NCAR/TN-339+STR
NCAR TECHNICAL NOTE

July 1989

A Comparison of
Shape Preserving Interpolators

PHILIP J. RASCH
DAvVID L. WILLIAMSON

CLIMATE AND GLOBAL DYNAMICS DIVISION

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH
BOULDER, COLORADO







CONTENTS

Preface

1. Introduction . . . e e e e e e e e

2. The Interpolation Problem . . . . . . . . . .
2.1 Constraints on the derivatives . . . . . . .

2.2 Interpolation forms
2.3 Derivative estimation procedures
3. Intercomparisons of Interpolation Schemes . . .

3.1 Test shapes and diagnostics

.....

......

3.2 Description of interpolation schemes and notation .

3.3 Well resolved cosine test shape
3.3.1 Hermite cubic (Table 2)
3.3.2 Rational quadratic (Table 3)

3.3.3 Rational cubic interpolation forms (Tables 4 and 5)

3.3.4 Bernstein quadratic (Table 6)

3.4 Well resolved Gaussian test shape . .
3.4.1 Hermite cubic (Table 7)
3.4.2 Rational quadratic (Table 8)
3.4.3 Rational cubic (Tables 9 and 10)
3.4.4 Bernstein quadratic (Table 11)

3.5 Well resolved triangular test shape
3.5.1 Hermite cubic (Table 12)
3.5.2 Rational quadratic (Table 13)
3.5.3 Rational cubic (Tables 14 and 15)
3.5.4 Bernstein quadratic (Table 16)

3.6 Summary of tests of well resolved shapes

3.7 Poorly resolved cosine test shape Co
3.7.1 Hermite cubic (Table 17) . . . . . . .
3.7.2 Rational quadratic (Table 18) . . . .
3.7.3 Rational cubic (Tables 19 and 20) . . .
3.7.4 Berstein quadratic (Table 21)

1ii

.........

. . 29

Page

© ~ R N e

11
.11
.13
.15
.15
.18
.19
. 20
.21
.21
.22
.22
.23
. 23
. 23
. 25
.25
. 26
. 26
. 28
. 28
. 28
. 29



3.8 Poorly resolved Gaussian test shape . . . . . . . . . . . . . ... 29

3.8.1 Hermite cubic (Table 22) . . . . . . . . . . . . o v v o 29

3.8.2 Rational quadratic (Table 23) . . . . . . . . . . . . . .. .. 30

3.8.3 Rational cubic (Tables 24 and 25) . . . . . . . e . 30

3.8.4 Berstein quadratic (Table26) . . . . . . . . . . . . . . . 30

3.9 Foorly resolved triangle test shape . . . . . . . . . . .. .. 30
3.9.1 Hermite cubic (Table 27) . . . . . « v . v v o v 30

3.9.2 Rational quadratic (Table28) . . . . . . . . . . . . . .. Lo 31

3.9.3 Rational cubic (Tables 20 and 30) . . . . . . . . . . .« .« . . . 31

3.9.4 Berstein quadratic (Table31) . . . . . . . . . . . o o .. 32

3.10 Suinmary of tests of poorly resolved shapes . . . . . . . . . . . ... 32
4. Conclusions . . . « « v v e e e e e e e e e e e e e e e e e . 33
Acknowledgments . . . . . . . . . oL oo - 35
References . . . o v v v v v i e e e e e e e e e e e e e e e e e e e e e 36

v



Preface

A large number of interpolation schemes are evaluated in terms of their relative ac-
curacy. The large number of schemes arises by considering combinations of interpolating
forms (piecewise cubic polynomials, piecewise rational quadratic and cubic polynomials and
piecewise quadratic Bernstein polynomials), derivative estimates (Akima, Hyman, arith-
metic, geometric and harmonic means, and Fritsch-Butland), and modification of these
estimates required to insure monotonicity and/or convexity upon the interpolant. Shape
preserving methods maintain in the interpolant the monotonicity and/or convexity implied
in the discrete data.

The schemes are compared by evaluating their ability to interpolate evenly spaced
data drawn from three test shapes (Gaussian, cosine bell, and triangle) at two resolutions.
Of the monotonic interpolants, the following are the most accurate: 1) The Hermite cu-
bic interpolant with the derivative estimate of Hyman modified to produce monotonicity
as suggested by de Boor and Swartz. 2) The second version of the rational cubic spline
suggested by Delbourgo and Gregory, with the derivative estimate of Hyman modified to
produce monotonicity. 3) The piecewise quadratic Bernstein polynomials suggested by
McAllistor and Roulier with the derivative estimate of Hyman again modified. Imposing
strict monotonicity at discrete extrema introduces significant errors. More accurate inter-
polations result if this requirement is relaxed at extrema. The Hermite cubic interpolant
is improved by relaxing the strict monotonicity constraint to one suggested by Hyman at
extrema. In a like manner, the accuracy of the rational and piecewise quadratic Bernstein
polynomial interpolants can be improved by requiring only that convexity/concavity be

satisfied rather than monotonicity.



1 Introduction

Shape preserving interpolation denotes a class of methods which maintain any monotonicity,
and/or convexity suggested by data in the interpolant. These shape preserving properties
provide a means of avoiding the oscillations often seen in polynomial interpolation. Many
methods ([2], [9], [10], [11], [7}, [3], [4], (8], [6], [5]) have been introduced in the past few
years with shape preserving properties. They have usually been evaluated in terms of their
“visually pleasing” nature, or via the error terms of the associated Taylor series. While
these quantities are of great importance, many problems require the interpolation of data
which are not strictly monotonic, or convex. Often the underlying form of the data has
discontinuities in its derivatives, and the Taylor series error estimates are of limited utility.
Thus, it is desirable to evaluate the accuracy of the interpolant in a more general context.
In this report we objectively compare shape preserving interpolants with each other and
with non-shape preserving forms in order to provide a sound basis for choosing one for a

particular application.

This report provides a survey of a number of the currently accepted methods of shape
preserving interpolation that have appeared in the literature. We present a review of the
methods, and then comp;cmre the schemes qualitatively and quantitatively.

In the next section (2) a notation is established, and the various shape preserving in-
terpolation schemes are reviewed. The interpolation schemes are compared in section 3 in
terms of their accuracy in representing a variety of shapes which differ in their degree of con-
tinuity, monotonicity, and convexity. A summary of the interpolation comparison appears

in section 4.



2 The Interpolation Problem

We begin by defining the grid {z;}%,;, @1 < @ < «-+ < &, and the data values {fi},

fi = f(z:). It is also convenient to define the discrete slopes

A; = (fir1 — f)/(@ip1 — x3) - (1)
The data are locally monotonic on the double grid interval [@;_1, ;1] if |
A1 >0, (2)
and locally convex if
Aoy > A (3)

For concave data, the previous inequality (3) is reversed. We note that with these definitions,
some data may be interpreted as concave and convex on a single grid interval. We deal with
this special case in section 3.2. We define the piecewise interpolant p € CK [zq,2,], with

K > 0. On each subinterval [z;, z;41], let
6 =(z—x;)h; hy = iy — @ (4)
and
p(z) = pi(0) . (5)
The interpolant p has the following properties
plz:) = fi,  dp(zi)/de =d;. | (6)
ﬁere, d; is some estimate of the derivative of f at the endpoints of the subinterval. The

interpolant is specified on the subinterval in terms of the data f;, and the derivative estimates

d; at the endpoints of the subinterval, that 1s

pi(80) = pi(8, fis firr,dis diy1) (7)



The intefpolar_lt thus adheres to the standard osculatory representation, although the func-
tional form of p is not necessarily the usual Hermite form of the cubic polynomial. For the
intercomparison, only interpolating forms which involve use of local information are included,
i.e., d; is a function of a few surrounding values of f;. In this fashion we have excluded from
consideration many global schemes; for example, the classic C? cubic splines which minimize
the integral of the curvature of the interpolant over the entire domain, exponential splines
under tension [12], and global versions of the monotone, piecewise interpolants of [6] and
[3]. These schemes require information over the entire domain. We chose to evaluate local
methods because our major final goal was a local transport scheme. Local methods are also
desirable because adding, changing or removing data in the domain will only change the
interpolant in the vicinity of the change of data. Following this restriction, schemes which

differ from each other in three major ways are considered:

e The method of estimating the derivative is varied according to algorithms that have

appeared in the shape preserving literature.

e The type of interpolating function is varied to encompass cubic polynomials, rational

functions, and quadratic Bernstein polynomials with extra knots.

e To guarantee monotonicity or concavity/convexity in the interpolating function, cer-
tain constraints are imposed on the derivative estimates. The appropriate constraint

depends upon the interpolation form.

It is convenient to address these items in reverse order in the following subsections.



2.1 Constraints on the derivatives

Certain constraints must be imposed on the derivative estimates used in the interpolation
schemes in order for the interpolants to maintain the properties of convexity/concavity or
monotonicity present in the data. The constraints are reviewed in this section, proceeding
from the least to the most restrictive form. The constraints can be written in terms of
restrictions on the derivative estimates d at the endpoints of an interval, as a function of the
discrete slope A within the interval. Because of this, the constraint on d; based on A;_; of
the interval to the left may be different from that based on A; of the interval to the right.
One may choose to use a different derivative estimate at a point for interpolation over two
adjacent intervals by constraining the estimate differently, in which case the interpolant is
C° or insist that constraints associated with both intervals be satisfied simultaneously, in
which case the same derivative estimate is used for the adjacent intervals, and the interpolant
is C!. When the constraint on d; depends not only on the discrete slopes over the adjacent
intervals A;_;, and A;, but also the derivative estimate d;—; or d;;; at the other ends of the

intervals, the C'! interpolants become global. Such forms are not considered in this report.

The requirement that the continuous derivative estimates bound the discrete slope for a
C? interpolant

(di - Al)(Al - di+1) >0 (NCCO) (8)

and lie between the adjacent discrete slopes for a C! interpolant
(di - Ai—l)(Ai - dt) >0. (NCCl) (9)

must be true if the interpolant is to be convex/concave in the intervals [z;,2;1;] and
[#;.1,2i41], respectively. These requirements are identified as Necessary Condition(s) for

Converity/Concavity, C° and C! respectively.
4 p y



In order that the interpolating function be monotonic on the interval [z;,z;,,] and C°,

the derivatives must satisfy the Necessary Condition for Monotonicity C°

sign{d;) = sign(4;) = sign(d; A; #0
gn(d;) gn(4;) gn(diy1) # (NCMO) (10)
di:di+1 ZO A‘L:O

that is, the derivative estimate at the endpoints must have the same sign as the discrete

slope on the interval. For a C! interpolant on the interval [z;_1, ;1]

sign(A;_;) = sign(d;) = sign(4A;) A;_14; >0 (NCMI) (1)
d; =0 A4 <0,
The derivative estimate at the datapoint must have the same sign as the discrete slopes
sufrounding it or be zero if the descrete datum is an extremum at this point. This condition
is the Necessary Condition for Monotonicity C* (NCM1)

For the rational and piecewise quadratic Bernstein polynomial interpolation forms dis-
cussed below, the necessary conditions NCM0 and NCM1 are also sufficient conditions for
monotonicity. Similarly, the NCC0 and NCC1 are sufficient conditions for convexity with
these interpolants. On the other hand, for Hermite cubic interpolants NCM0 and NCM1

are necessary but not sufficient for monotonicity and must be augmented by additional con-

straints on the derivatives.

Fritsch and Carlson [6] have found both necessary and sufficient conditions for mono-
tonicity of Hermite cubic interpolants. Let a = d;/A;, 8 = di11/A;; then if A # 0 the cubic
interpolant will be monotonic if and only if (a,3) lies within the domain M, defined by

the union of two domains

My =M, UM, (12)
where

Me(avﬂ) = {a)ﬂ : ¢(a’[3) < 0}3 (13)



My(a,8) = {a,8:0< a<3,0<8<3} (14)

and
¢(a,8) = (a =1 +(a=1)(B-1)+ (8- 1) -3a+B-2). (15)
If A; =0, then d; = d;;; = 0 and the necessary condition discussed earlier is also sufficient.
Embedded in this domain M,, is the region M, recognized independently by de Boor

and Swartz [2] which provides a sufficient condition for monotonicity for the Hermite cubic

interpolant. This sufficient condition
0<a<3,0<8L3 (SCM) (16)

is easier to apply than the more general necessary and sufficient condition (M,,) in which
o and 3 may be dependent on each other. Throughout the remainder of this article, this
simpler condition will be referred to as the Sufficient Condition for Monotonicity (SCM).
As before, we define C° and C?! forms depending on whether the derivatives d; are bounded
by just the A of the interval being interpolated or by tfle A of the two adjacent intervals
simultaneously.

Constraints on the derivative estimates are applied in the following fashion. The NCM

constraints are imposed according to

d; d,'AJ' >0
d; — , (17)
0 4:A; <0
where ¢ = 7,j+ 1 for NCMO interpolation on the interval [z}, z;.1], and j = i—1,7 for NCM1

interpolation on the double interval [z;_1,&;+1]. Similarly, the SCM constraints use

where ¢ = 5,5 + 1 for SCMO0, and 7 = ¢ — 1,7 for SCM1, and are applied following the

corresponding NCM constraint. Finally, we use the following algorithm to apply the NCC1



constraint.

4 di  (di— Diq)(A = dy) Z 0 (19)
diim (d; — Ai1)(A;—d;) <0
where
dy = min(A;_1,4;) d; < A, (20)
maz(Ai-1, ;) di > A

At an extremum where the data are not monotonic over the surrounding double interval,
NCMI1 limiting provides a severe restriction, as d; is constrained to be zero there. The
interpolant must put the extremum at the data point. For Hermit cubic interpolants Hyman
[8] has relaxed the SCM1 limiting concept where the data reach a local extremum, and are

not monotonic, in an attempt to mimic a convexity constraint. He proposed the following

limit on the derivatives.
d,' — SIGN(dl)mm(\dz\, |3A,‘_1!, IBA,D (21)

This allows for overshoot 'on the interval next to local discrete extrema and thus is nonmono-
tonic, but does provide some control of the overshoot and, in particular, prevents oscillations

at the edge of flat plateaus.

2.2 Interpolation forms

Three types of interpolating functions are considered — all have appeared in the recent

literature regarding shape preserving interpolation;
e cubic polynomials (]2}, [6], [8], [5])
e quadratic Bernstein polynomials with extra knots ([9], [10], [11])

e rational functions ([7], [3], [4])



The Hermite cubic and rational interpolating functions can be described using the for-

malism of Delbourgo and Gregory [3] . Consider the function
p:i = P,(6)/Qi(6) (22)
on the interval 0 < 8 < 1, equivalently z; < z < z;,1, where
Pi(8) = fur6® + (refisr — hidis1)6%(1 — 8) + (rifi + hidi)6(1 — 6)* + fi(1 = 6)°  (23)

and

Qi0)=1+(r; —3)8(1 - 9) (24)

We consider four choices of the parameter ;.

e If , = 3, p; reduces to the standard Hermite cubic polynomial interpolation form.

Recall that the interpolant will be monotonic if the d; lie within the domain M,.

e Ifry =1+ (d; + dis1)/ Ay then P; and Q; reduce to quadratic polynomials, and p; is
identified as a rational quadratic interpolant. Delbourgo and Gregory [3] have shown
that provided d; and d;, satisfy the NCMO, p; will be monotonic ovef the subinterval,
otherwise this interpolant is not well defined. If NCMO (10) is not satisfied we modify

the derivatives to satisfy it in order to apply the rational quadratic via (17).

o If r; = 1 + max(Ci/ci,Cifcit1), where, ¢; = A; — d;, cipq = diga — Ay, C; = diq — d;
then P; is a cubic polynomial, and p; is identified as the rational cubic interpolant

version 1.

o If r; =1+ ciy1/ci +ci/ciz1, then P; is again a cubic polynomial and p; is identified as
the rational cubic interpolant version 2. Delbourgo and Gregory [3] have shown that if

the derivatives satisfy the convexity/concavity constraints NCC0O or NCC1 then both



rational cubic versions will be convex/concave. If, in addition, the derivatives satisfy
the monotonicity constraints NCMO or NCM1 then both versions will be monotonic.
Delbourgo and Gregory [3] have also shown that version 2 is in general more accurate
than version 1. The derivative estimates must satisfy NCCO0 for the two versions of the

rational cubic interpolant to be well defined.

The quadratic Bernstein polynomials with extra knots cannot be described ‘using the pre-
vious formalism. This interpolant is constructed by piecing together two quadratic Bernstein
polynomials within each interval, with the point of intersection (the extra knot) determined
by a rather complex algorithm which cannot be succinctly described with a few equations
or figures. Because of this, the reader should refer to the descriptions found in the series of
original articles ([9], [10], [11]). The characteristics of the Bernstein polynomials, together
with the élgorithfns developed for constructing the knot, the value of the interpolant at
the knot, and the interpolant derivative at the knot guarantee that the interpolant will be

monotonic provided NCM is satisfied, and convex/concave provided NCC is satisfied.

2.3 Derivative estimation procedures

Table 1 lists the algorithms used in estimating derivatives at the nodes. Several of the
algorithms suggested in the literature for shape preserving interpolation which differ for
unequally spaced data reduce to a common form when the data become equally spaced.
The tests which follow use only equally spaced data, and therefore common algorithms are
grouped together. The table also includes an algorithm identified as Cubic, which does not
usually appear as a derivative estimate. This scheme arises by computing a cubic interpolant
through the four points surrounding the interval. The derivative estimates at the ends of

the interval can then be written as a linear combination of the four surrounding data points.
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Such a scheme results in an interpolaﬁt which is only C° continuous. It is included because
this form of interpolation is often used in semi-Lagrangian problems. The Harmonic mean,
Geometric mean and Fritsch-Butla.nd derivative estimates automatically satisfy the NCM
and NCC constraints. The others generally must be modified to satisfy them‘as described

in section 2.1.



11

3 Intercomparisons of Interpolation Schemes

3.1 Test shapes and diagnostics

The accuracy of the interpolation schemes has been tested on a uniform grid using three
shapes: a Gaussian, a cosine bell, and a triangle. For the cosine and triangle shapes, the
nonzero portion is confined to the central half of the domain. These shapes were chosen
because they have éimilar forms, but may be successively more difficult to approximate
accurately. The Gaussian is C*, the cosine bell C! and the triangle C°. The tests were made
by embedding the shapes within the domain [0,27]. Tests using ten and forty intervals over
the 2w domain were performed. The shapes were successively displaced 100 times, by 1/100
of the grid interval and measurements of the accuracy were made over the domain [0, 27].
This was to establish the sensitivity of the representation to the relative position of the grid
and test shape. The error varied byv at least a factor of 5 over the 100 realizations. We
compare the schemes using the error averaged over all realizations.

More precisely, define the data points in the evaluation domain [0,27] to be ¢y = ({—1)A,
where h = 27 /N,{ =1, N+1and N = 10 or 40 for the two widths chosen. The test functions
are given at these data points and the interpolation is evaluated over the set of points within
(0,27} given by &; = (j — 1)R/13, j = 1, 13N + 1. Note, ; = Z13(¢-1)+1 and the data
points where the interpolators fit exaétly are included in the error measures. Extra data
points were added outside the domain, when needed to compute the appropriate derivative

estimates near 0 and 2x. The exact forms for the functions to be interpolated were

F(z) = exp [-—2 ((—”’—;i’ﬁ)z] | (25)

Gaussian:
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Cosine Bell:
2 {1 + cos(ﬁgﬂ'l)} lz~cp| <6

F(z)= (26)
0 le—ca| 26
Triangle:
_ lz=en] -
F(z) = SR (27)

0 2 —cal 26
where § = 107/24, specifies the width of the test shapes and ¢, = 7 — g"l—'(m*)— + € controls
the offset of the test shape with respect to the grid. The additional small offset € = 1078 is

included so that the maximum of the test functions never coincides with a sampled point.

The error over the entire domain [0,27], denoted the total error, is given by

100 13N+1

T 100 Z Z wa)cn)] -h/13 (28)

We also consider the error over the domain [0, 27] excluding the two grid intervals adjacent to
the discrete maximum of the test shape. The test shapes are monotonic over this evaluation

domain and we refer to this error as the monotonic region error

100
IW Z Z .’DJ,Cn)] h/13 (29)
100 n=1 jeM
where
M =[5;j < Jjr,j > Jjr] (30)

and the left and right bounds of the excluded grid points are determined from the grid

intervals where the discrete slope of the test function changes sign, i.e., given the data point
£* at which
Ap1Ap <0, (31)

the bounds are given by

Jr =13 -2)+1 (32)

jp=13(6)+ 1. (33)
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3.2 Description of interpolation schemes and notation

The error statistics afe presented in the tables as a function of interpolation form, deriva-
tive approximation scheme, and derivative limiter. The least restrictive derivative limiter
leading to a well posed interpolant is always included, even if it allows over/undershooting.
Limiters afe then included in the table which are expected to result in improvements in the
interpolants, by reduction of the over/undershooting. The various forms of the interpolation
are reviewed in the next few paragraphs and a naming convention for use in the tables is

introduced.

We have included seven types of derivative estimates in the intercomparison—the
Akima estimate (AKI—[1], [6], [8]), Arithmetic mean (ARI—[6], [7], [3], [8]), Geometric
mean (GEO—[3]), Harmonic mean estimate (HAR—{5], 7], [11]), Fritsch-Butland estimate
(BUT—[5], [8]), the derivative estimate which gives rise to the simple piecewise cubic inter-
polant achieved by fitting the cubic through the data nearest the point of current interest
(CUB), and the Hyman estimate (HYM—{8]).

The first spline form used is the Hermite cubic interpolant. Monotonic forms are con-
structed by applying the sufficient conditions (SCMO and SCM1). Hyman’s extension to
the SCM1 limiter, HYMil, which allows limited overshooting in the vicinity of extrema, is
included. As mentioned before, relaxation of the monotonicity condition at the discrete ex-
trema is in the spirit of essentially nonoscillatory schemes which allow for an extremum to
form between data points, but do not allow additional extrema to form. Hyman’s version can
be relaxed further by applying no limiting in the vicinity of extrema, that is, the sufficient
condition for monotonicity is applied only in the vicinity of monotonic data (SCMO-EE and

SCMI1-EE). The EE notation is used to imply ‘Except at Extrema.’
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As discussed in section 2, the rational interpolant forms require less stringent deriva-
tive limiters. The rational quadratic interpolant is properly posed only when the derivative
estimates satisfy NCMO. Like the Hermite cubic interpolant, the limiters are applied to
constrain the derivatives in the whole domain, and except at extrema. For the NCM1-EE
case, the NCMO constraint is applied at the extrema to keep the scheme well defined.

As McAllister and Roulier [10] have pointed out, there are inevitable complications that
arise when the data and corresponding derivative estimates switch between monotonic and
concave/convex states. This change in the character of the data also requires a switching
in the way the interpolants are constructed. McAllister and Roulier {10] and collaborators
in [9], [11] have described a complete implementation for the piecewise Bernstein polyno-
mials. The scheme is well posed for all data, but becomes monotonic, or convex/concave
only if the derivative estimate satisfies the necessary conditions for monotonicity NCM or
convexity /concavity NCC, respectively. Recall that the Rational cubic interpolants (versions
1 and 2) are properly posed only if the derivative estimates satisfy the convexity condition
NCCO. If the data do not satisfy this condition (in the vicinity of an inﬁection point), some
switching condition must be used. We have implemented this switching within the rational

cubic interpolants in the following way.

e The derivative estimates are made,
e The derivative limiter (if any) is applied,

e The data and derivative estimate are used to see if NCCO is satisfied, if so, the rational
cubic interpolant is used, if not, the rational quadratic interpolant, as described above,

is used there.
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The tables of the errors provide a staggering amount of information, and the discussion
in the following section justifying the conclusions about the interpolation from the tables
is somewhat tedious. Thevresults from the well resqlved test shapes are summarized in
section 3.6 and those from the poorly resolved shapes in section 3.10. The overall results
are further summarized in section 4 and the important conclusions about the interpolation

intercomparisons are highlighted there.

3.3 Well resolved cosine test shape
3.3.1 Hermite cubic (Table 2)

The errors associated with the Hermite cﬁbic interpolation of the cosine bell shape over a
domain resolved with 40 points appear in Table 2. Each column provides an indication of the
error associated with the application of a different limiting form on the derivative. Each row
describes the error associated with the use of a different derivative estimation scheme. The
unbracketed number is the error calculated over the whole domain, the number in brackets is
the subset of the errors calculated over the monotonic portion of the domain, i.¢., eliminating
the two grid intervals adjacent to the discrete maximum in the test data.

When no limiters are applied (first column), the Hyman derivative estimation scheme has
the least error, followed by the cubic then the arithmetic mean derivative estimates. In this
case, the ordering agrees with the ordering by formal accuracy of the derivative estimates.
The ordering by accuracy for the rest of the estimates becomes Akima, geometric mean,
Fritsch-Butland, and harmonic mean. We have entered the BUT and HAR forms in the
SCM1 column since they automatically satisfy that condition. When the error over only
the monotonic part of the domain is considered, the geometric derivative estimate improves

greatly in the ranking, with similar changes in the other derivative estimate schemes which
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automatically satisfy the NCM. Comparing the two types of error (braéketed and unbrack-
eted) for estimates which automatically satisfy NCM with those which do not suggests that
more than half of the error is concentrated near the extrema for the derivative estimates
satisfying the NCM, with only a few percent of the error concentrated there for the other

schemes.

Application of the SCM degrades the approximations over the whole interval (second
or third column compared to first), more so for C' continuity (third column) than for ce
(second column). The only exception is the arithmetic derivative estimate in the monotonic
region. For all but the geometric derivative estimaté, this degradation occurs in the vicinity
of the extrema, since the error over the interval excluding the extrema actually decreases
with the application of the SC'M limiters, less so for C'* continuity than for C°.

In general, the application of the monotonicity condition to monotonic data improves the
interpolation. In the vicinity of the extrema on the other hand, the error increases, because
the monotonic derivative‘ estimates must be zero there and the extrema must occur at a data
point rather than in the interior of a subinterval. In the monotonic regions C° continuity
provides a more accurate interpolation than C! continuity (second column vs. third) at
the expense of smoothness of the interpolant. With the application of the SCM limiters,
the advantage of the Hyman over the cubic and arithmetic derivative estimates decreases,
although the Hyman remains superior. With the SCM1 limiter, the cubic derivative estimate
falls behind the arithmetic derivative estimate, i.e., the C' condition compared to the c°
condition does more harm to the cubic than to the arithmetic derivative estimates (column

3 vs. column 2).

As mentioned earlier, the Fritsch-Butland and harmonic derivative estimates automat-

ically satisfy SCM1 and so are placed in the third column of Table 2 with the schemes to
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which they are comparable. Neither is as good as any of the better derivative approximations
(Hyman, cubic or arithmetic) in either the monotonic region or the vicinity of the extrema.

The geometric approximation to the derivatives is also not as good as these.

The monotonicity condition associated with the SCM1 requires the derivative estimate
to be zero at extrema in the discrete data. The condition will naturally introduce errors
when the function has a maximum between the discrete data points. This mismatch in
structure is reflected in the error table by errors over the whole interval being larger than
those over the monotonic region. The last three columns in Table 2 are schemes which allow
for overshooting of a non-monotonic interpolant in one of the two intervals adjacent to the
discrete extrema, the particular interval being the one in which the derivative estimates at
the end have opposite sign. The amount of overshoot f;)r the schemes labelled EE is not
controlled except inherently by the derivative estimates themselves. The derivative limiter
suggested by Hyman permits limited overshooting but eliminates it when the data imply an

approach to a flat plateau structure.

The relaxation of the strict monotonicity condition at the extrema to allow overshootiﬁg
improves the interpolant there with no effect in the strictly monotonic region. For’ example,
the SCMO-EE limiter, (Column 5, Table 2), has less error over the entire interval than
the SCM limiter applied over the entire interval (Column 2, Table 2). The errors over the
monotonic interval remain the same. Thus the interpolant is improved for all derivative
estimates by relaxing the monotonicity condition at extrema. Imposition of Hyman’s limiter
at the extremum does degrade the accuracy of the interpolant slightly (Column 4 vs. Column

6) in the region of the extrema such that it falls between the limited and non-limited cases.
To summarize, for the 40 point cosine bell with a Hermite cubic interpolant the Hyman

derivative approximation always produces the best interpolation, followed in descending
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order by cubic, and arithmetic derivative estimates. Imposition of the monotonicity condi-
tion either implicitly as in the Fritsch-Butland and harmonic mean estimate, or explicitly
with the SCM limiters, improves the interpolation of monotonic data, but can degrade the
interpolation near the discrete extrema by suppressing overshooting when the underlying
field actually overshoots the discrete values. SCMO does less damage than SCM1. At the
risk of over/undershooting, the limiters should not Be applied at the extrema. The C? Hyrﬁan
limiter will allow over/undershooting at isolated extrema but will prevent it on approaching

flat plateaus.

3.3.2 Rational quadratic (Table 3)

As with the Hermite cubic interpolant, the best derivative estimate is the one proposed by
Hyman, followed by the cubic derivative estimate and then the arithmetic (except the C?
monotonic form where arithmetic is insignificantly better than cubic) estimate. The C? form
of the approximation is better than the C° in the monotonic interval (bracketed terms of the
second column vs. the first column), but not as good in the intervals near the extremum.
Relaxing the necessary condition improves the interpolant there (third column vs. second
column). The Akima, Fritsch-Butland, geometric and harmonic derivat-ive estimates are not

as good as the others.

Comparing Tables 2 and 3 shows that the rational quadratic is not as accurate as the
Hermite cubic, i.e., comparison of columns 1 and 2 of Table 3 with columns 2 and 3 of Table 2,
respectively. The rational quadratic interpolant is not in general as accurate as the monotonic
forms of the cubic interpolant. The only exception is the Hyman derivative estimate with C*
continuity in the monotonic region. The interpolant can exceed the accuracy of the Hermite

interpolant for monotonic data, with an accurate derivative estimate.



19
3.3.3 Rational cubic interpolation forms (Tables 4 and 5)

Comparison of the two forms of the rational cubic in the tables entry by entry shows that the
second version (Table 5) is consistently better than the first (Table 4) except for a few cases
involving the Akima or Fritsch-Butland approximations. Since the Akima, Fritsch-Butland,
geometricvand harmonic approximations result in larger errors than the other schemes, we
do not consider them further in conjunction with the rational cubic. Therefore, we consider
only the second form of the rational cubic (Table 5) coupled with the Hyman, cubic and
arithmetic derivative estimates.

For each derivative limiter (z.e., each column) the Hyman derivative approximation con-
tinues to provide the best interpolant, followed by the cubic then arithmetic estimate. Again,
they are ordered following their formal accuracy. As with the Hermite cubic, the modifi-
cations required for monotonicity degrade the solution at the extrema and improve it in
the monotonic regions (columns 2 or 3 vs. column 1). Unlike the Hermite cubic, but like
the rational quadratic interpolant, the rational cubic interpolant with C! continuity offers
improvement over C° continuity (column 3 vs. column 2), except with the Hyman and cubic
estimates measured over the entire domain. For practical purposes C° and C! produce the
same average error with the Hyman estimate. When the strict monotonicity condition is
relaxed at the extrema so that the rational cubic interpolant relies on its convexity proper-
ties, the error is reduced further (columns 4 and 5 vs. columns 2 and 3, respectively). It
is also of interest to note that, in this case, the error over the entire domain is almost the
Same as that within the monotonic domain. (For example, compare bracketed with corre-
sponding unbracketed terms in columns 4 and 5). The extrema are no longer responsible
for a larger fraction of the error. Column 6, (labelled NCC1) represents implementation two

of the interpolant as discussed in sections 2.2 and 3.2. We see that Implementation 1 and
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two result in identical accuracy for the arithmetic, and Akima derivative estimates, which
automatically satisfy NCC1. Their accuracy is almost equivalent for the Cubic and Hyman

derivative estimates, suggesting the particular implementation makes little difference.

3.3.4 Bernstein quadratic (Table 6)

Within any column, the relative standings of the derivative estimates are the same as with
the rational cubic (Table 5) with the exception of a reversal of the Fritsch-Butland and
geometric estimates. These two, along with the harmonic and Akima approximations, have
the largest errors and will not be considered further here. The errors from the Bernstein
quadratic scheme are consistently higher than the corresponding ones from the second version
of the rational cubic (Table 6 compared to the corresponding entry in Table 5). The only
exception is the cubic derivative estimate with no limiter, where thé errors are identical to
the accuracy shown in the table.

The Bernstein quadratic scheme tends to have slightly smaller errors than the Hermite
cubic with the Hyman and cubic derivative approximations when no limiters are applied
to the derivatives (column 1 of Table 6 vs. column 1 of Table 2) but the differences seem
negligible. When the appropriate C° monotonic limiters are applied, the Hermite cubic
tends to be the better of the two with these derivative estimates. The Bernstein quadratic
interpolant tends to be better with the C' monotonic limiters (columns 2 and 3 of Table 6
vs. columns 2 and 3 of Table 2, respectively). In short, neither the Bernstein quadratic, or

Hermite cubic forms are consistently more accurate than the other.
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3.4 Well resolved Gaussian test shape

3.4.1 Hermite cubic (Table 7)

The relative ordering of the‘errors for the Hermite cubic can be compared with that for the
well resolved cosine test shape in Table 2. An absolute comparison of the errors between
the two tables is less relevant but possible since the shapes are not too unlike each other.
When no limiter is applied to the derivatives, the ordering of the derivative estimates is
the same for the Gaussian as for the cosine shape, i.e., the best derivative approximation is
that of Hyman, followed by the cubic followed by the arithmetic. The cu’bic and arithmetic
derivative estimates show more separation with the Gaussian shape than they did with
the cosine shape and the Hyman approximation is remarkably better in interpolating the
Gaussian, probably due to the C* continuity of the shape. Application of the C® and C?
SCM degrades the accuracy of the Hermite cubic interpolation with these three derivative
estimates as it did with the well resolved cosine test shape, again more so for the C! than
the C° continuity. When calculated over the entire domain, for all practical purposes, use
of a limiter results in the same errors with any of the three better derivative estimates (i.e.,
in columns 2 or 3 of Table 7, the unbracketed errors are insignificantly different for the
arithmetic, cubic and Hyman differences). Examination of the errors calculated over the |
monotonic domain shows that the original relative ordering of the derivative approximations
is preserved in the monotonic regions but that these errors are extremely small (by 1-3 orders
of magnitude) compared with the errors near the extrema which dominate the total error.
Since the monotonicity condition is the same for all three derivative approximations (¢.e.,
the derivative is zero at the extremum discrete point and possibly limited at the adjacent
points), it is reasonable that they all have the same error there. The Akima, Fritsch-Butland,

geometric and harmonic derivative approximations are not as accurate as the others.
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3.4.2 Rational quadratic (Table 8)

The monotonic Hermite cubic interpolation remains slightly better than the corresponding
rational quadratic interpolation (unbracketed terms in Table 8, column 1 vs. Table 7, col-
umn 2 and Table 8, column 2 vs. Table 7, column 3). For this test shape the error is
dominated by the errors near the extrema. In the monotonic domain (the bracketed terms),
the rational quadratic is often more accurate. The interpolation by either approach in these
regions is so good that the difference becomes irrelevant. Near the extrema the error due to
derivative modification to satisfy the NCM dominates the error as it did with the Hermite
cubic. Unlike the cosine test shape, the NCM1 is not as accurate as NCMO (column 2 vs.
column 1), where additional error arises near the extrema.r Relaxing the necessary condition
at the extrema eliminates the error (column 3 equals column 1). Relaxing the monotonicity
condition at the extremum shows that the additional error introduced by the C' continuity
over that of the C° is all located near the extrema (column 3 compared to columns 2 and 1),

as was observed above with the Hermite cubic.

3.4.3 Rational cubic (Tables 9 and 10)

Again, the second version is consistently better than the first with a few unimportant ex-
ceptions (e.g., for the less accurate Akima and Fritsch-Butland derivative estimates). The
Fritsch-Butland, geometric, harmonic and Akima derivative estimates produce larger errors
than the other approximations modified to satisfy the NCM1 (Table 10, column 3). For this
1:eason, we limit our attention here to the second version of the rational cubic with Hyman,
cubic and arithmetic derivative estimates. The ordering of the more accurate derivative
estimates (Hyman, then cubic, then arithmetic) is consistent with‘ that found for the cosine

shape. The NCM constraints degrade the interpolant at the extrema. In fact, for the well



23

resolved Gaussian shapé, evidently the only place the necessary condition is invoked is at
the extrema since when the condition is not imposed at the extrema, the errors are the same
as having no limiter (Table 10, column 5 or 6 vs. column 1). Again, the forms that rely
on the convexity of the data near the extrema offer improvement over pure monotonicity, at
the expense of possible overshooting. In the monotonic region, use of a convexity constraint
does not always provide as accurate an interpolant as use of a monotonicity constraint. The

additional error arises in the vicinity of the inflection point in the data.

3.4.4 Bernstein quadratic (Table 11)

In general, the relative results for the Bernstein quadratic scheme are the same as with the
well resolved cosine test shape. The best derivative estimates are the Hyman followed by
cubic and then arithmetic. The Bernstein quadratic scheme is consistently less accurate
than the second version of the rational cubic. The unlimited and NCMO versions are also
consistently less accurate than the corresponding versions of Hermite cubic. However, it
tends to bevbetter than the Hermite cubic when C! monotonicity is required. The superiority
of the Hermite cubic with C° continuity and the Bernstein quadratic with C' continuity is
consistent with the results of interpolating the well resolved cosine test shape. The differences
are not particularly large so these comparisons by themselves do not provide firm ground to

choose one over the other.

3.5 Well resolved triangular test shape
3.5.1 Hermite cubic (Table 12)

As with the other test shapes, the Fritsch-Butland, geometric and harmonic derivative ap-

proximations have relatively large errors and we exclude them from further consideration.
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When no limiter is applied, the Hyman derivative estimate is better than the cubic and arith-
metic which are virtually the same. Unlike the previous test shapes, the Akima derivative
estimate scores very well, having the least error. Examination of the form of the deriva-
tive estimates shows that with straight line segments, all the approximations give the same
derivative when the support of the approximation does not exceed the straight line segment
and the Hermite cubic interpolation collapses to the true linear straight line. Therefore, the
differences between these Hermite cubic interpolations and the errors in interpolation occur
only near the breaks in the line segments comprising the test shape. The Akima derivative
estimate can be seen to maintain the linear structure closer to the break than the other
schemes, thus it is the most accurate. Because of this property, the triangular test shape
provides a less suitable basis for discriminating between combinations for more general use.
Nevertheless, it is useful to include it as it provides an extreme test. When it is used to test
the semi-Lagrangian advection, the successive interpolations as the feature moves across the
grid destroy the straight line segments, making it a more relevant test shape.

Application of the C° and C* SCM degrades the iqterpolation near the apex of the tri-
angle and improves it at the base where the shape changes to the flat region (i.e., bracketed
errors decrease). The C° condition tends to be somewhat more accurate than the C'. The
above properties hold for the Hyman, cubic and arithmetic derivative approximations and
except for C! with the Akima. The Akima approximation remains the best with the mono-
tonicity constraints. Relaxation of the monotonicity condition at the extrema improves the

interpolation there at the expense of overshooting.
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3.5.2 Rational quadratic (Table 13)

Again, far enough from the intersection of the straight line segments, the rational quadratic
interpolation scheme also collapses to the true linear segment and thus the errors all occur
near the apex and near the bottom. The Akima derivative estimate remains the most
accurate, again because of the special nature of this test shape. A better indication of
the significance of this is provided by the semi-Lagrangian advection tests in which the
interpolation errors rapidly distort the linear segments. The C°® monotonic Hermite cubic
is consistently better than the rational quadratic. For the C! monotonic case, the Hermite
cubic is better when the error is calculated over the entire domain, but the rational quadratic
is better over the monotonic region, implying the Hermite cubic is bettef at the peak and

not as good elsewhere.

3.5.3 Rational cubic (Tables 14 and 15)

The second version of the rational cubic remains consistently better than the first, except
occasionally with the cubic derivative approximation. In these few cases the differences
are very small, so we consider the first version no further. As with the other schemes, the
rational cubic collapses to the appropriate straight line segment away from the vertices of
the triangle where all the error occurs. The Akima derivative approximation again is the
most accurate, followed by the Hyman approximation. The NCM0 and NCM1 monotonicity
conditions degrade the interpolations near the pointed apex while improving it near the base
t;.S it approaches the flat region, except for the Akima derivative estimate where they have no
affect away from the extrema. The degradation with the C! continuity near the vertex is such
that the Hyman derivative approximation actually becomes better than the Akima. When

the monotonicity condition is not applied at the extrema, the Akima approximation has the
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same errors as the unlimited version indicating that it was only required at these extrema
and not at the base for strict monotonicity. This differs for the other approximations where
application of the monotonicity condition except at the extrema improves the interpolation.

The necessary condition improves the interpolation in the region approaching the flat base.

3.5.4 Bernstein quadratic (Table 16)

For the well resolved triangular test shape, the Bernstein quadratic scheme is consistently
more accurate than the Hermite cubic and comparable to the second version of the rational
cubic, neither being consistently better. The Akima derivative estimate, followed by the
Hyman estimate is again the most accurate. The interpolation is dégraded'near the extrema
and improved near the base when monotonicity constraints are applied. In the monotonic
cases, the differences between the rational cubic and Bernstein quadratic seem small and do

not provide firm ground for choosing between them.

3.6 Summary of tests of well resolved shapes

With the well resolved smooth test shapes (cosine and Gaussian), the Hyman derivative
estimate is the best followed by the cubic which, in turn, is followed by the arithmetic—
consistent with ordering by formal accuracy. The Akima approximation is usually not as good
as any of these. However, when the data being interpolated consist of linked linear segments
(the triangular test shape), the Akima derivative estimate becomes the best, followed by
ﬁyman. For all cases, the geometric, harmonic and Fritsch-Butland apbroximations are
consistently less accurate than other approximations: Thus one might choose the Akima
approximation for data with special characteristics, but for the more general case the Hyman

scheme seems desirable.
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Application of monotonicity constraints degrades the interpolant near the extrema and
tends to improve it (or at least not degrade it) in the strictly monotonic regions. In general,
the C! constraints have larger errors than the C°, again associated with the extrema, since

the more severe constraint effects two adjacent intervals rather than just one.

The second version of the rational cubic interpolant is consistently more accurate than the
first and is (with a few minor exceptions) more accurate than the Hermite cubic. Comparing
the rational quadratic and the corresponding monotonic Hermite cubic interpolant provides
a mixed signal; away from the extrema the monotonic Hermite cubic interpolant tends to be
more accurate. .The Bernstein quadratic interpoiant is generally less accurate than the second
version of the rational cubic except in some instances with the triangular test shape. It is also
generally less accurate than the Hermite cubic when no monotonicity conditions are applied.
The Bernstein quadratic scheme tends to be more accurate than the monotonic versions of
the Hermite cubic interpolant when coupled to the higher order derivative approximations
in the monotonic regions.

The best combination for general use, where strict monotonicity is not essential, seems to
be the second version of the rational cubic with the Hyman derivative estimate constrained
by the monotonicity condition where the data are strictly monotonic but relying on the
convex/concave properties at the extrema where the data imply such structures. The choices
between C° and (! seem less critical and could be chosen depending on the nature of the

problem. If monotonicity is not imposed at the extrema then C' is probably preferable.
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3.7 Poorly resolved cosine test shape
3.7.1 Hermite cubic (Table 17)

Like the well resolved cosine test shape, when no limiters are applied, the Hyman deriva-
tive estimate is more accurate than the cubic which in turn is better than the arithmetic.
But now, the Akima derivative estimate falls in between the cubic and Hyman estimates.
This suggests that the Akima derivative estimate is better with the more pointed shapes.
As before, the Fritsch-Butland, geometric and harmonic derivative estimates are the least
accurate and are considered no further.

Except with the Akima derivative estimate, application of the C° and C! SCM degrade the
solution near the extrema and improve it in the monotonic regions. When the entire domain is
considered, the relative ranking remains as with no limiters, except the Akima approximation
falls behind cubic with C° continuity and behind arithmetic with C! continuity. Unlike the
well resolved test case, the (' sufficient condition provides a better interpolation than the
C°. Relaxing the monotonicity condition at the extrema again gives a better interpolation

at the expense of overshooting.

3.7.2 Rational quadratic (Table 18)

The relative ordering of the derivative estimates with the rational quadratic remain consistent
with the Hermite cubic interpolant. Comparing the rational quadratic with the appropriaté
monotonic Hermite cubic gives somewhat mixed results for the derivative approximations.
However, with the best derivative estimate (Hyman), the Hermite cubic is better than the

rational quadratic.
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3.7.3 Rational cubic (Tables 19 and 20)

The second version of the rational cubic remains more accurate than the first. But with the
narrower shape, the Hermite cubic is also consistently better case for case than the second
version of the rational cubic. The relative standings of the derivative estimates is essentially
the same as with the Hermite cubic except the Akima derivative estimate is now not as good

as the arithmetic estimate.

3.7.4 Bernstein quadratic (Table 21)

The Bernstein quadratic scheme is consistently worse than the second version of the ra-
tional cubic except with the Hyman derivative estimate and C' monotonicity when it is

insignificantly better near the extrema.

3.8 Poorly resolved Gaussian test shape
3.8.1 Hermite cubic (Table 22)

When no modification is made to the derivative estimates with the Hermite cubic interpolant,
the relative standings of the derivative estimates are similar to those of the poorly resolved
cosine test shape, except the Hyman derivative estimate is the best by a larger margin
and Akima derivative estimate moves below the cubic. The C° and C! sufficient conditions
for monotonicity eliminate this margin although Hyman remains the best. The sufficient
conditions degrade the interpolations near the extrema and unlike the earlier results, do
not improve the interpolation in the monotonic region for the C* form. Unlike the poorly
resolved cosine test shape, but like the well resolved cosine and Gaussian, the C? condition

degrades the interpolation more than the C° does.
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3.8.2 Rational quadratic (Table 23)

The rational quadratic and Hermite cubic show a nearly equal accuracy. In some regions one
is better, in others the. other is better. Conclusions régarding the relative accuracy of the
derivative estimates used with the rational quadratic are similar to those using the Hermite
cubic, except that the Akima estimate moving around somewhat but never becoming better

than Hyman estimate.

3.8.3 Rational cubic (Tables 24 and 25)

The second version of the rational cubic remains more accurate than the first. The Hermite
cubic is not consistently better than the second version of the rational cubic as it was with
the poorly resolved cosine. With C! continuity, the rational cubic is the better of the two

with the cubic and Hyman derivative estimate.

3.8.4 Bernstein quadratic (Table 26)

The Bernstein quadratic interpolations are not as good as the second version of the rational
cubic except near the extrema for a few of the C' monotonic cases, namely the Akima and

Hyman, where the improvement is fairly small.

3.9 Poorly resolved triangle test shape

3.9.1 Hermite cubic (Table 27)

The derivative estimates follow the same order seen with the well resolved triangle shape,
Akima being the best, followed by Hyman, again illustrating that the Akima approxima-

tion is accurate with shapes defined by piecewise continuous linear segments. Monotonicity
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constraints degrade the solution near the peak but improve it near the base where the test
function changes from the flat base to the side of the triangle. The improvement near the
base is not as obvious for the C! monotonicity because our error integrals do not make a clear
domain separation. In the C! case the error integral excluding the extrema includes intervals
which are affected by the condition applied on the intervals next to the extrema. Thus it
does not represent error at the base only. The interpolations are improved by relaxing the

monotonicity condition at the extrema, at the expense of overshooting.

3.9.2 Rational quadratic (Table 28)

Comparing the rational quadratic with the appropriate monotonic Hermite cubic gives a
mixed signal; with the better derivative estimates (Akima and Hyman) the Hermite cubic is
better everywhere with ('° continuity and near the extrema with C! continuity — but, the

rational quadratic is better over the monotonic domain with C! continuity.

3.9.3 Rational cubic (Tables 29 and 30)

Again, the second version of the rational cubic is better than the first version. With the
second version, the Akima and Hyman derivative estimates remain the most accurate. The
Hyman estimate is better in the monotonic region, the Akima is better near the extrema.
This advantage of the Akima approximation is lost when the necessary condition for mono-
tonicity is applied and, of course, regained when the condition is relaxed at the extrema.
For the unlimited case and for NCM0 and NCM1 limiters an examination of tables 27
and 29 reveals the following: (1) the second version of the rational cubic is more accurate
than the Hermite cubic with the Hyman and cubic derivative estimates, and (2) The Hermite

cubic and rational interpolants when coupled with the Akima estimate give mixed signals
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about which is more accurate, depending upon whether one looks at the monotonic or whole

domain, and whether one applies NCM constraints at the extrema or not.

3.9.4 Bernstein quadratic (Table 31)

The Bernstein quadratic scheme is more accurate than the second version of the rational
cubic with the Hyman derivative estimate but less accurate with the Akima estimate. The
differences tend to be small however, and by themselves do not provide a firm basis for

choosing one over the other.

3.10 Summary of tests of poorly resolved shapes

With the poorly resolved test shapes, the Hyman and Akima derivative estimates consistently
rank as the most accurate. For shapes which are strongly peaked, the Akima slope is
more accurate than the Hyman estimate. The geometric, harmonic and Fritsch-Butland

approximations are consistently less accurate than the other approximations.

The monotonicity constraints degrade the interpolation near the extrema and usually
improve the solution in the monotonic region. The C! condition does not always degrade
the interpolation more than the C°.

The second version of the rational cubic is consistently better than the first. The Her-
mite cubic is better than the rational cubic when evaluated using the cosine shape but not
always with the Gaussian or triangular shapes. The rational quadratic compared to the
corresponding monotonic Hermite cubic gives a mixed signal. The Bernstein quadratic in-
terpolant (with some few exceptions) tends to be less accurate than the second version of

the rational cubic interpolant.
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4 Conclusions

In the previous secti<;n we have compared the various schemes in interpolating well-resolved
cosine bell, Gaussian and triangular test shapes, and the corresponding poorly resolved
test shapes. Out of the mass of numbers considered in these comparisons there are logical
inferences to be drawn relating the various schemes to each other. These conclusions may not
be universal, as definite known properties of particular fields might be used to advantage in
the interpolation scheme. Minor exceptions can be found in our tables that might imply some
other scheme is ideal for such specific applica"rr.ions. It is also possible that our conclusions

would change with a different error measure.

We begin by itemizing our conclusions regarding the interpolating functions.

e The Hermite cubic and the second version of the rational cubic interpolant appear
to be the most useful interpolation formulas. The first version of the rational cubic

interpolant is consistently inferior to the second.

e The Bernstein quadratic interpolant is generally of comparable accuracy to the rational
form mentioned above. We found it to be somewhat more difficult to program for the
various special cases, which results in a corresponding increase in the complexity of

computer code and execution time.

e The rational quadratic interpolant is of comparable accuracy to the SCM limited Her-
mite cubic for monotonic data, but it does not allow the flexibility of the Hermite
cubic near extrema, or allow for the concave/convex structure provided by versions of
the rational cubic interpolant. For data which have an extremum, this scheme is not

recommended, because there is no alternative to assuming the slope goes to zero at a
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discrete extremum. This results in much larger errors in the vicinity of the extremum,

than the cubic, rational cubic and piecewise quadratic spline forms.
Conclusions regarding the derivative estimates follow:

o The geometric mean, harmonic mean and Fritsch-Butland derivative estimates are
consistently less accurate than the others. Their virtue is their simplicity. While they
may result in visually pleasing interpolants they are generally of insufficient accuracy
for many applications. The rat.ional;linear derivative estimate [7], equivalent to that
suggested by McAllistor and Roulier [11], and to the harmonic mean estimate suggested
by Frisch and Butland [5] for equally spaced data, is the least accurate of all the
derivative estimates. The Fritsch-Butland derivative estimate is always more accurate

than the rational linear estimate.

¢ The Akima approximation performs extremely well for data with small scale features,
but less well for the broader, more rounded shapes. Careful examination of the results
suggests the Akima scheme is actually quite accurate in the vicinity of the extrema,

and much less accurate over the rest of the domain.

o Except for the intersection of straight lines such as triangular peaks where the Akima
estimate shines, the Hyman derivative estimate is the most accurate, followed generally
by the cubic, then arithmetic. The disadvantage of the cubic derivative approximation

is that it does not provide for a C* continuous interpolant while the others do.

¢ Monotonicity constraints generally improve the interpolation of monotonic data and
data approaching a flat plateau. These constraints degrade the interpolation near

extrema by not allowing any overshoot that might be implied in the underlying data.
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The derivative estimate is constrained to be zero in the vicinity of an extrema with the

C! form. The C° continuity constraint is less serious in this than the C'.

. @ Where strict monotonicity is not required, relaxation of the monotonicity condition at
any extremum seems desirable to allow the interpolant to form an extremum somewhere
other than at a data point. Application of Hyman’s limiter for the Hermite cubic seems

desirable to prevent overshooting in the approach to a flat or nearly flat plateau.

In general the accuracy of the interpolation does not vary by more than a factor of two
or three between schemes. The exception to this statement occurs when the shap;a to be
interpolated is analytic and resolution is high, in which case the high formal accuracy of
the cubic interpolant, and the Hyman fourth order derivative estimate result in substantial
increéses in accuracy over other schemes. We saw this demonstrated in the well resolved
Gaussian test shape. points.

We mention in passing that we also tested other C'° sufficient conditions for monotonicity
with the Hermite cubic interpolation form which modify the derivative estimates to lie on the
elliptical boundary of va (12) rather the to the more restrictive boundary of M,. These

limiting forms involve extra calculations and result in minute but discernible improvements

in the accuracy of the representation.
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Cubic . {(Z’Ai-1+56Ai—Ai+1) T € (:l:i,wi_q.])
(—A:-2+56A:'-1+2A-‘) ze (mi—lami)
Hyman
Ai_—TA;_1+TA—A;
([8]) di = 2 12 =

" Algorithms for derivative estimates as they simplify for evenly spaced data.
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Slope No limiter = SCMO0 SCM1 HYM1 SCMO-EE SCMI1-EE

Ari 1.25(-6)  2.43(-6) 2.71(-6) 1.54(-6)  1.22(-6)  9.66(-7)
[1.24(-6)] [8.85(-7)] [6.32(-7)] [6.32(-7)] [8.85(-7)] [6. 32( 7))
Cub  1.07(-6)  2.22(-6) 2.80(-6) 1.60(-6)  1.01(-6)  1.02(-6)
[1.06(-6)] [6.78(-7)] [6.80(-7)] [6.80(-7)] [6.78(-7)] [6.80(-7)]
Aki  2.55(-6)  4.04(-6) 5.27(-6) 3.93(-6)  2.83(-6)  3.25(-6)
(2.52(-6)] [2.52(-6)] [2.94(-6)] [2.94(-6)] [2.52(-6)]  [2.94(-6)]
But 4.01(-6)
[1.46(-6)]
Geo  3.22(-6)  3.38(-6)  3.44(-6)
[1.05(-6)] [1.07(-6)] [1.14(-6)]
~ Har : 5.70(-6)
(2.65(-6)]
Hym  7.05(-7)  1.96(-6)  2.75(-6) 1.52(-6)  7.50(-7)  9.17(-7)
[7.05(-7)] [4.36(-7)] [6.03(-7)] [6.03(-7)] [4.36(-7)] [6.03(-7)]

Table 2. Error measures for the Hermite interpolant, cosine bell shape, using
40-point resolution. Unbracketed numbers represent the ensemble average of the
error integral associated with the 100 realizations of the shape. The numbers
within square brackets represent the error excluding the intervals adjacent to
the extrema.

© Slope NCMO NCM1 NCMI-EE

Ari 2.89(-6)  3.35(-6)  2.28(-6)
[1.24(-6)] [6.39(-7)]  [6.39(-7)]
Cub  2.47(-6)  3.36(-6)  2.25(-6)
[8.32(-7)] [6.10(-7)] [6.10(-7)]
Aki  4.38(-6) 5.69(-6)  4.38(-6)
[2.78(-6)] [2.78(-6)]  [2.78(-6)]
But 5.19(-6)
[2.04(-6)]
Geo 4.36(-6)
[1.45(-6)]
Har 6.80(-6)
[3.52(-6)]
Hym  2.28(-6) 3.16(-6)  2.02(-6)
(6.60(-7)] [3.96(-7)] [3.96(-7)]

Table 3. Error measure for the rational
quadratic interpolant, cosine bell shape, us-
ing 40-point resolution. See Table 2 caption
for an explanation of the numbers.
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Slope No limiter NCMO0 NCM1 NCMO-EE NCMI-EE NCC1

An 2.37(-6) 4.00(-6) 3.08(-6) 2.37(-6)  1.33(-6)  2.37(-6)
(2.35(-6)] [2.35(-6)] [1.31(-6)] [2.35(-6)] [1.31(-6)] [2.35(-6)]
Cub  1.19(-6)  2.62(-6) 2.54(-6)  9.85(-7)  7.62(-7)  1.06(-6)
(1.18(-6)] [9.72(-7)] [7.50(-T)] [9.72(-7)  [7.50(-T)] [1.05(-6)]
Aki  2.26(-6)  3.84(-6) 4.19(-6)  2.26(-6)  2.26(-6)  2.26(-6)
(2.24(-6)] [2.24(-6)] [2.24(-6)] [2.24(-6)]  [2.24(-6)] [2.24(-6)]
But 3.40(-6)
[1.11(-6)]
Geo 3.88(-6)
[1.64(-6)]
Har 6.61(-6)
[3.17(-6)]
Hym  8.50(-7)  2.40(-6) 2.25(-6)  7.78(-7)  4.55(-T)  8.49(-T)
(8.49(-7)] [7.77(-7)] [4.54(-T)] [T.77(-T)]  [4.54(-7)] [8.48(-7)]

Table 4. Error measure for the rational cubic interpolant version 1, cosine bell
shape, using 40-point resolution. See Table 2 caption for an explanation of the
numbers.

Slope No limiter NCMO0 NCM1 NCMO-EE NCMI-EE NCC1

Ari | 1.73(-6) 3.20(-6) 2.56(-6) 1.73(-6)  8.27(-7)  1.73(-6)
(1.72(-6)] [L.72(-6)] [8.16(-7T)] [L.72(-6)] [8.16(-7)] [1.72(-6)]
Cub  1.05(-6) 2.20(-6) 2.34(-6)  7.40(-7)  5.64(-7)  8.10(-7)
[1.04(-6)] [7.32(-7)] [5.55(-7)] [7.32(-7)] [5.55(-7)] [8.02(-T)]
Aki  2.40(-6)  3.80(-6) 4.39(-6)  2.40(-6)  2.40(-6)  2.40(-6)
2.376)] [237(6)] [2.37(:6)] [237(6)] [2.37(-6) [237(-6)]
But 3.58(-6)
" [1.26(-6)]
Geo 3.25(-6)
[1.15(-6)]
Har 5.50(-6)
[2.39(-6)]
Hym  6.42(-7) 1.99(-6) 2.10(-6)  536(-7)  2.93(-7)  6.03(-7)
(6.42(-7)] [5.35(-7)] [2.93(-T)] [5.35(-T)] [2.93(-7)] [6.03(-7)]

Table 5. Error measure for the rational cubic interpolant version 2, cosine bell
shape, using 40-point resolution. See Table 2 caption for an explanation of the
numbers.
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Slope No limiter NCMO0 NCM1 NCMO-EE NCMI1-EE NCC1

Ani 2.18(6)  3.79(-6) 2.98(-6)  2.18(-6)  L10(-6)  2.18(-6)
[2.16(-6)] [2.16(-6)] [1.09(-6)] [2.16(-6)]  [1.09(-6)] [2.16(-6)]
Cub  1.05(-6)  2.40(-6) 2.52(-6) 7.86(-7)  6.01(-7)  1.00(-6)
(1.04(-6)] [7.77(-7)] [5.92(-T)] [7.77(-7)] [5.92(-7)] [9.94(-T)]
Aki  2.51(-6)  4.08(-6) 4.65(-6)  2.51(-6)  2.51(-6)  2.51(-6)
(2.47(-6)]  [2.47(-6)] [2.47(-6)] [2.47(-6)] [2.47(-6)] [2.47(-6)]
But 3.67(-6)
[1.34(-6)]
Geo 3.75(-6)
[1.56(-6)]
Har ‘ 6.46(-6)
[3.16(-6)]
Hym  7.05(-7)  2.23(-6) 2.30(-6)  6.26(-7)  3.50(-7)  8.42(-7)
(7.04(-7))  [6.26(-7)] [3.49(-7)] [6.26(-7)]  [3.49(-7)] [8.41(-7)]

Table 6. Error measure for the piecewise quadratic Bernstein polynomial inter-
polant, cosine bell shape, using 40-point resolution. See Table 2 caption for an
explanation of the numbers.

Slope No limiter SCM0O SCM1 Hyman SCMO0-EE SCMI1-EE

Ari 7.39(-8)  1.08(-6) 1.59(-6) 8.25(-7)  2.88(-7)  4.53(-7)
6.51(-8)]  [6.51(-8)] [2.30(-7)] [2.30(-7)] [6.51(-8)] [2.30(-T7)]
Cub  2.28(-8)  1.03(-6)  1.59(-6) 8.08(-7)  2.40(-7)  4.28(-7)
[1.51(-8)]  [1.51(-8)] [2.03(-7)] [2.03(-7)] [1.51(-8)] [2.03(-7)]
Aki  4.02(-7)  1.37(-6)  2.20(-6) 1.31(-6)  5.78(-7)  8.61(-7)
3.72(-7)]  [3.72(-7)] [6.55(-7)] [6.55(-7)] [3.72(-T)] [6.55(-7)]
But 2.09(-6)
[4.21(-7)]
Geo  1.68(-6)  1L.77(-6)  1.80(-6)
(2.51(-7)] [2.51(-7)] [2.88(-7)]
Har 2.56(-6)
[5.57(-7)]
Hym  5.83(-10) 1.00(-6)  1.60(-6) 8.00(-7)  2.07(-7)  4.04(-7)
[4.10(-10)] [4.10(-10)] [1.98(-T)] [L.98(-7)] [4.10(-10)] [1.98(-7)]

Table 7. Error measures for the Hermite interpolant, Gaussian bell shape, using
40-point resolution. See Table 2 caption for an explanation of the numbers.
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Slope NCMO NCM1 NCM1-EE

Ati | 1.14(-6)  1.84(-6)  1.14(-6)
(6.15(-8)]  [6.15(-8)]  [6.15(-8)]
Cub 1.09(-6) 1.82(-6) 1.09(-6)
[1.28(-8)]  [1.28(-8)]  [1.28(-8)]
Aki  1.41(-6)  2.28(-6)  1.41(-6)
[3.62(-7)]  [3.62(-7)]  [3.62(-T)]
But 2.70(-6)
[6.33(-7)]
Geo 2.31(-6)
[4.04(-7))
Har 3.11(-6)
[9.52(-7)]

Hym  1.07(-6)  1.81(-6)  1.07(-6)
[4.37(-10)] [4.37(-10)] [4.37(-10)]

Table 8. Error measure for the rational
quadratic interpolant, Gaussian bell shape,
using 40-point resolution. See Table 2 cap-
tion for an explanation of the numbers.

Slope No limiter = NCMO0 NCM1 NCMO-EE NCMI1-EE NCCl

Ari 3.34(-7)  1.41(-6) 1.47(-6)  3.34(-T)  3.34(-7)  3.34(-7)
3.12(-7)]  [3.12(-7)] [3.12(-T)] [3.12(-7)]  [3.12(-7)] [3-12(-7)]
Cub  6.35(-8)  1.13(-6) 1.22(-6)  6.35(-8)  6.35(-8)  9.17(-8)
[5.24(-8)] [5.24(-8)] [5.24(-8)] [5.24(-8)]  [5.24(-8)] [8.07(-8)]
Aki  4.31(-7)  1.46(-6) 1.71(-6)  4.31(-7)  4.31(-7)  4.31(-7)
[4.14(-T)] [4.14(-7)] [4.14(-T)] [414(-T)]  [4.14(-7))  [4.14(-7)]
But 1.80(-6)
(3.01(-7)]
Geo 1.84(-6)
3.68(-7)]
Har 2.77(-6)
(5.06(-7)]
Hym  2.93(-8) 1.09(-6) 1.20(-6)  2.93(-8)  2.93(-8)  5.68(-8)
(2.81(-8)] [2.81(-8)] [2.81(-8)] [2.81(-8)] [2.81(-8)] [5.56(-8)]

Table 9. Error measure for the rational cubic interpolant version 1, Gaussian bell
shape, using 40-point resolution. See Table 2 caption for an explanation of the
numbers.



Slope No limiter ~NCMO0 NCM1 C('NCEE NCMI-EE NCCi

Ari 1.86(-7) L.15(-6) 1.31(-6) 1.86(-7)  1.86(-7)  1.86(-7)
(1.76(-7)] [1.76(-7)] [L.76(-T)] [1.76(-7)] [L.76(-7)] [1.76(-T)]
Cub 3.04(-8) 9.91(-7)  1.19(-6)  3.04(-8) 3.04(-8) 5.73(-8)
[2.26(-8)] [2.26(-8)] [2.26(-8)] [2.26(-8)]  [2.26(-8)]  [4.95(-8)]
Aki 4.00(-7) 1.31(-6)  1.72(-6)  4.00(-7) 4.00(-7) 4.00(-7)
_ [3.73(-7)] [3.73(-7)] [3.73(-7)] [3.73(-7)] [3.73(-7)] [3.73(-7)]
But 1.83(-6)
3.19(-7))
Geo 1.62(-6)
[2.43(-T)]
Har : 2.38(-6)
[3.40(-7)]
Hym 7.05(-9) 9.61(-7)  1.19(-6)  7.05(-9) 7.05(-9) 3.33(-8)
6.85(-9)] [6.85(-9)] [6.85(-9)] [6.85(-9)] [6.85(-9)] [3.31(-8)]

Table 10. Error measure for the rational cubic interpolant version 2, Gaussian
bell shape, using 40-point resolution. See Table 2 caption for an explanation of
the numbers.

Slope No limiter NCMO NCM1 NCMO-EE NCMI-EE NCC1

Ani | 2.74(7)  1.34(-6) 1.49(-6)  2.74(-7)  2.74(-7)  2.74(-T)
[2.62(-7)] [2.62(-7)] [2.62(-7)] [2.62(-7)] [2.62(-7)] [2.62(-7)]
Cub  3.46(-8)  1.09(-6) 1.20(-6)  3.46(-8)  3.46(-8)  1.18(-7)
[2.68(-8)] [2.68(-8)] [2.68(-8)] [2.68(-8)]  [2.68(-8)] [1.10(-7)]
Aki  4.55(-7)  1.48(-6) 1.87(-6)  4.55(-7)  4.55(-7)  4.55(-T)
[4.25(-7)] [4.25(-7)] [4.25(-7)] [4.25(-7)] [4.25(-7)] [4.25(-T)]
But  1.89(-6)
[3.69(-7)]
Geo 1.82(-6)
[3.79(-7)]
Har 2.71(-6)
[5.47(-7)] ’
Hym  1.22(-8) 1.07(-6) 1.28(-6) 1.22(-8)  1.22(-8)  9.54(-8)
[1.19(-8)] [L.19(-8)] [1.19(-8)] [1.19(-8)] [1.19(-8)] [9.51(-8)]

Table 11. Error measure for the piecewise quadratic Bernstein polynomial inter-
polant, Gaussian bell shape, using 40-point resolution. See Table 2 caption for
an explanation of the numbers.



Slope No limiter = SCMO0 SCM1 Hyman SCMO-EE SCMI1-EE

Ari 8.35(-5)  1.03(-4) 1.09(-4) 8.65(-5) 8.42(-5)  8.19(-5)
[2.96(-5)] [2.61(-5)] [2.38(-5)] [2.38(-5)] [2.61(-5)] [2.38(-5)]
Cub  8.35(-5)  9.84(-5) 1.21(-4) 9.20(-5)  8.50(-5)  8.66(-5)
[2.94(-5)] [2.61(-5)] [2.77(-5)] [2.77(-5)] [2.61(-5)] [2.77(-5)]
Aki  3.23(-5)  6.80(-5) 9.68(-5)  6.20(-5)  3.94(-5)  4.66(-5)
(1.08(-5)] [9.16(-6)] [1.64(-5)] [1.64(-5)] [9.16(-6)]  [1.64(-5)]
But 1.15(-4)
[2.71(-5)]
Geo  1.15(-4)  1.15(-4) 1.16(-4)
[2.71(-5)] [2.72(-B)] [2.78(-5)]
Har 1.25(-4)
3.35(-5)]
Hym  7.85(-5)  1.00(-4) 1.12(-4) 8.68(-5) 7.97(-5)  8.07(-5)
[2.78(-5)] [2.36(-5)] [2.46(-5)] [2.46(-5)] [2.36(-5)] [2.46(-5)]

Table 12. Error measures for the Hermite interpolant, triangle shape, using 40-

point resolution, See Table 2 caption for an explanation of the numbers.

Slope NCMO  NCMI  NCMIL-EE
Ari | 1.10(-4) 1.20(-4)  1.04(-4)

(2.76(-5)] [2.14(-5)] [2.14(-5)]
Cub  1.01(-4) 1.30(-4)  9.67(-5)
[2.66(-5)] [2.19(-5)] [2.19(-5)]
Aki  7.22(-5) 1.07(-4)  17.22(-5)
[1.16(-5)] [1.16(-5)] [1.16(-5)].
But 1.33(-4)
[3.19(-5)]
Geo 1.32(-4)
[3.09(-5)]
Har 1.42(-4)
[3.87(-5)]
Hym 1.08(-4) 1.24(-4)  1.05(-4)
[2.47(-5)] [2.16(-5)] [2.16(-5)]

Table 13. Error measure for the rational
quadratic interpolant, triangle shape, using
40-point resolution. See Table 2 caption for
an explanation of the numbers.
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Slope No limiter ~NCMO0 NCM1 NCMO-EE NCMI1-EE NCC1

Ari 9.86(-5)  1.17(-4) 1.27(-4)  9.86(-5) 9.22(-5)  9.86(-5)
[3.10(-5)] [3.10(-5)] [2.46(-5)] [3.10(-5)] ~ [2.46(-5)] [3.10(-5)]
Cub 7.96(-5)  9.56(-5)  9.50(-5) 7.73(-5) 7.25(-5)  7.60(-5)
[2.76(-5)] [2.54(-5)] [2.05(-5)] [2.54(-5)]  [2.05(-5)] [2.47(-5)]
Aki  2.54(-5)  6.80(-5) 1.03(-4)  2.54(-5)  2.54(-5)  2.54(-5)
[8.47(-6)]  [8.47(-6)] [8.47(-6)] [8.47(-6)]  [8.47(-6)] [8.47(-6)]
But 1.39(-4)
[3.45(-5)]
Geo 1.42(-4)
[3.57(-5)]
 Har 1.57(-4)
[4.58(-5)]
Hym  6.61(-5) 8.83(-5) 8.43(-5)  6.50(-5)  6.03(-5)  8.00(-5)
[2.28(-5)] [2.17(-5)] [L.71(-5)] [2.17(-5)] [L.71(-5)] [2.43(-5)]

Table 14. Error measure for the rational cubic interpolant version 1, triangle
shape, using 40-point resolution. See Table 2 caption for an explanation of the
numbers.

Slope No limiter NCMO0 NCM1 NCMO-EE NCM1-EE NCC1

Ari 9.41(-5) 1.13(-4) 1.23(-4) 9.41(-5) _ 8.74(-5)  9.41(-5)
2.95(-5)] [2.95(-5)] [2.28(-5)] [2.95(-5)]  [2.28(-5)] [2.95(-5)]
Cub 8.03(-5)  9.54(-56)  9.51(-5) 7.75(-5) 7.17(-5)  7.35(-5)
[2.81(-5)] [2.53(-5)] [1.95(-5)] [2.53(-5)]  [1.95(-5)] [2.39(-5)]
Aki  2.06(-5)  6.40(-5) 9.87(-5)  2.06(-5)  2.06(-5)  2.06(-5)
[6.88(-6)] [6.88(-6)] [6.88(-6)] [6.88(-6)]  [6.88(-6)] [6.88(-6)]
But 1.35(-4)
[3.27(-5)]
Geo 1.38(-4)
(3.39(-5)]
Har 1.53(-4)
[4.39(-5)]
Hym  6.33(-5)  8.60(-5) 8.17(-5)  6.19(-5) 5.69(-5)  7.58(-5)
[2.20(-5)] [2.06(-5)] [1.56(-5)] [2.06(-5)] [1.56(-5)] [2.29(-5)]

(
Table 15. Error measure for the rational cubic interpolant version 2, triangle
shape, using 40-point resolution. See Table 2 caption for an explanation of the
numbers,



Slope No limiter NCMO0 NCM1 NCMO-EE NCM!-EE NCC1

Ari 7.16(-5)  9.09(-5) 8.49(-5)  7.16(-)  6.56(-5)  7.16(-5)
2.39(-5)] [2.39(-5)] [L.79(-5)] [2.39(-5)] [1.79(-5)] [2.39(-5)]
Cub  7.92(-5) 9.55(-5) 9.39(-5)  T7.66(-5)  7.15(-5)  6.37(-5)
2.76(-5)] [2.50(-5)] [2.00(-5)] [2.50(-5)]  [2.00(-5)] [2.12(-5)]
Aki  2.26(-5) 6.67(-5) 6.67(-5)  2.26(-5)  2.26(-5)  2.26(-5)
[7.54(-6)] [7.54(-6)] [7.54(-6)] [7.54(-6)]  [7.54(-6)] [7.54(-6)]
But 8.71(-5)
[1.84(-5)]
Geo 9.17(-5)
[2.13(-5)]
Har 1.01(-4)
[2.55(-5)]
Hym  6.14(-5) 851(-5) 8.10(-5)  6.04(-5)  5.60(-5)  5.53(-5)
(2.09(:5)] [1.99(-5)] [1.56(-5)] [1.99(-5)] [1.56(-5)] [1.84(-5)]

Table 16. Error measure for the piecewise quadratic interpolant, triangle shape,
using 40-point resolution. See Table 2 caption for an explanation of the numbers.

Slope No limiter = SCMO0 SCM1 Hyman SCMO0-EE SCMI1-EE

Ati 3.05(-3) 4.12(-3) 3.34(-3) 2.44(-3) 3.06(-3)  2.13(-3)
[2.13(-3)] [1.88(-3)] [9.55(-4)] [9.55(-4)] [L.88(-3)]  [9.55(-4)]
Cub  2.93(-3)  3.78(-3) 3.12(-3)  2.39(-3)  2.97(-3)  2.02(-3)
[2.09(-3)] [1.85(-3)] [9.02(-4)] [9.02(-4)] [L.85(-3)]  [9.02(-4)]
AP 2.39(-3)  3.94(-3)  3.59(-3)  3.00(-3)  2.66(-3)  2.68(-3)
[1.33(-3)] [1.32(-3)] [1.34(-3)] [1.34(-3)] [1.32(-3)] [1.34(-3)] -
But : 3.63(-3)
[1.09(-3)]
Geo  3.66(-3)  3.72(-3)  3.71(-3)
[1.15(-3)] [1.16(-3)] [L.15(-3)]
Har 4.30(-3)
[1.44(-3)]
Hym  1.65(-3) 2.77(-3) 2.59(-3) 1.59(-3) 1.62(-3)  1.15(-3)
[1.38(-3)]  [1.04(-3)] [5.72(-4)] [5.72(-4)] [1.04(-3)] [5.72(-4)]

Table 17. Error measures for the Hermite interpolant, cosine bell shape, using
10-point resolution. See Table 2 caption for an explanation of the numbers.
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Slope NCMO NCM1 NCMI1-EE

At 3.96(-3) 3.79(-3)  3.16(-3)
~ [1.89(-3)] [1.09(-3)]  [1.09(-3)]
Cub  3.75(-3) 3.98(-3)  3.02(-3)
[1.85(-3)] [L.11(-3)] [1.11(-3)]
Aki  3.68(-3) 3.71(-3)  3.68(-3)
[1.16(-3)] [L.16(-3)] [1.16(-3)]
But 3.93(-3)
[1.10(-3)]
Geo 3.89(-3)
[1.06(-3)]
Har 4.43(-3)
[1.44(-3)]
Hym  2.78(-3)  3.14(-3) 2.28(-3)
(1.09(-3)] [5.88(-4)] [5.88(-4)]

Table 18. Error measure for the rational
quadratic interpolant, cosine bell shape, us-
ing 10-point resolution. See Table 2 caption
for an explanation of the numbers.

Slope ~ No limiter ~NCMO0 NCM1 NCMO-EE NCMI-EE NCCl1

Ari 4.06(-3)  5.17(-3) 5.27(-3)  4.06(-3)  3.53(-3)  4.06(-3)
(2.31(-3)] [2.31(-3)] [1.78(-3)] [2.31

(3] [L78(3)] [231(3)
Cub  3.45(-3) 4.40(-3) 4.62(-3)  3.30(-3)  2.97(-3)  3.43(-3)
(2.25(-3)] [2.10(-3)] [L77(-3)] [2.10(-3)] [L.77(-3)] [2.08(-3)]
Aki  4.08(-3) 5.43(-3) 5.57(-3)  4.08(-3)  4.08(-3)  4.08(-3)
(2.35(-3)] [2.35(-3)] [2.35(-3)] [2.35(-3)] [2.35(-3)] [2.35(-3)]
But 5.44(-3)
[1.85(-3)]
Geo 5.66(-3)
[1.94(-3))
Har 6.60(-3)
[2.51(-3)]
Hym  2.30(-3)  3.63(-3) 4.04(-3)  2.22(-3)  1.83(-3)  2.23(-3)
[1.50(-3)] [1.43(-3)] [1.04(-3)] [1.43(-3)] [1.04(-3)] [1.45(:3)]

Table 19. Error measure for the rational cubic interpolant version 1, cosine bell
shape, using 10-point resolution. See Table 2 caption for an explanation of the
numbers.



Slope No limiter NCMO0 NCM1 NCMO-EE NCMI-EE NCC1

At 3.76(-3) 4.89(-3) 4.99(-3)  3.76(-3)  3.23(-3)  3.76(-3)
[2.19(-3)] [2.19(-3)] [1.65(-3)] [2.19(-3)]  [1.65(-3)] [2.19(-3)]
Cub 3.23(-3)  4.09(-3)  4.25(-3)  3.03(-3) 2.64(-3)  3.24(-3)
[2.19(-3)] [1.99(-3)] [1.60(-3)] [1.99(-3)]  [1.60(-3)] [2.00(-3)]
Aki  3.80(-3) 5.14(-3) 5.28(-3)  3.80(-3)  3.80(-3)  3.80(-3)
[2.23(-3)] [2. 23( 3)] [2.23(-3)] [2.23(-3)] [2.23(-3)] {2.23(-3)]
But 5.20(-3)
(1.73(-3)]
Geo 5.40(-3)
[1.82(-3)]
Har , 6.32(-3)
. 2.37(-3)]
Hym  2.01(-3) 3.28(-3) 3.70(-3)  1.91(-3)  1.53(-3)  1.98(-3)
(1.36(-3)] [1.27(-3)] [8.86(-4)] [1.27(-3)]  [8.86(-4)] [1.32(-3)]

Table 20. Error measure for the rational cubic interpolant version 2, cosine bell
shape, using 10-point resolution. See Table 2 caption for an explanation of the
numbers.

Slope No limiter = NCMO0 NCM1 NCMO-EE NCMI1-EE NCC1

Ani | 4.23(3) 5.37(-3) 5.12(-3) 4.23(-3)  3.71(-3)  4.23(-3)
[2.39(-3)] [2.39(-3)] [1.87(-3)] [2.39(-3)] [1.87(-3)] [2.39(-3)]
Cub  3.30(-3) 4.24(-3) 4.24(-3)  3.12(-3)  2.79(-3)  4.49(-3)
(2.21(-3)] [2.03(-3)] [1.70(-3)] [2.03(-3)] [L.70(-3)] [2.43(-3)]
Aki  4.26(-3)  5.60(-3) 551(-3)  4.26(-3)  4.26(-3)  4.26(-3)
(2.44(-3)]  [2.44(-3)] [2.44(-3)] [2.44(-3)] [2.44(-3)] [2.44(-3)]
But 5.23(-3)
[1.88(-3)]
Geo 5.57(-3)
[2.05(-3)]
Har 6.50(-3)
[2.56(-3)]
Hym  2.23(-3)  3.50(-3) 3.62(-3)  2.16(-3)  L.77(-3)  3.34(-3)
[1.45(-3)] [1.38(-3)] [9.96(-4)] [1.38(-3)] [0.96(-4)] [1.95(-3)]

Table 21. Error measure for the piecewise quadratic Bernstein polynomial inter-
polant, cosine bell shape, using 10-point resolution. See Table 2 caption for an
explanation of the numbers.
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Slope No limiter SCMO0 SCM1 Hyman SCMO-EE SCMI1-EE
An 8.84(4) 1.69(-3) 1.95(-3) 1.31(-3) 1.03(-3)  1..10(-3)
3.06(-4)] (3.82(-4)] [455(-4)] [4.55(-4)] [3.82(-4)] [4.55(-4)]
Cub 8.15(-4) 1.50(-3)  2.03(-3) 1.43(-3)  9.86(-4) 1.17(-3)
3.59(-4)] [3.50(-4)] [5.31(-4)] [5.31(-4)] [3.50(-4)] [5.31(-4)]
Aki 8.48(-4) 1.86(-3) = 1.77(-3) 1.36(-3)  1.01(-3) 1.07(-3)
3.81(-4)] [3.66(-4)] [4.27(-4)] [4.27(-4)] [3.66(-4)] [4.27(-4)]
But 2.01(-3)
(3.79(-4)]
Geo  1.97(-3)  2.01(-3)  2.02(-3)
(3.83(-4)] [3.82(-4)] [3.96(-4))
* Har 2.24(-3)
[4.29(-4)]
Hym  3.15(-4) 1.22(-3) 1.67(-3) 9.39(-4)  5.06(-4)  6.47(-4)
[1.54(-4)] [1.51(-4)] [2.93(-4)] [2.93(-4)] [1.51(-4)] [2.93(-4)]

Table 22. Error measures for the Hermite interpolant, Gaussian bell shape, using
10-point resolution. See Table 2 caption for an explanation of the numbers.

Slope NCMO NCM1 NCM1-EE
At 1.64(-3) 2.17(-3)  1.64(-3)
[3.89(-4)] [3.89(-4)] [3.89(-4)]
Cub  1.50(-3) 2.28(-3)  1.50(-3)
[3.44(-4)] [3.44(-4)] [3. 44( 4)]
Aki  1.77(-3)  1.95(-3)  1.77(-3)
. 3.18(-4)] [3.18(-4)] [3.18(-4)]
But 2.37(-3)
4.67(-4)]
Geo 2.31(-3)
[4.38(-4)]
Har 2.52(-3)
[5.37(-4)]
Hym 1.22(-3) 1.92(-3)  1.22(-3)
[1.41(-4)] [L41(-4)] [1.41(-4)]

Table 23. Error measure for the rational
quadratic interpolant, Gaussian bell shape,
using 10-point resolution. See Table 2 cap-
tion for an explanation of the numbers.



Slope No limiter = NCMO NCM1 NCMO-EE NCMi-EE NCC1

Ari 159(-3)  2.30(-3) 2.82(-3)  1.59(-3)  1.59(-3)  1.59(-3)
5.17(-4)] [6.17(-4)] [5.17(-4)] [5.17(-4))  [5.17(-4)] [5.17(-4)]
Cub  1.01(-3) 1.71(-3) 1.64(-3)  1.01(-3)  1.01(-3)  1.17(-3)
(4.20(-4)] [4.15(-4)] [4.15(-4)] [4.15(-4)] [4.15(-4)] [4.19(-4)]
Aki 1.24(-3)  2.22(-3) 2.52(-3)  1.24(-3)  1.24(-3)  1.24(-3)
[4.98(-4)] [4.98(-4)] [4.98(-4)] [4.98(-4)] [4.98(-4)] [4.98(-4)]
But 2.99(-3)
[5.91(-4)]
Geo 3.08(-3)
(6.02(-4)]
Har 3.49(-3)
[7.68(-4)]
Hym  6.64(-4)  1.53(-3) 1.99(-3)  6.64(-4)  6.64(-4)  7.46(-4)
(2.15(-4)]  [2.15(-4)] [2.15(-4)] [2.15(-4)]  [2.15(-4)] [2.50(-4)]

Table 24. Error measure for the rational cubic interpolant version 1, Gaussian
bell shape, using 10-point resolution. See Table 2 caption for an explanation of
the numbers.

Slope No limiter NCMJ0 NCM1 NCMO-EE NCMI-EE NCC1

Ari 1.43(:3)  2.15(-:3) 2.67(-3)  1.43(-3)  1.43(-3) 1.43(-3)
[4.78(-4)] [4.78(-4)] [4.78(-4)] [4.78(-4)]  [4.78(-4)] [4.78(-4)]
Cub  9.04(-4)  157(-3) 1.50(-3)  8.98(-4)  8.98(-4)  1.08(-3)
3.98(-4)] [3.91(-4)] [3.91(-4)] [3.91(-4)] (3.91(-4)] [4.03(-4)]
Aki 1.12(-3)  2.08(-3)  2.38(-3) 1.12(-3) 1.12(-3) 1.12(-3)
[4.71(-4)]  [4.71(-4)] [4.71(-4)] [4.71(-4)] [4.71(-4)] [4.71(-4)]
But 2.88(-3)
[5.65(-4)]
Geo 2.94(-3)
: [5.69(-4)]
Har 3.35(-3)
[7.22(-4))
Hym  5.37(-4)  1.39(-3) 1.84(-3)  5.36(-4) 5.36(-4)  6.40(-4)
[1.91(-4)] [L.91(-4)] [1.91(-4)] [1.91(-4)] [1.91(-4)] [2.31(-4)]

Table 25. Error measure for the rational cubic interpolant version 2, Gaussian
bell shape, using 10-point resolution. See Table 2 caption for an explanation of
the numbers.
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Slope No limiter NCMO0 NCM1 NCMO-EE NCMI-EE NCC1

Ari 1.60(-3)  2.33(-3)  2.59(-3) 1.60(-3) 1.60(-3) 1.60(-3)
[5.38(-4)] [5.38(-4)] [5.38(-4)] [5.38(-4)]  [5.38(-4)] [5.38(-4)]
Cub 9.29(-4) 1.63(-3)  1.59(-3) 9.23(-4) 9.23(-4) 1.55(-3)
[4.05(-4)] [3.99(-4)] [3.99(-4)] [3.99(-4)] [3.99(-4)] [5.21(-4)]
Aki 1.30(-3)  2.26(-3)  2.34(-3) 1.30(-3) 1.30(-3) 1.30(-3)
[5.37(-4)] [5.37(-4)] [5.37(-4)] [5.37(-4)] [5.37( 4)]  [5.37(-4)]
But 2.68(-3)
[5.54(-4)]
Geo 2.83(-3)
(5.98(-4)]
Har 3.23(-3)
[7.36(-4)]
Hym  6.13(-4) 1.51(-3) L77(-3)  6.13(-4)  6.13(-4)  1.17(-3)
[2.11(-4)] [2.10(-4)] [2.10(-4)] [2.10(-4)] [2.10(-4)] [4.15(-4)]

Table 26. Error measure for the piecewise quadratic interpolant, Gaussian bell
shape, using 10-point resolution. See Table 2 caption for an explanation of the
numbers.

_Slope No limiter ~ SCMO "77SCM1  Hyman SCMO-EE SCMI1-EE

AT 5.08(-3)  6.30(-3) 6.63(-3) 5.23(-3) 5.12(-3)  4.95(-3)
[1.73(-3)] [1.50(-3)] ([1.33(-3)] [1.33(- )] [1.50(-3)] 1. 33( -3)]
Cub  5.04(-3)  5.99(-3) 7.39(-3) 5.57(-3)  5.13(-3)  5.23(-3)
[1.69(-3)] [1.48(-3)) [L.57(-3)] [1.57(-3)] [1.48(-3)] [1.57(-3)]
Aki 3.48(-3)  5.14(-3) 6.56(-3) 4.61(-3)  3.76(-3)  4.08(-3)
(1.27(-8)]  [L.14(-3)] [1.46(-3)] [1.46(-3)] [1.14(-3)] [1.46(-3)]
But 7.02(-

(
(
Geo 6.90(-3) 6.94(-3)  6.98(-
[1.48(-3)] [1.48(-3)] [1.52(-
Har 7.49(-
(

(

(

Hym  4.68(-3)  6.14(-3)  7.02(-
[1.57(-3)] [1.30(-3)] [1.47(-

5.38(-3)  4.80(-3)  4.97(-3)
] [1.47(-3)] [1.30(-3)] [1.47(-3)]

Table 27. Error measures for the Hermite interpolant, triangle shape, using 10-
point resolution. See Table 2 caption for an explanation of the numbers.
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Slope NCMO NCM1 NCMI1-EE

Ari 6.75(-3)  7.33(-3)  6.36(-3)
[1.58(-3)] [1.18(-3)] [1.18(-3)]
Cub  6.17(-3) 7.99(-3)  5.87(-3)
[1.51(-3)] [1.21(-3)] [1.21(-3)]
Aki 5.26(-3)  7.16(-3)  5.26(-3)
7 [1.17(-3)] [1.17(-3)] [1.17(-3)]
But 8.12(-3)
[1.80(-3)]
Geo 7.95(-3)
[1.68(-3)]
Har 8.47(-3)
[2.08(-3)]
Hym 6.69(-3) 7.83(-3)  6.60(-3)
[1.40(-3)] [1.31(-3)] [1.31(-3)]

Table 28. Error measure for the rational
quadratic interpolant, triangle shape, using
10-point resolution. See Table 2 caption for
an explanation of the numbers.

Slope No limiter NCMO0 NCM1 NCMO-EE NCMI-EE NCCl1

Ari 6.02(-3) 7.20(-3) 7.76(-3)  6.02(-3)  5.60(-3)  6.02(-3)
[1.80(-3)] [1.80(-3)] [1.39(-3)] [1.80(-3)]  [1.39(-3)] ([1.80(-3)]
Cub 4.84(-3) 5.86(-3)  5.74(-3) 4.69(-3) 4.38(-3) 4.73(-3)
[1.63(-3)] [1.49(-3)] [1.18(-3)] [1.49(-3)]  [1.18(-3)] [L.50(-3)]
Aki 3.80(-3) 5.73(-3)  7.62(-3) 3.80(-3) 3.80(-3) 3.80(-3)
[1.57(-3)] [1.57(-3)] [1.57(-3)] [1.57(-:3)] [1.57(-3)] [1.57(-3)]
But 8.50(-3)
[L.97(-3)]
Geo 8.58(-3)
[1.99(-3)]
Har 9.43(-3)
[2.54(-3)]

Hym  4.03(-3)  5.58(-3) 5.68(-3)  3.96(-3)  3.65(-3)  4.64(-3)
[1.37(-3)] [1.30(-3)] [9.88(-4)] [1.30(-3)] [9.88(-4)] [1.31(-3)]

Table 29. Error measure for the rational cubic interpolant version 1, triangle
shape, using 10-point resolution. See Table 2 caption for an explanation of the
numbers.



Slope No limiter NCMO0 NCM1 NCMO-EE NCMI1-EE NCC1

At 5.73(3) 6.97(-3) 7.51(-3) 5.73(-3)  5.30(-3) 5.73(-3)
[1.71(-3)] [L71(-3)] [1.27(-3)] [L.71(-3)] [1.27(-3)] [1.71(-3)]
Cub  4.83(-3) 5.80(-3) 5.67(-3)  4.65(-3)  4.28(-3)  4.58(-3)
[1.63(-3)] [1.45(-3)] [1.08(-3)] [1.45(-3)]  [1.08(-3)] [1.44(-3)]
Aki  3.46(-3)  5.47(-3) 7.37(-3)  3.46(-3)  3.46(-3)  3.46(-3)
[1.46(-3)] [1.46(-3)] [1.46(-3)] [1.46(-3)]  [1.46(-3)] [1.46(-3)]
But 8.28(-3)
[1.85(-3)]
Geo 8.34(-3)
[1.88(-3)]
Har 9.19(-3)
(2.41(-3)]
Hym  3.92(-3) 5.49(-3) 559(-3)  3.84(-3)  3.53(-3)  4.39(-3)
[1.35(-3)]  [1.26(-3)] [9.50(-4)] [1.26(-3)]  [9.50(-4)]  [1.23(-3)]

Table 30. Error measure for the rational cubic interpolant version 2, triangle
shape, using 10-point resolution. See Table 2 caption for an explanation of the
numbers.

Slope No limiter NCMO0 NCM1 NCMO-EE NCMI1-EE NCCl

Ari 5.32(-3)  6.55(-3) 6.71(-3)  5.32(-3)  4.93(-3)  5.32(-3)
[1.70(-3)]  [1.70(-3)] [1.31(-3)] [1.70(-3)]  [L.31(-3)] ([1.70(-3)]
Cub  4.77(-3)  5.81(-3) 5.63(-3)  4.60(-3)  4.28(-3)  4.09(-3)
[1.61(-3)] [1.45(-3)] [1.12(-3)] [1.45(-3)] [1.12(-3)] [1.37(-3)]
Aki 3.72(-3)  5.71(-3)  6.69(-3)  3.72(-3)  3.72(-3)  3.72(-3)
(1.58(-3)] [1.58(-3)] [1.58(-3)] [1.58(-3)]  [1.58(-3)] [1.58(-3)]
But 7.11(-3)
[1.58(-3)]
Geo 7.33(-3)
' [1.72(-3)]
Har 8.07(-3)
[2.14(-3)]
Hym  3.82(-3) 5.48(-3) 5.41(-3)  3.76(-3)  3.43(-3)  3.31(-3)
[1.33(-3)] [1.26(-3)] [9.33(-4)] [1.26(-3)]  [9.33(-4)] [1.09(-3)]

Table 31. Error measure for the piecewise quadratic Bernstein polynomial in-
terpolant, triangle shape, using 10-point resolution. See Table 2 caption for an
explanation of the numbers.
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