Estimates of C_n^2 from numerical weather prediction model output

Francois Vandenberghe, R. Frehlich, R. Sharman, J. Knievel, W. Yu, Y. Liu

BACIMO 2010

NCAR, Boulder, CO

Acknowledgments: AFRL, ATEC, PRA Inc., SHOM

Estimates of Cn2 from Numerical Weather Prediction Model Output and Comparison with Thermosonde Data.

Accepted in *Journal of Applied Meteorology and Climatology*, April 2010.
Motivation for Forecasting C_n^2

- Defines image quality for optical and infrared sensors
- Describes laser beam distortion
- Investigate new turbulence estimates in the troposphere (where traditional metrics based on vertical gradients perform poorly)
- Evaluate usefulness of turbulence metrics in evaluating the skill of forecast models
- Radio C_n^2 describes GPS signal distortion
Operational high-resolution WRF over ATEC* ranges, updated continuously with latest observations (4DWX)

- Aberdeen (ATC)
- Dugway Proving Grounds (DPG)
- Electronic Proving Grounds (EPG)
- Ft. Greely, AK (CRTC)
- Redstone Arsenal (RTTC)
- Yuma Proving Ground (YPG)
- White Sands Missile Range (WSMR)

*ATEC=U.S. Army Test and Evaluation Command
3 nested grids customized to each range

D1=30km, D2=10km, D3=3.33 km

(YPG, CRTC, RTTC not shown)
WRF Model Setup

- Initialized with GFS
- Nested in 3 domains 30/10/3.3km
- 80 levels with top at 30 km
- Rayleigh sponge starting at 15 km
- MYJ, YSU PBL schemes
Model Estimates

- Compute C_n^2 based on 2nd order structure functions by accounting for model filtering at small scales
- Related to turbulence estimates for aviation safety
- First case study uses WRF with 3 km grid
- Compared to “thermosonde” measurements of C_n^2 at Holloman AFB, NM
- Nighttime – SBL
- Complex terrain

![Graph showing $D_T(s)$ vs. Separation s with model deficit indicated.](image)
\(C_n^2 \) Estimates

- Compute \(C_n^2 \) around each grid point using 5x5 point domain
- Calculate best-fit model
- Best-fit level is \(C_n^2 \)
Thermosonde Profiles

• Rawinsonde platform
• Average temperature difference squared at 1 m (C_T^2)
• Convert C_T^2 to C_n^2
• Intermittency of turbulence

2 profiles 1 hr apart
Thermosonde launch (flight 15 July 19 2004 0200 UTC – “The Good”)
Thermosonde launch (flight 7
July 16 2004 0400 UTC – “The Bad”)
Thermosonde launch (flight 22 July 21 2004 0400 UTC)
Sensitivity to PBL Scheme (flight 21 July 21 2004 0400 UTC)

- MYJ and YSU
- PBL scheme modifies surface winds
- Changes gravity wave evolution
Rapid Changes in Time (flight 21 July 21 2004 02-03 UTC)

- MYJ scheme
- Reduction in upper tropspheric turbulence
- Gravity wave evolution
Vertical Cross-sections (flight 21
July 21 2004 02 UTC)
Example WSMR output

u, w cross section 12 Jul 2007 10 UTC
Forecast Maps of C_n^2

- Constant altitude (10 km) calculation
- Spatial variability of turbulence
- Low and high turbulence regions
Summary

• Structure function-based estimates of C_n^2 are promising
 – Produces good agreement over full altitude range for forecast lead time out to 18 hrs
 – Easy to compute
 – Does not require vertical gradients

• Area averaged estimates have less statistical variability than thermosonde data

• Sensitive to PBL scheme

• An excellent NWP model verification metric since it is very sensitive to NWP model errors