	Non-staggered Block-Jacobi Preconditioner in HOMME	Conclusion and Future Work
0000000	0000000	

A Non-staggered Block Jacobi Preconditioning Strategy in HOMME: Progress Report

Kuo Liu SIParCS 2009 Summer Intership The National Center for Atmospheric Research

> Mentors: Amik St-Cyr Henry Tufo

University of Colorado at Boulder

August 4, 2009

Outline		Non-staggered Block-Jacobi Preconditioner in HOMME	Conclusion and Future Work
	00000000	0000000	

Introduction

- HOMME and Shallow Water Equations
- Discretization of Shallow Water Equations
- Iterative Methods and Preconditioners

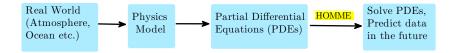
Non-staggered Block-Jacobi Preconditioner in HOMME

- The Block-Jacobi Preconditioner
- Non-staggered Block-Jacobi on Cubed Sphere
- Problem Shooting and Results Prediction

Conclusion and Future Work

	Introduction	Non-staggered Block-Jacobi Preconditioner in HOMME	Conclusion and Future Work
	0000000		
HOMME and Shal	low Water Equations		

HOMME: High Order Method Modeling Environment



PDEs solved in HOMME:

• Primitive Equations

Based on a more accurate model, more difficult to solve

• Shallow Water Equations

Simplification of primitive equations, widely used for numerical test

3 / 21

	Introduction	Non-staggered Block-Jacobi Preconditioner in HOMME	Conclusion and Future Work
HOMME and Shallow	Water Equations		

My Project's Goal: To better solve shallow water equations on cubed sphere

Shallow Water Equations (SWEQ)

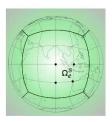
$$\frac{\partial \mathbf{v}}{\partial t} + (f + \zeta) \mathbf{k} \times \mathbf{v} + \frac{1}{2} \bigtriangledown (\mathbf{v} \cdot \mathbf{v}) + \bigtriangledown \Phi = 0,$$

$$\frac{\partial \Phi}{\partial t} + (\mathbf{v} \cdot \bigtriangledown) \Phi + (\Phi_0 + \Phi) \bigtriangledown \cdot \mathbf{v} = 0.$$

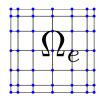
Two variables are to be solved:

- Velocity(2D): v(t, x, y)
- Geopotential: $\phi(t, x, y)$

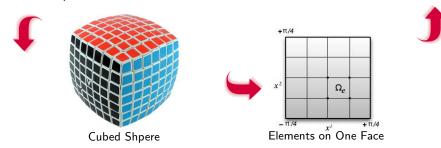
Computational Domain: cubed sphere



Sphere



Grids on One Element



 Outline
 Introduction
 Non-staggered Block-Jacobi Preconditioner in HOMME
 Conclusion and Future Work

 000<00000</td>
 0000000
 0000000
 Discretization of Shallow Water Equations

Discretization of shallow water equations:

Functions are continuous, but when you ask a computer to solve it, you have to discretize it!

Discretized Form of SWEQ

$$B_{i}\delta u - g^{ij}\Delta t \tilde{D}_{j}^{T}\delta \phi = R_{u}^{i}$$
$$\tilde{B}\delta \phi + \Delta t \frac{\phi_{0}}{g}\tilde{D}_{i}g\delta u = R_{\phi},$$

Variables to solve now: δu , $\delta \phi$.

Questions:

- What are B_i , \tilde{B} , g^{ij} , \tilde{D}_i , \tilde{D}^T , R_u^i , R_{ϕ} ?
- Why δu , $\delta \phi$ instead of u, ϕ

	Introduction	Non-staggered Block-Jacobi Preconditioner in HOMME	Conclusion and Future Work
	00000000		
Discretization of Shallo	w Water Equations		·

Answer: They have something to do with how we discretize the equation.

Discretized form of SWEQ

$$B_i \delta u - g^{ij} \Delta t \tilde{D}_j^T \delta \phi = R_u^i$$
(1)

$$\tilde{B}\delta\phi + \Delta t \frac{\phi_0}{g} \tilde{D}_i g \delta u = R_{\phi}, \qquad (2)$$

- ϕ , **u**: functions of (t,x,y), on the cubed sphere.
 - Time stepping: Semi-implicit Method: δu , $\delta \phi$, Δt
 - Spacial discretization:

Spectral Element Method: B_i , \tilde{B} , \tilde{D}_i , \tilde{D}^T , R_u^i , R_ϕ

• Coordinates transformation: Conformal Transformation: g^{ij} , g

Compute δu^i from (1) explicitly using previous data of ϕ :

$$\delta u^{i} = B_{i}^{-1} (R_{u}^{i} + \Delta t g^{ij} \tilde{D}_{j}^{T} \delta \phi)$$

Substitute it back to (2):

The linear system we really need to solve

$$\underbrace{(\underline{g}\tilde{B} + \Delta t^2 \phi_0 \tilde{D}_i g B_i^{-1} g^{ij} \tilde{D}_j^{\mathsf{T}})}_{H} \cdot \delta \phi = R_{\phi},$$

H: Helmholtz operator, a symmetric positive definite (SPD) matrix

	Introduction	Non-staggered Block-Jacobi Preconditioner in HOMME	Conclusion and Future Work
Iterative Methods and	Preconditioners		

The problem now:

$$H \cdot \delta \phi = R_{\phi}$$

The same as to solve:

 $A \cdot x = b$

A is huge and sparse, how to solve?

Iterative method: $x_0 \rightarrow x_1 \rightarrow \cdots \rightarrow x_n \rightarrow \cdots$ such that, x_n is closer and closer to the true solution x^*

In HOMME, the iterative method is: conjugate gradient (CG)

	Introduction	Non-staggered Block-Jacobi Preconditioner in HOMME	Conclusion and Future Work
	0000000	0000000	
Iterative Methods and F	Preconditioners		

Back to My Project's Goal:

-- "To better solve shallow water equation on cubed sphere"

• Basics:

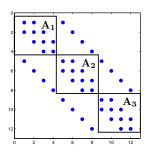
Matrices from discretization are almost always "bad"

• To make it "better":

 $A \cdot x = b \Rightarrow P \cdot A \cdot x = P \cdot b$, solve the latter instead

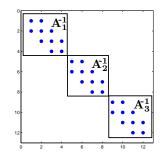
Same problem, "nicer" matrix *PA*, iteration steps will be largely reduced. *P* is called **preconditioner** (usually an approximation of A^{-1})

The Block-Jacobi Preconditioner:



A may look like:

Its block-Jacobi preconditioner P:



Construct the preconditioner matrix $P = (p_{ij})$

By spectral element method, P's entry

$$p_{ij} = \int_{\Omega} \phi_i \phi_j = \sum_k \int_{\Omega_k} \phi_i \phi_j,$$

- Ω : the whole cubed sphere;
- Ω_k : one element;
- ϕ_i : basis function, piecewise **polynomial**, constructed by interpolating on nodes *s.t.*

$$\phi_i = \begin{cases} 1 & \text{at Node i,} \\ 0 & \text{other nodes} \end{cases}$$

 Outline
 Introduction
 Non-staggered Block-Jacobi Preconditioner in HOMME
 Conclusion and Future Work

 0000000
 00●00000
 00●00000
 Non-staggered Block-Jacobi on Cubed Sphere

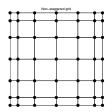
Staggered Grid v.s Non-staggered Grid on One Element

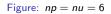
On One Element Ω_k :

Staggered Grid:



Non-staggered Grid:

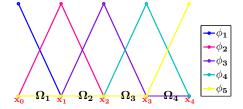




•: both geopotential ϕ and velocity **u**

Figure: np = nu - 2 = 4

 \blacklozenge : geopotential ϕ , \bullet : velocity **u**



• Staggered grid:

$$p_{ij} = \sum_k \int_{\Omega_k} \phi_i \phi_j = \int_{\Omega_k} \phi_i \phi_j$$
 , for all Node i,j $\in \Omega_k$

• Non-staggered grid:

$$p_{ij} = \sum_{k} \int_{\Omega_{k}} \phi_{i} \phi_{j} = \begin{cases} \int_{\Omega_{k}} \phi_{i} \phi_{j}, & \text{either Node i or j is inner node} \\ \int_{\Omega_{k}} \phi_{i} \phi_{j} + \int_{\Omega_{k+1}} \phi_{i} \phi_{j} + \cdots, & \text{Node i, j at edge or corner} \end{cases}$$

		Non-staggered Block-Jacobi Preconditioner in HOMME	Conclusion and Future Work
		0000000	
Problem Shooting and	d Results Prediction		

The Old Block-Jacobi preconditioner in HOMME: Won't reduce the iteration number for Non-staggered Grids

Time_Step(<i>sec.</i>)	500	600	700
None	49	83	-
Block Jacobi	49	83	-

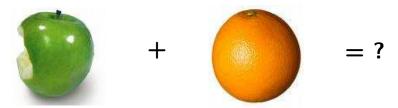
Table: CG Iteration Numbers with No Preconditioner or Block Jacobi in SWTC5

Note: In SWTC5, the whole simulation time is 15 days=1,296,000 sec., Time Step = 600 s. is pretty small

Chanllenges in Implementing Non-staggered Block Jacobi Preconditioner

Tough Part: Nodes on the Edge or Corner of a Face:

When construct *P*, still $p_{ij} = \int_{\Omega_k} \phi_i \phi_j + \int_{\Omega_{k+1}} \phi_i \phi_j + \cdots$? – if so, you are adding apples with oranges.



Why? —Coordinates (x, y) on different faces are NOT the same!

		Non-staggered Block-Jacobi Preconditioner in HOMME	Conclusion and Future Work
		00000000	
Problem Shooting ar	d Results Prediction		

We know
$$\mathbf{v} = (\lambda, \theta) = (x, y)$$
, however,

• Face 1:
$$x = \tan \lambda$$
, $y = \frac{\tan \theta}{\cos \lambda}$

• Face 5:
$$x = \tan \theta \sin \lambda$$
, $y = -\tan \theta \cos \lambda$

So, (x, y) on Face 1 are different from on Face 5, thus the integration on them **scales differently**. Adding them together directly is just like adding apples with oranges

 Outline
 Introduction
 Non-staggered Block-Jacobi Preconditioner in HOMME
 Conclusion and Future Work

 0000000
 0000000
 0000000
 Problem Shooting and Results Prediction

Problem shooting and results prediction

To solve the apple/orange problem:

- Coordinates transformation: Face $\mathsf{A}\Rightarrow\mathsf{Sphere}\Rightarrow\mathsf{Face}\;\mathsf{B}$
- Edge rotation for vectors

Results prediction after applying block-Jacobi preconditioner: CG iteration numbers will be largely reduced.

Conclusion and Future Work

Overview

- Block Jacobi preconditioner for non-staggered grid entails communications with neighbors of each element;
- Extra efforts is needed due to coordinates transformation from the sphere to the cube.

Future Work

- Implement at least other two developed and tested preconditioners in HOMME, *i.e.*
 - 2-level additive Schwarz preconditioner with fast diagonalization method(FDM) as direct solver[7]
 - Non-overlapping optimized additive Schwarz preconditioner[5],[6]
- Test the performance using different preconditioners

	Introduction 00000000	Non-staggered Block-Jacobi Preconditioner in HOMME 00000000	Conclusion and Future Work
Reference:			

[1] S.J.Thomas, R.D.Loft, Semi-Implicit Spectral Element Atmospheric Model, J. Sci. Comput. 17(2002), 339-350 [2]A. St-Cyr, S.J.Thomas, Nonlinear Operator Integration Factor Splitting for the Shallow Water Equations, [3] M.Taylor et al., The Spectral Element Method for the Shallow Water Equations on the Sphere, J. Comput. Phys. 102(1992), 211-224 [4] J.Dongarra, V.Eijkhout, Finite-choice algorithm optimization in Conjugate Gradients [5] A. St-Cyr, M.J.Gander and S.J.Thomas, Optimized Multiplicative, Additive, and Restricted Additive Schwarz Preconditioning, SIAM J. Sci. Comput. Vol. 29, No.6 [6] M.J.Gander et al., Optimized Schwarz Methods without Overlap for the Helmholtz Equation [7]S.J.Thomas et al., A Schwarz Preconditioner for the Cubed-Sphere, SIAM J. Sci. Comput. Vol 25, No.2

	Non-staggered Block-Jacobi Preconditioner in HOMME	Conclusion and Future Work
00000000	0000000	

Thank you ! & Questions?

Kuo Liu *Email:* <u>kuol@ucar.edu</u>