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PREFACE

The topic for this paper was suggested by Chris Chaloner when he

was a research student in the Department of Atmospheric Physics at

Oxford University. He felt that the treatment of this subject in the

standard textbook (Goody, 1964) was a little out of date and perhaps

too difficult for the average research student. I promised to try to

remedy the situation, but I did not find time to do so until I spent

a sabbatical year at NCAR. I am grateful to the Advanced Study Program

and the Upper Atmosphere Project for giving me this opportunity.

The paper is based on various lecture series that I have given

in the past, and in particular on the lectures I gave to the NCAR

Summer Colloquium in 1975. The topic covered is the calculation by

approximate methods of the transmission or absorption of radiation by

bands of spectral lines in the laboratory and the atmosphere. Cal-

culation of transmission by exact methods is extremely time consuming

and is still uncertain in some aspects. The main application is in

radiative transfer in planetary atmospheres for such things as energy

balance studies and remote sounding.

March 1976
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ABSTRACT

This paper describes approximations that have been found useful in

calculating the transmission of molecular gases in planetary atmospheres.

This includes the use of band models and empirical models, but not the

more complex "line by line" methods. A variety of techniques are des-

cribed for dealing with the case of transmission through an atmospheric

path which is inhomogeneous in the distribution of temperature, pressure

and absorber concentration.

An extensive bibliography is included.
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1. INTRODUCTION

This paper is intended for research students in Atmospheric Physics

as an introduction to a variety of practical methods whereby the trans-

mission of atmospheric gases may be estimated or calculated. It is

hoped that it will be of value in helping the student to choose a method

appropriate to the problem in hand, so that he will neither use too

simple a method and hence obtain inaccurate results, nor use too complex

a method, and hence waste large quantities of both computer time and his

own time. It is also hoped that the student will develop an insight and

intuition for the properties of transmission functions which will enable

him to know what to expect from his calculations.

We will assume that the basic physics is well understood. This

paper concerns approximations, their accuracy and their limits of

validity, as well as numerical methods in certain cases. The trans-

mission, T(V), of a band of spectral lines may be written as

x2 \

T() ) = exp ij ij) Pj(x) dx ) (1.1)

x i t s o t i i

where V is wavenumber, S. (x) is the strength of the i'th line of the
LJ

j'th absorbing gas in the path from position x1 to x2, fij (V-Vi,x) is

the line shape factor, vij is the position of the line centre, and pj(x)

is the density of absorbing gas. Line strengths and positions may be

calculated using quantum mechanics; this will not be discussed in detail

here. Line strengths are temperature dependent in a well known way,

depending on the population of the lower state. Line shapes depend on
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the details of molecular collisions and motions, and are, therefore,

temperature and pressure dependent. It has been assumed in Eq, (1.1)

that when lines overlap their individual contributions to the optical

depth simply add together. There are circumstances when this is not the

case, and in the limit of very high pressures the phenomenon of "band

narrowing" may be of significance.

Tabulations of positions and intensities of spectral lines of some

atmospheric gases are available from a variety of sources. These should

be used with caution, as some molecules are still quite poorly under-

stood. Transmission calculation methods should always be validated

against laboratory measurements when those are available.
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2. SHAPES OF SPECTRAL LINES

There are two basic mechanisms that determine the shapes of lines

of interest to the atmospheric physicist, namely Doppler broadening and

collision broadening. Other mechanisms such as natural broadening and

Stark broadening are usually insignificant.

Doppler broadening is a consequence of Doppler shift due to motions

of the emitting molecule. If the component of its velocity towards the

observer is u, and it is emitting at wavenumber v0 in its own frame of

reference, then the Doppler shift in wavenumber is

(v - V = (2.1)

If the distribution of velocities is Maxwellian:

P(u) c exp(-mu /2kT) (2.2)

where m is the molecular mass, then the line shape is proportional to

the distribution of Doppler shifts:

2 2 2
fD(V-Vo) K exp(-mc2 (V-) 2/2kT V0)

(2.3)

1 2 2
= 1 -exp(-(v-v ) 2 d)

vDi

where
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2kT 4,301 % 10-7 ·,L-
tD = V0 a = 4.301 x 10 7 Vo

mc

M is molecular weight, and T is in degrees K. The factor O V is re-
D

quired to ensure that /fD(V)dV = 1. The Doppler line shape factor is

shown in Fig. 1. The quantity cD is called the Doppler width of the

line. The same symbol is sometimes used for a slightly different

quantity, the half width at half height, which is smaller by a factor

of v/log2.

This derivation assumes that the molecule does not change its

velocity by collision while it is emitting. If it does then the mean

velocity and therefore the mean Doppler shift will be smaller and the

line will be narrower. However, the phenomenon of collision narrowing

is of little significance for most atmospheric gases (Rodgers, 1976)

because it is masked by collision broadening. When molecules collide,

not only are their velocities changed, but their internal energy levels

are disturbed, and the frequency of the emitted radiation is changed.

The theory of line broadening according to Quantum Mechanics is ex-

tremely complex, as it involves the details of interactions between

molecules averaged over all possible collision trajectories, and averaged

over all possible states of both colliding molecules. The simple

classical theory due to Lorentz (1906) and Michelson assumes that the

phase of the wave being emitted is randomized on collision, and results

in the Lorentz line shape

a /ETaL/~
fL() 2 2 (2.4)

(v-v) aL
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Doppler

I I \I

03

Lorentz

4 3 2 1 0 1 2 3 4
NORMALIZED WAVENUMBER (--)

Fig. 1 Doppler and Lorentz line shapes.
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where a = 1/2TrcT, and T is the mean time between collisions. The

Lorentz line shape is shown in Fig. 1 in comparison with the Doppler

shape. A semiclassical theory due to Lindholm (1946) and Foley (1946)

assumes that there is a phase shift in the emitted wave which depends on

the "impact parameter," or distance of closest approach. In this case

the line shape is Lorentzian but shifted:

f ( ) =2 2 (2.5)
(v-v -6) + a

where a and 6 depend on the phase shift function. For reasonable phase

shifts, 16/a| < 0.5.

The simplest quantum mechanical theory is that of Anderson (1949).

It appears to be adequate for CO2, and probably for H20, so that the

more modern theories (e.g., Baranger, 1962; Greim, 1964) do not add a

great deal. Most theories lead to the same algebraic form as the

Lindholm theory, but with different means of evaluating a and 6 from the

physics of the interaction.

When both Doppler and collision broadening are significant, the

detailed line shape depends on the nature of the collisions. The limits

of "hard" and "soft" collisions have been treated by Rautian and Sobelman

(1967) and by Galatry (1961). However, for most atmospheric gases the

Voigt line shape is entirely adequate. In this approximation the pro-

cesses that determine Doppler broadening and collision broadening are

assumed to be uncorrelated, and collision narrowing is ignored. The

line shape is then found by averaging Doppler shifted Lorentz lines

weighted with the distribution of velocities, so that it is a convolution
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of the Doppler and Lorentz shapes:

00

E (.v')O oo
-c00

2 2-v 2/O
e dv\

(v-v'+v ) 2 + 2L0' L

(2.6)

Numerical methods for evaluating this function have been discussed

by several authors, for example, Armstrong (1967), Harstad (1972),

Kielkopf (1973), Whiting (1968).
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3. HOMOGENEOUS PATHS

The most important special case of Eq. (1.1) is when pressure and

temperature do not vary along the optical path because this applies to

laboratory paths, and may be used as an approximation to the atmosphere

in certain situations (Section 4.3). In this case the integral with

respect to x is trivial and transmission can be written

T(V) = exp(- Z Si. fj (v) mj) , (3.1)
i j ij j
1J

where m. = pi(x2 -x1) is the amount of absorber j per unit area, and Sij

and fi. are evaluated at the temperature and pressure of the absorbing

path.

3.1 INDEPENDENT LINES

The simplest situation that we can consider is the case of a single

spectral line. The results of this section can be used as a transmis-

sion model in the case where spectral lines do not overlap signifi-

cantly.

We define equivalent width W of a spectral line as the spectrally

integrated absorption:

W = l - T(v)}dV = J {l - exp (-Sf(v)m) dv. (3.2)

-00 -CO

The term "equivalent width" derives from the astrophysical literature.

It is simply the width of a square sided line that would have the same
integrated absorption as the line in question.
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We have dropped suffices i and j for clarity. The infinite range of

integration is purely arbitrary, as all of the significant absorption

takes place within a small region near the line centre.

In the limits of "strong" absorption and "weak" absorption, most

line shapes have simple expressions for their equivalent widths. The

limits are determined by the asymptotic behavior as the optical depth

at the line centre, Sf(v 0 )m, tends to zero or infinity. The weak limit

is independent of the line shape because as Sf(v 0 )nm0O,

W = 1 - eeSfm d Sf()mdv = Sm (3.3)

3.1.1 The equivalent width of a Lorentz line is

LW = 1 -exp ( -t2 dv = 2CLLL (3 4)L JL 2 \ 2TrcL

We have moved the zero of the frequency scale to the line centre for

convenience.

L(y) is known as the Ladenburg-Reiche function, and can be expressed

explicitly in terms of Bessel functions (Ladenburg and Reiche, 1911):

L(y) = ye Y (I0(Y) + Il (y)) (3.5)

The strong limit is determined by Sm/ra + o, and may be obtained

from the limit of the Bessel functions I0 and I1 as y -> o. However, it

is physically more meaningful to obtain it from Eq. (3.4) as follows.

2
When Sm/Trt -+ oo, the line is black in the centre, and ignoring the a

Lu
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will make no difference to Eq. (2) near the line centre. Far from the

2 2 2
line centre v >>»a, and we can still ignore the a. Therefore

L ( SmC~L ] 71 ) L

00

Co ( / \)
= Sma- /)T e1 - exp dx (3.6)

= 2 SmmL

A useful simple approximation to the equivalent width of a single

Lorentz line is

-1/2
WL ~ Sm (1 + Sm/4aL) (3.7)

This has the same strong and weak limits, and deviates by less than 8%

for all values of the parameters. Another simple approximation due to

Goldman (1968) is

WL Sm (1 + {Sm/4L}5 4 ) (3.8)

which has a smaller maximum error of about 1%, but is a little more

complicated. Figure 2 shows how the error in these approximations varies

with Sm/fra. A numerical approximation of higher accuracy can be found

in Rodgers and Williams (1974).

3.1.2 The equivalent width of a Doppler line is given by
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H I

crc

,J X\ /t

Fig. 2 Errors in simple approximations-to the Ladenburg-Reiche function.

-A -Eq. (3.7) B - Eq. (38)

A - Eq. (3.7). B - Eq. (3.8)
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WD = J 1- exp (- v e D/ )dv (3.9)

-00

This expression cannot be integrated explicitly in terms of standard

functions, but it can be written in terms of a function of a single

variable

00

W = s (m~VW) F (3.10)

WD = a D FD ) where F(Y) = 1- exp (-ye ) dx (3.10)
D D 00

The strong limit of W as Sm/aD / + is of the form
D D

WD = 2 oD [log (Sm/aD/i)] 1 2 (3.11)

A numerical approximation for FD(y) can be found in Rodgers and Williams

(1974).

3.1.3 The equivalent width of a Voigt line requires a function of

two variables, e.g., aL/aD and Sm/aD . It cannot be written in terms of

elementary functions, and to the author's knowledge no efficient nu-

merical approximations exist. However, it has been tabulated by several

authors, and a contour plot is given in Fig. 3. It may be approximated

by

2 W2 (3.12)W v =WL +W -(W WD/Sm) (3.12)
V LJ D LD

with a maximum error of about 8% (Rodgers and Williams, 1974).
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-5 -4 -3 2 1 0 2
Iogl,oo./ c6 ]

Fig. 3 Contours of equivalent width of a Voigt line divided by oaD
the Doppler width (Rodgers and Williams, 1974).

3.1.4 Accuracy of Single Line Models

A single line model may be used to approximate transmission

when lines do not overlap appreciably. In this case the transmission of

a spectral interval Av can be written

T = 1 - (EZW/A) (3.13)

where the sum is over all lines in the interval Av. The errors involved

in this are best assessed relative to a more accurate model, and if we

use a random model (see 3.2.2.1) we can show that the absolute error in

T will be of order (EWi/AV) 2 , or the relative error in 1-T will be order

1-T.
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3.2 OVERLAPPING LINES

We may distinguish two kinds of overlapping lines; for the lack of

better words we will call them

(a) strongly overlapping a > 6

(b) weakly overlapping W > 6

where 6 is the spacing between the lines and W is the equivalent width

of any one line. The case of weakly overlapping lines simply implies

that single line models cannot be used; the rest of section 3.2 concerns

this case. The case of strongly overlapping lines may be much more

difficult to treat correctly, because it is possible that the several

resonant frequencies may mix at the quantum mechanical level, with the

consequence that the lines become shifted and may change in strength in

a way which depends on pressure. This is the phenomenon of "band

narrowing" referred to earlier. At high pressures (~100 atm) it is

possible for all the lines in a single rotation-vibration band to merge

into one strong line located near the band centre. This overlap effect

will be ignored in this paper.

3.2.1 Regular model

The first case of overlapping lines to be considered was the

"Elsasser Model," which uses an array of equally spaced identical

Lorentz lines, as in Fig. 4 (Elsasser, 1938).

It can be shown that the line contour is given by

( ) 1 sinh (2Trc/6)^ () =8 cosh(2TO/6) - cos(2TWvS) (3.14)
= 8 cosh(2m/6) - cos(27Tv/6)
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The corresponding transmission is

TE = J exp(-SfE(v)m) dv, (3.15)

6

and cannot be integrated in terms of elementary functions. However, it

is tabulated as a function of u = Sm/2Tra and y = a/6 in several places,

for example Goody (1964). There are several limits which yield simple

expressions. Let WE be the equivalent width in an interval of width 6.

1. Independent Lines WE = WL, Ladenberg-Reiche function

This is valid for the case WE<<6, which also includes overlapping

weak lines.

2. Strong Lines m >> 1 WE/6 = erf ^ (Sm ) .

Sm3. Weak Lines 1 W =Sm as usual.
Wra k E

Fig. 4 Line shape for the Elsasser model (after Goody, 1964).
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3.2.2 Random Models

The concept of a random band model is of considerable im-

portance, and a glance at the spectrum of a gas such as water vapor

(Fig. 5) will show the reader why such models were developed. The

positions and intensities of the spectral lines appear to be quite

random. Of course they are not, because they may be calculated in a

non-random manner using quantum mechanics.

The basic concept of all random models is that the transmission of

a spectral interval can be approximated by the transmission averaged

over all rearrangements of line positions. This averaging over re-

arrangements leads to the very useful "multiplication property." We

know that monochromatically we may multiply transmissions due to in-

dependent absorption mechanisms, but it is not correct in general to

multiply transmissions which have been averaged over finite spectral

intervals. However, if we make the randomness hypothesis, we may

multiply spectrally averaged transmissions.

The multiplication property. Consider a spectral interval Av having

transmission TO(v), and therefore an average transmission given by

T= T() dv. (3.16)

Av

If we introduce a spectral line at position v' having by itself a

transmission T1(v-v'), such that its equivalent width is <<Av, then the

frequency averaged transmission will become



100%

F CM-" 3720 3716 3712
100%

30430CC 3

3704 3700 3696

Fig. 5 A laboratory spectrum of part of the 2.7p water vapor band
(Fraley, Rao and Jones, 1969).
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Av J TQ(v) T1(V-V') dv (3.17)

Av

We now average this over all possible positions of the new line, and we

obtain for the average transmission

T = v J dv J To(V) T1 (v-v') dv (3.18)

Av Av.

If we perform the v' integral first we easily obtain

T = T (3.19)

where T1 is the frequency averaged transmission of the new line. Thus

we may say loosely that if lines are placed randomly then we may multi-

ply frequency averaged transmissions.

3.2.2.1 The general random model

A single line whose equivalent width is W. has a transmission in

spectral interval Av given by

T. = 1 - W./Av exp(-Wi/Av) (3.20)

provided that W.<<A. Using the multiplication property, the trans-

mission of N lines in the interval Av, averaged over all rearrangements

of position is
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N N
T = I exp(-Wi/Av) = exp(- Z W./Av) (3.21)

i=l 1

Thus the general random model may be written

T = exp(-W/Av) (3.22)

where W is the total equivalent width in the interval AV. This deri-

vation requires that W.<<Av. However it is possible to derive the same

expression for T in the more general circumstance, provided that sur-

rounding spectral intervals are statistically similar to the one under

consideration. Qualitatively, absorption outside Av due to the wings of

lines inside Av will be compensated for by absorption inside Av due to

wings of lines outside Av.

3.2.2.2 Simplified random models

The general random model requires a sum over all spectral lines in

a particular interval, which may be a formidable task. A further step

of simplification is to make an assumption about the distribution of

line strengths, namely that the number of lines in the interval with

strengths between S and S+dS is some function N(S)dS. The distribution

function should be chosen to be reasonably representative of the actual

distribution of line strengths, but with some weight given to algebraic

convenience. Three distributions have been found particularly useful,

due to Goody (1952), Godson (1954) and Malkmus (1967).
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The Goody Model.

·
N(S) = e-Sk (3.23)

This distribution has a total of NO lines with mean strength k, as may

easily be verified. The total equivalent width W is given by

00 00 00

= NW = N(S) W(S)dS = eS/ |1 e mdv dS (3.24)

0 0 -00

We may do the S integral first for any line shape f(v), obtaining

00 00

W = N0 l+kmf (v) dv N J 1+T() dv (3.25)

-00 -00

where T(v) is the optical depth for a line of strength k. If we use a

Lorentz line shape we obtain

N km
W = (3.26)

/ l`+km/7rT

The transmission for the Goody random model is usually written

/ =+km/I-T = exp ( (3.27)

where 6 = Av/N0 is the mean line spacing.
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The Godson model.

N(S) = No/S

= 0

S < k

S > k

(3.28)

This distribution has an infinite number of lines, but NO lines in each

factor of e in strength. For the general line shape there is no simple

expression for W. For the Lorentz line shape W can be written in terms

of Bessel functions:

W = 27aN0 f eY IO(y) + 2 ye -Y [I 0 (y) + I l (y)] -1 (3.29)

where

km
Y =

Malkmus model.

N
NO -S/kN(S) = S e (3.30)

This is the result of averaging Goody distributions according to the

Godson distribution, and is more representative of reality than either.

The total equivalent width for a general line shape may be written

W = J NO-S/k [1- e-Sf(v)m] d d

0 o00

(3.31)
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If we perform the S integral first we obtain

(3.32)W = N 0 log (1 + T(V)) dv where r(V) = kmf(v)

-00

The actual derivation of this expression is left as ea challenge to th

reader. Integration by parts gives

W = No) dv dv
00+T(V) dv

-.00

(3.33)

In the case of a Lorentz line the integral can be performed to yield

W = 2ra No (l + km/o)/ 2 - 1 (3.34)

3.2.2.3 Strong and weak limits and parameter fitting

The strong and weak limits of the equivalent width may be found

either by putting km/ ra-0O or oo in the expressions for W or by putting

the strong and weak limits for the single line W(S) in the equation for W:

00

w;i f
0

The limits are as follows:

Model Weak

General Z S.m
i

Goody NO km

Godson NO km

Malkmus NO km

(3.35)N(S) W(S) dS

Strong

2 /S.a.m1 § 11

N0 / TrTam

2 N O K

2 N0 ~V~fi
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The best way of fitting line data to the simplified random models is not

by attempting to match the model distributions of line strengths with

the actual distributions (Fig. 6), but rather by matching the weak and

strong limits with the general random model. For example, for the

Malkmus model we would put

Nk = ZSi, NO kT = / (3.36)

Note that although we have defined three parameters, No, k and a, we

only have two equations. However, only two combinations of parameters

are required in the expressions for transmission, so there are suf-

ficient equations to determine them. If we define w (weak) and s

(strong) by

w A= - i S m s = 2 S S m (3.37)

then two of the models may be written:

-9 -2 -1/2
Goody T = exp(-(w- 2 + -2)-/2) (3.38)

( 22 2 \
Malkmus T = exp - 1 (1 + 12 (3.39)2w 2

2'rraN 2 2
and for the Godson model put = and y 2- in the Godson

AVv w 2
s

equation (3.29). The weak limit is valid when w<<s, and the strong

limit when w>>s.
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Fig. 6 Comparison of an actual distribution of line strengths with
the three model distributions. The model distributions have
not been fitted to the actual distribution.
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3.2.3 Empirical Models

3.2.3.1 Simple empirical models

A wide variety of empirical transmission models has been used

for bands of lines. For example, the following is often used to represent

the equivalent widths of complete bands measured in the laboratory:

W = Au W < WO (3.40)

= B + C log u W > W0

where

n
u = mp

where A, B, C, W 0 and n are empirical constants, m is absorber mass and

p is pressure, corrected for self-broadening. Such fits are often found

to be good almost within experimental error.

Goody and Belton (1967) have used a very similar form as a fit to

a whole band of overlapping lines:

W = C log (l + - ) (3.41)

where C is an empirically adjusted constant, and EW. is the sum of the
1

individual equivalent widths. Yamamoto and Sasamori (1957) have pointed

out that transmission is approximated by an expression of the form

T - F(ZW.)
1

(3.42)
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for a wide range of band models, and have conjectured that this is a

good empirical form to use in general, with the functional form F

depending on the distribution of line positions and intensities. We may

note that it is appropriate for all statistical models, and for some of

the limits of the Elsasser model.

It should be pointed out that the strong limit of the random model

is a useful general purpose first order approximation to the trans-

mission of most atmospheric gases:

T = exp (- /-/u) (3.43)

where u = mp or fpdm is a scaled absorber amount and g is a generalized

absorption coefficient. It is usually accurate to better than 10% when

lines are strong.

3.2.3.2 Complex empirical models

The simple empirical models of the previous section may be regarded

as simplifications of band models. It is also possible to make empirical

generalizations of band models to try to fit laboratory data better.

From equation (3.38), we may rewrite the Goody random model trans-

mission T in the form

(-logT) = (log Tw ) 2 + (log T)2 (3.44)

where T is the transmission weak limit and T is the strong limit.
w s

Zachor (1968a) generalizes this equation to
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(-logT)- 2 = (log T )-2 + (log T ) + M(log T log T )-1 (3.45)
w S W S

The extra term does not affect the weak and strong limits of the model,

but adjustment of the empirical constant M allows the intermediate

region to be fitted more closely. As a further generalization he does

not use the strong limit of the Goody model for T , but a more general
s

model of King (1964), for which

T = 1 - P(n, {nr(u)(kma)l/ 2} n ) (3.46)
s

where r is the gamma function, P is the incomplete gamma function, and n

is an adjustable constant. For n - 1, this gives the strong limit of

the random model, and for n = 0.5 it gives the strong limit of the

Elsasser model. There are four parameters in Zachor's model which must

be determined by least squares fitting to laboratory data. They are M,

n, k and K, the constant for the weak limit Km. Gibson and Pierluissi

(1971) have further generalized the model by including another parameter

-2
multiplying the term (log T ) . Applications of these models

s

(Pierluissi, 1973; Zachor, 1968b) show that they are capable of fitting

data to high accuracy.

A similar approach has been developed by Smith (1969), who has

generalized the simple empirical model

T = expb-Km c0T = exp(-Km p (3.47)
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to the form

Log(-logT) = logK + a.log m + b.log p + c.loge (3.48)

+ higher order terms,

where 6 is temperatures. With sufficient terms this model is also

capable of high accuracy.

All empirical models should be used with caution. Unless they are

soundly based in theory they are only applicable to the range of para-

meters for which they are fitted, and they cannot be used to extrapolate

beyond the original data. This is of course true of any band model, but

empirical models are likely to be the worst offenders.

3.2.4 Sum of Exponentials and the Inverse Transmission Function

When the absorber is at a known constant pressure and tempera-

ture we may write its spectrally averaged transmission as

1 C -k(v)m
T(m) = Av j dv e (3.49)

where k(V) is the absorption coefficient and m is the absorber amount.

This immediately suggests that we might use a sum of exponentials as a

transmission model:

-k.m
T(m) Z a.e (3.50)

i
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This form is advantageous when doing calculations which involve scat-

tering as well as absorption because we retain the multiplication

property term by term, and this is almost essential for some types of

scattering methods.

The form may be used in a more general way, for example when line

absorption is in the strong region it depends on u = mp only, so we may

approximate transmission by

-k u
T(u) Z aie (3.51)

which may be used over paths where the pressure varies.

Determining the coefficients a. and k. is closely related to

performing an inverse Laplace transform, and may be done in a variety of

ways. Probably the simplest is to choose a set of k. arbitrarily, and

then find the a. by least squares fitting. Wiscombe and Evans (1976)

have developed a general method of fitting both a. and k. to give a fit

2
with the smallest number of terms for a given accuracy.

We may generalize these ideas and define the "inverse transmission

function" f(k) such that its Laplace transform is the transmission:

00

T(m) = f(k) ek dk (3.52)

0

Thus fZk)dk corresponds to a. in the discrete version. Many inverse

transmission functions may be found simply by consulting a table of

inverse Laplace transforms. A discussion of this subject is given by

Domoto (1974).

W. Wiscombe and J. Evans: An exponential sum fitting of transmission
functions. Submitted to J, Atmos. Sci.
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3.2.5 Models for Complete Bands

The models described so far are applicable to sections of

molecular vibration-rotation bands containing lines which are distri-

buted uniformly in some sense. They are known as "band models" although

they do not describe absorption by complete bands. Models which do

describe complete bands are often described by somewhat misleading

names such as "band correlation functions," although they have little to

do with correlation in the statistical sense.

Edwards and Menard (1964) have constructed a set of models based on

the Goody random model in which the band parameters vary with frequency

in each of three known ways, simulating the behavior of a rigid rotator,

a nonrigid rotator, and the third having a mean line strength decreasing

with frequency exponentially:

k(v) = k(v0) exp((v0 - v)/A), (3.53)

so that the integrated absorption of the whole band may be written

0

W = F d j1 - exp ( ( )dv (3.54)
J \/1 /+ k(v)m/7a/o

A complete solution is not given to this integral, but three limits

are:

linear region W = am

square root region W = b (mp)
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W = clog(dmp)}/2 rigid rotator

logarithmic W = c log(dm2p) nonrigid rotator
region

W = c log(dmp) exponential

where a, b, c and d are constants which may be related to the band

structure, or may be found by fitting experimental data. The first two

limits correspond to the weak and strong limits of a single line, whilst

the logarithmic limit occurs when the center of the band is black.

Edwards and Menard give a means of joining the limits together in four

separate regions of the parameters which agrees reasonably well with

the measured integrated absorption of some real bands. Cess and Tiwari

(1972) have found a single function which satisfies all the limits and

joins them in a reasonable manner for the case of the exponential

distribution:

W = 2 log 1 + am/[2 + (am + bm/p)l/2] (3.55)

where a and b are parameters to be fitted.

Cess (1973) has developed a similar theory for the case of Doppler

broadened lines.
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4. INHOMOGENEOUS PATHS

We must now return to deal with the situation in which pressure and

temperature may vary along the optical path. The consequence is that

line shape varies along the path and an extra integral is required. In

general this means that there is an even smaller number of cases in which

transmission can be expressed in terms of standard functions. We must

either resort to numerical methods, or introduce further approximations,

or both.

4.1 CONSTANT MIXING RATIO

There is one case in which the algebra can be done, at least in

part, namely the case of a constant temperature atmosphere with an

absorbing gas of constant mixing ratio and pure Lorentz lines. In this

case the optical depth T(V) can be written for one line as

P2 S 0
T(V) = J 22 dm . (4.1)7T 2 2 2

P1 V +0op

For a constant mixing ratio we can put dm = adp where a is the total

absorber mass between p = 0 and p = 1. Thus

Sa P
T(V) = =cJ,) d p

O (v/aO2 + P

r2 3P2 (4.2)

= nlg((-)+ P2 ) = Sa/27ra.
0 pl
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And monochromatic transmission is

/ v2 + o2
T(V) = e = (4.3)

v2 + °l2 /

This is as far as we can go with this particular case, unless r happens

to be an integer.

4.2 SCALING APPROXIMATION

It has been found (see Section 3.2.3) that the integrated absorption

of complete molecular bands can be represented approximately as a

function of a scaled absorber amount:

n
u = mp (4.4)

where n usually lies between about 0.5 and 1. This led to the use of a

natural but theoretically unjustifiable extension to inhomogeneous

paths:

u = f p dm (4.5)

In the time before electronic computers, such an approximation was

necessary in order to be able to compute fluxes of thermal radiation by

means of "radiation charts." (See e.g. Goody, 1964, for more on this

subject.) Any justification of this approximation must be entirely

empirical, and is likely to depend on the specific application. All

that can be said theoretically is that the scaling approximation lies
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"between" the weak and strong limits of dm and fpdm. Unfortunately,

many methods that treat scattering and molecular absorption require that

the absorption be expressed as a function of one variable such as a

scaled absorber amount.

4.3 THE CURTIS-GODSON APPROXIMATION

The aim of the Curtis-Godson Approximation (CG) is to find a homo-

geneous path for which the transmission is approximately the same as for

the given inhomogeneous path (Curtis, 1952; Godson, 1954). For the

moment we will consider a constant temperature but varying pressure

along the path. The corresponding homogeneous path will then be deter-

mined if we specify its pressure p and absorber amount, m. The criterion

used to determine equivalence is that the equivalent widths of strong

Lorentz lines and weak lines must be the same for the two paths. The

weak line correspondence requires

f Sdm = Sm (4.6)

and the strong Lorentz line limit requires

Sa dm = Sa, where a = a p (4.7)

We can eliminate S and a0 to give the simplest form of the CG appro-

ximation.

d, p = fdm pdm (4.8)
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i.e., the mass is the same in both paths, and the pressure required in

the mass weighted mean pressure.

The accuracy of this approximation depends of course on the distri-

bution of absorber amount with pressure. To give an order of magnitude

we may calculate the equivalent width for the case discussed in section

4.1 and for the CG approximation to it. The percentage error in the CG

approximation for p1 = 0, P2 = 1 is shown in Fig. 7 as a function

of rl. As we would expect the error is maximum when rn 0.5, which is in

the intermediate region between strong and weak lines.

4.4 FOUR PARAMETER APPROXIMATION

The next stage after CG is the four parameter approximation, in

which we find two-homogeneous paths in series which approximate the

given inhomogeneous path. To do this we match the first four moments of

the mass distribution with respect to pressure:

m1 + m2 dm - u

ml Pl + m2 = pdm u1 (49)

2 2 f 2
m1 P + m2 P2 dm u2

3 3 f 3
m 1 P1

+ m 2 dm =

The first two equations are the same as the CG approximation, and are

required for the same reason, to match the weak and strong limits. The

fourth equation follows from matching the second term in an expansion of

the strong limit. An expansion of the weak limit gives a second term

which is quite intractable, as it involves a double integral, so we use
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Fig. 7 Percent error in CG approximation for a single line and
a constant mixing ratio between p = 0 and p = 1 atmos.
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the equality of the second moment for the third equation quite arbitra-

rily, in order to make the equations easy to solve. It is easy to show

that pa and P2 are solutions of the quadratric

2
(u p - u2) = (u0p - u1)( 2 p - u3 ) (4.10)

This two path equivalence is only of value if there is a transmission

function which can be used with it. Fortunately two of the random

models can be applied to this situation, namely the Goody model and the

Malkmus model.

The optical depth for two paths in series is for a Lorentz line

m a m a2
T(V) = t.1-l2+-22i (4.11)T() 2l2+ 2 2 2 (4.11)

1 a42

where ai = OaPi. The Goody and Malkmus models both require integrals of

simple functions of T(v), which can be performed analytically. We note

that

(v + 1 )(v + s2 )
1 + T(v) :

2 2 2 2 (4.12)
(V + )(v +Ox)

where

1/2
2 Y1+y+[ - + 4 + U 2 2u t (4.13)2~ Y1 2 -1 2 1 2 N 2 4.3
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and

u. = kim/r7aTi
1 i i

27i a cU(1 + ui)

For the Malkmus model, the mean equivalent width is

WM 2 (1 + =2 - e - 2 )

and for the Goody model it is

Ia a tL

1a a (1 1 +(2) 2 2 /
1G = - (1 + +{ i 1/ + 2 1 + Z2 e22 (1 + 82 )
(1. + ~¥1 "¥

L .. 0 .

These expressions are to be inserted in Eq. (3.22) to obtain transmission.

4.5 TEMPERATURE EFFECTS

The CG approximation may be extended to deal with paths in which

the temperature varies with position (Godson, 1955a). Let us first

consider a single Lorentz line. The strong and weak limits give the

following relationships:

S(e 0 )m

S (e0)a 0 (e0)pm

(4.17)-= S(e(z)) dm

= f S (e(z))co(e(z)) pdm

so that

f e) dmm = J ~o (4.18)
-- S(o)ac0 (o)

mp = S o(00 )O (o ) pdm
(4(6 .()

(4.14)

(4.15)

(4.16)

I~t t, J, $ -

I..
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where 0 is an arbitrarily chosen standard temperature. When we have

several lines in an interval the situation is a little different. The

weak limit gives

Z Si (eO)m = f/ Si() dm (4.19)
i i

i.e. m = iSi(9 ) dm = ((e) dm (4.20)

We note that this m may be wrong for individual lines, but the errors

will compensate.

The strong line limit requires

1/2 If\
1

(
(Si(0e)C 0i( )pm) 1 = ZE(S(O)0 () pdm (4.21)

This equation requires us to do an integral for every spectral line in

the interval, because the integral cannot be brought outside the square

root. We would like an equation of the form

mp = J(0) pdm (4.22)

by analogy with the weak line limit. If this is to be any good at all,

it must be valid in the simplest case - the strong limit of homogeneous

paths of various temperatures. This requirement alone implies that

· 1/2 1/ 2
ZS1 (e) a 2(e)

(e) = [ 1 -2 --- ]1 (4.23)
s1/2 1 i -/2
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This is not strictly valid in general for paths with a variable temper-

ature, but it is surprisingly good for realistic variations of temper-

ature. It is exact in the strong limit in the case when all lines have

the same temperature dependence.
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5. ANGLE INTEGRATION

In a plane parallel atmosphere the transmission for the upward or

downward compartments of flux may be obtained by integrating the

intensity transmission over angle

'rr/2

Tf(v) = 2 f

o0
f~~~~~A

e (cose sine d9

= 2 f e-T(V)p d

1

where p = secO

2 Ei3 (Tv)

where Ei3 is the third exponential integral. There are several situations

where the integral can be performed explicitly, although it cannot be done

in the general case of the transmission of a finite spectral interval.

5.1 STRONG LIMIT OF RANDOM MODEL

In this case

1/2T(m) = exp(-(Zm) ) (5.2)

and flux transmission is

00

Tf(m) = 2 /

1
oo

=4X
1

exp (- (imp) 1/2) d/p

exp(( 1m)l/2y) dy 5
exp (- (km) y) dy/y

= 4 Ei5 ((am)2)

(5.1)

(5. 3)
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5.2 STRONG LIMIT OF A SINGLE LINE

We can define the equivalent width for flux by analogy with flux

transmission. For a single Lorentz line in the strong limit, W(m) = (m) /2

and Wf(m) is given by

00

Wf(m) =2 f /(Gmp) dDf 3
1

4 1/2
= - (Am) (5.4)

16
= W( m)

5.3 EMPIRICAL ABSORPTION BAND

The empirical band absorption function mentioned in section 3.2.3 may

be integrated to give a function for flux as follows:

Wf(m) = 2A+ B log (pm) d

= A+ B log(m) + 2 Bjlog(p) d

= A + B log(m) + B/2 (5.5)

= A+ B log(e1/2mAl+ B log(e m)

= W (e1/2, 1 .649W(e i), e = 1.649
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5.4 DIFFUSIVITY FACTOR

We note that several of the above forms give

Tf(m) = T(Bm), or Wf(m) = W(Bm). (5.6)

We should also include the weak limit, for which 8 = 2. Elsasser found

that empirically the Elsasser model could be well approximated by the

same expression with 3 = 1.66, and in general this diffusivity factor is

a good approximation for a wide range of band models, with an accuracy

of 1 - 2 percent. A useful survey of the diffusivity factor is given

by Armstrong (1968b).
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