 \rangle \]
 \[D_q(s) \propto C_q(s) \varepsilon^{2/3} D_{REF}(s) \approx C_q(s) \varepsilon^{2/3} s^{2/3} \]
Calibration of GTG using in situ edr from commercial aircraft

• Background
 – Provides atmospheric turbulence metric: eddy dissipation rate (edr), actually $\varepsilon^{1/3} (m^{2/3}/s)$
 – Records peak and mean
 • UAL every minute
 • Algorithm updated to event-based recording + heartbeat
 – Avoids uncertainties in PIREPs (intensity, location, time)

• Status
 – ~100 UAL 757s
 – ~ 70 DAL 737-800s
 – Expect ~ 340 SWA 737-700s by end of summer

• Future
 – UAL, DAL 767s
 – UAL 777s with Boeing?
 – AIRTRAN?
GTG = Weighted ensemble of turbulence diagnostics

0 h forecast valid at 22 Sep 2006 15Z
Current GTG3 RUC-based performance (6-hr fcst ROC curves 12 mos. valid18Z) – Discrimination of smooth vs. moderate-or-greater (MOG)

AUC = 0.812

GTG3

Null-MOG
GTG3
AUC = 0.812

Individual diagnostics

High threshold
(Predict no turb)

Low threshold
(Predict turb everywhere)
GTG status

- GTG2 uses RUC 20 km grids
 - 10,000 ft MSL-FL460
 - CAT only
 - Available on ADDS: http://aviationweather.gov/adds

- WRF-based systems
 - Operational over Taiwan (CAA)
 - Climatologies at the French Navy: CLIMOPS system.
 - All altitudes: sfc-FL460
 - WRF-RR will replace RUC-based system late CY10.

UAV applications?
CLIMOPS

Global reanalysis
Meteorol. observations

WRF model

GTG

Year 1

Global reanalysis
Meteorol. observations

WRF model

GTG

Year 2

...
...
...

Year ...

Global reanalysis
Meteorol. observations

WRF model

GTG

Year N

Analysis

Variability

NCAR
Use of indices as ensembles provides probabilistic output

GTG

Std dev

Prob of smooth

Prob > light

Prob > mod

Prob > severe

0 h forecast valid at 22 Sep 2006 15Z
GTG Calibration for CLIMOPS

- GTG Calibration requires PIREPS, only available over CONUS
- GTG Calibration is model dependant. Calibration must be done with same configuration than climatology -> $\Delta x = 3.3$km

- Create WRF outputs over CONUS at 3.3km grid increment 2 days (1st & 15th) of each month of 2006.
- 700 hours of CPU per day of simulation, 25,200 CPU hours all together.
WRF CONUS RUNS

- Create WRF output over CONUS at 3.3km grid increment 2 days (1st & 15th) of each month of 2006.
- 700 hours of CPU per day of simulation, 25,200 CPU hours all together.
CONUS RUNS

CONUS WRF domains configuration (left) and temperature cross section (right)
WRF CONUS RUNS

Horizontal temperature perturbation East-West cross section. Terrain has been smoothed on right panel.
WRF CONUS RUNS

Horizontal vertical velocity (left) and temperature perturbation (right)
East-West cross section.
Current GTG work areas

- Probabilities of MOG, SOG
- Explicit MWT, CIT diagnoses
- Low-level turbulence forecasts (< 10,000 MSL)
- GTG-N
- GFS-based Global GTG (NASA-sponsored)

GFS GTG 12-hr fcst, magenta=cloud tops>35,000 ft, AIREPs, in situ turbulence measurements from Delta, United and Qantas aircraft, ± 90 min (blue = null, light, orange = moderate, red severe turbulence)
Application to UAV testing

• GTG technique can be used to provide forecasts of EDR
 – Can use operational NWP models
 – Site-specific mesoscale model
 – Either requires assumption of downscale cascade

• Must calibrate EDR (atmospheric metric) to UAV loads
 – Table driven approach using response function of UAV
 – Using actual UAV recorded flight data