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ABSTRACT

Dave published the first widely-used Mie scattering codes in
1968. Even on the fastest computers, these codes and their descendants
often took a great deal of computer time for problems of practical
interest. In the intervening years, there have been a number of
improvements in technique (some developed by this author and reported
herein for the first time)., At the same time, vector processing has
increasingly become the wave of the future in scientific computing
machines, and Mie computations can be effectively reorganized to take
advantage of it,

The present document gathers these improvements in technique,
together with the necessary reorganization to attain vector speed,
to produce new Mie scattering codes suitable for modern computations.

Actually, two codes are presented. The first, MIEVO, attains
as much vector speed as possible within the constraint of using the
minimum possible memory. MIEVO is suitable for almost any computer,
whether or not it has vector capabilities, and 1s generally faster
and better designed than existing Mie codes.

The second code, MIEV1, attains maximum vector speed, at the
expense of using more memory than MIEVQO. It is most suitable for
vector-processing computers. MIEV1 is anywhere from 10% to 300%
faster on the CRAY-1 than MIEVO.

Detailed timing results are presented for both codes. The
codes are thoroughly tested and documented and are exceptionally
reliable and well-conditioned. Mie results up to size parameters

of 20,000 have been generated without difficulty.






PREFACY

My own investigations in radiative transfer in the atmosphere
have always depended on Mie scattering calculations, and such calcu-
lations have invariably devoured the lion's share of my comwputing
resources. Therefore, I continually sought ways to speed-up Mie
scattering calculations (or circumvent them). No major breakthroughs
along these lines appeared in the literatur?. In the meantime, I
made several minor advances in the Mie algorithms, none of which I
published.

‘Then cane the new vector-processing computers (like NCAK's
CRAY-1), with their promise of speed increases of tenfold or more if
one "vectorized" one's calculations. With this incentive, I com-
Pletely scrapped my'old set of Mie codes and proce:ded to write, from
scratch, Mie codes that would work at vector speed, yet be compatible
with scalar machines. They incorporate everything I have learned
about Mie calculations; both by myself and from others, during the
past seven years, Sevéral colleagues who tested these codes found
them signtficantly better than what they had been using before; in
particular, they reported speed increases by factors of 6 to 100.
Hopefully other inveatigators wiil find the routines as useful as
they did.

Many thanks to Holly Hovard for her excellent job in typing my

rather unruly manuscript and to Dr. James Coakley for reviewing {t.

Warren Wiscombe
June 1979
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1. INTRODUCTION
Calculations of light scattering from particles are needed in
the widest variety of research endeavors, ranging from astronomy
(interstellar dust scattering) to zoology (bacterial scattering).

The prototypical such calculation assumes that the particle is a

homogeneous sphere, and the incident light a monochromatic plane

wave., Clebsch worked out the mathematical machinery for this problem
in 1861; in 1890 Lorenz gave a full solution for transparent spheres;
in 1908 Mie, and in 1909 Debye, published completely general solutions.
These references, and many others up through 1945, may be found in

the excellent historical survey by Logan (1965). By an odd twist of
fate, Mie's name has come to be exclusively associated with the
problem; we shall adhere to this convention, but with full awareness

- that a misnomer is involved. Excellent accounts of Mie theory may

be found in the books by Shifrin (1951), Van de Hulst (1957), Kerker
(1969) and Born and Wolf (1975).

While the vast majority of scattering particles are not spherical,
so that the Mie solution does not strictly apply to them, both intu-
ition and experimental evidence (e.g., Zerull, 1976) indicate that,
with averaging over orientation and/or size, mildly nonspherical
particles scatter very much like 'equivalent' spheres. This, of
course, vastly enhances the utility of the Mie solutionm.. Van de Hulst
(1957) and Kerker (1969) indicate some of the wide-ranging appli-
cations which are then possible.

The computational history of Mie scattering 1is quite different

and much more recent than the theoretical history; Van de Hulst's



and Kerker's books both contain accounts of it. Van de Hulst notes
that, while there have been some ambitious tabulations of various
Mie quantities, these are useful mostly for checking computer codes.

The reason is simply the rapid oscillation of most Mie quantities;

these oscillations would be impossible to resolve in a comprehensive
table, and they make tabular interpolation risky. Furthermore, there
are resonances (sharp spikes) within Mie quantities whose scale is
much finer even than the oscillations (Rosasco and Bennett, 1978;
Ch§lek.g£'gl., 1978). Hence Mie scattering is a field which, unlike
some, absolutely demands computer calculations. (Analytic approxi-
mations to Mie's solution are usually very limited in their range of
application and, even when available, have an unfortunate tendency to
be at least as complicated as the Mie solution itself.,)

The number of Mie scattering calculations performed prior to
the mid-1950s was expectably small., Things picked up rapidly there-
after, but until the late 1960s Mie calculations were done without

much understanding of computational error, particularly ill—conditioning

from subtraction of nearly equal numbers, and instability in recursion

relations. Defining the size parameter

circumference of sphere
wavelength

we may easily find cases where a straightforward programming of Mie's
solution would incur serious computational error for x as small as

20-30, Thus, while many of the pre~1970 Mie results are undoubtedly

correct,. it would be foolish to place blind faith in them.



Because the Mie solution is a series with approximately x terms,
because early computers werevslow, and because x > 1 .was virtual terra
incognita, early computer calculations were generally restricted to
1 < x <100. TIrvine's 1965 paper is an excellent and frequently cited
example from this period. But the explosive growth of computer tech-
nology soon permitted calculations for much larger size parameters;
Dave's 1968b paper, which considers up to is a good example,

A further development was Kattawar and Plass' (1967) paper pointing
out the potential instability in the upward=-recursive calculation of a
Bessel function ratio in Mie theory (cf. Eq. 20). (Rayleigh actually
discovered this around the turn of the century (Logan, 1965), but his
observations had long been forgotten.) Their resolution of the diffi-

culty, which has become standard, was to use downward recursion.

Deirmendjian's -(1969) book describes the same instability problem but
offers no solution to it.

Dave's (1968a, 1969a) IBM reports were important landmarks. They
set forth an algorithm and a brace of computer codes for performing Mie
calculations. While the number of different Mie codes in use today is
undoubtedly large, most of them can trace their lineage back to Dave's
subroutines.

With powerful subroutines like Dave's in hand, the 1970s saw an
explosive growth in applications, My own experience may be illustrative.
In 1971 I began investigating solar and longwave radiation transfer in
an atmqsphere containing clouds. The presence of clouds required Mie
scattering calculations for a size distribution of water droplets for
100 or more wavelengths from 0.3 um to 500 um. Consider a wavelength

of 0.5 um and a cloud with drop sizes ranging from 0.1 im to 50 um.
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The Mie calculation for this case proceeds from x = 1 to x = 628, in
steps &x = 0.1 (Dave, 1969b); for each value of x there are roughly
X terms to be summed, at each of say 100 angles, so the total number
of terms to be summed is about 200 million. Ana each térm by itself
requires considerable computation to generate! Now imagine this
calculation repeated for 100 wavelengths (it is less onerous for
longer wavelengths) and it will become clear why 'staggering' is not
an exaggerated description of the task. Yet, as the decade wore on,
applications~oriented Mie calculations of this magnitude became
increasingly commonplace.

In spite of this pressure of applications, the decade has so far
brought forward no great changes in the algorithmic structure of Mie
computations, save for Palmer's (1977) work suggesting that replacing -
series by continued fractions may be faster and more accurate. There
have, however, -been a few minor improvements. One 1s a new way to
initialize the downward Bessel function ratio recursion (Lentz, 1976).
Others are in the nature of more efficient ways to organize the com-
putation, devised by the present author in response to the problem
outlined in the previous paragraph and published here for the first
time.

The present document has, as its overall purpose, the incorporation
of these advances in technique, made in the decade since Dave (1968a,
1969a), into a new set of Mie scattering codes. The specific goals of
this effort are laid out in the following section, and the analytical
and computational details are worked out in the remainder of the

document.



To the uninitiated reader, the codes may appear as if they could
have been written straighta&ay, without all the apparent niggling over
small points. But their simplicity 1s deceptive; it conceals a mul-
titude of blind alleys, pitfalls, instabilities, inefficiencies and
inelegancies to which the "straightaway" approach would fall victim.

A variety of decisions has to be made, often requiring considerable
background study and some sophistication in numerical analysis.
Further advances will undoubtedly be forthcoming; but these algorithms

already represent quite an advanced stage.



2. SPECIFIC GOALS OF ALGORITHMS
The specific goals that guided the formulation of the algorithms
and codes herein were:
® maximum speed (including vector processing wherever possible)
e generality (furnishing all Mie quantities necessary for full
polarization-dependent studies)
® reliability over broad ranges of refractive index and size
parameter
® avoidance of all numerical instability
e portability (immediate executability on éomputers having
single precision of at least 14 significant digits, like
CDC and CRAY; executability with minor alterations on

computers having significantly lower single precision)

® accuracy: at least 5-6 significant digits
e as simple and straightforward as possible within the constraints
imposed by the previous goals.

Another goal, the use of minimum computer memory, proved incom—
patible in part with the main goal of maximum speed. This is because
vector processing requires quantities, which could otherwise be scalars,
to be stored in arrays. Therefore two separate codes Qere devised
which have much in common but which either (a) have maximum speed,
using as much memory as needed to achieve it (MIEV1); or (b) use
minimum memory, attaining as much speed as possible within that con-

straint (MIEVO).



3. MIE SCATTERING FORMULAE--GENERAL CASE

The Mie scattering formﬁlae are given in several books (Van de
Hulst, 1957; Kerker, 1969; Deirmendjian, 1969) and by Dave (1968a,
1969a), although not always in the forms most suited to computation.
We merely transc;ibe most of the relevant formulae below and give a
reference; for those which are new, short derivations are provided.
The five formulae (6~9) give the quantities actually calculated and
returned by the codes MIEVO and MIEV1.

The two important independent variables in Mie theory are the

size parameter

x = 4= (1)
and

z = mx . (2)
where

r = radius of scattering sphere

A = wavelength of incident plane wave

m = complex refractive index of sphere relative

to surrounding medium

M= m - im, (3)
re im

Jm] > 1 (4)

mim >0 ‘ )

Restriction (4), which would, for example, exclude scattering from
air bubbles in water, may not be necessary, but we have not tested

the codes for such situations.



Extinction Efficiency Factor (Van de Hulst, Sec. 9.32)

N ,
Qe = -35 ZE (2n + 1) Re (a_ +b) (6)

x n=1

Scattering Efficiency Factor (Van de Hulst, Sec. 9.32)

N
Gea = > CarD L P+ b B (7)

sca %
=1

Asymmetry Factor (Kerker, Eq. 3.11.6)

N
or— S

sca n=1

2n + 1 Re *
n(n + 1) (anbn)]'

n(n + 2) * *
n+1 Re (anan+l * bnbn+l)

(8)

Scattering Amplitudes (Van de Hulst, Sec. 9.31)

N
S e (a0 + T ) (9a)

n=1

Sl(u)

N
Ei ;ﬁ%&%}%3-{anrn(u) + b m (W)} (9b)

n=1

Sz(u)

where U = cosf and © is the angle of scattering.

The most efficient way to calculate the scattering amplitudes
is in a loop r n, for summing, within which is a loop over 6.
= > ——
(This will be explained when we discuss vectorization, Sec. 7.1.)
Every extra operation in the 8~loop can add significantiy to the
computation time. Each term of the sums (9a) and (9b) requires two

multiplies and one add, if the factor (2n + 1)/n(n + 1) is incorporated

into an and bn outside the 6-loop. We discovered that we could



eliminate one of the multiplies by calculating, not Sl and 82 but

rather,

N

+ _ _ 2n + 1

S (W = §, +85, = :g; am + 1) (a + bn){ﬂn(u) + Tn(u)}
n (10a)
N

- _ _ 2n + 1 _ _

ST = s, -5, = :E @+ @y -e{man - T}
n=1 (10b)

The factors multiplying (ﬂn * Tn) are formed outside the 8-loop.

Then, when the n—-loop is finished, Sl and 52 are easily recaptured:

5,00 = st + 57w (11a)

s, = sty - STl . (11b)

If 6 € [0, m/2], then its supplement T - 6 has cosine -u. The
angular functions of T - 6 are then simply related to the angular

functions of 6 (Dave, 1969a):

nt+l

ﬂn(-u) (-1 Tn(u)

0= EDY T W,

which leads to
N

sfew = 2, nl Sy (e, b)) (T ) - T ()
n=1 (12a)
N

- - n+l 2n + 1

Sew o=y EDTT By @ - b)) )+ T )
n=1 _ (12b)

+
Thus it requires only two extra multiplies in the 6-loop to get S (-L)
and S (~-u), since the necessary quantities have already been formed in
Eq. (10). For this reason, the codes are set up (as were Dave's, 1969a)

to calculate the scattering amplitudes at an arbitrary set of
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angles in [0, m/2], but only at the supplements of those angles in
[n/2, =].
This 1s not as restrictive as it might seem, For example,
in order to calculate the phase function moments, or other angular
integrals over [0, 7], this is frequently the required structure
of the angular quadrature point set. Also, when taking a dense
mesh of angles near 6 = Q to resolve the forward diffraction
peak, one automatically obtains good resolution of the structure
in the glory region. Last, but not least, taking an arbitrary
set of angles in [m/2, 7] may significantly increase computation
time, through the necessity of calculating ﬂn(u) and Tn(u) at
those angles.,
Note finally that, if one is only interested in the unpolarized
approximation, as in many radiative transfer problems, the final
-step, Eq. (11), is unnecessary, for
+l2 + IS-IZ

5,12+ Is,1% = s

However, the side-stepping of Eq. (11) is not explicitly provided
for in the codes, since the savings in computer time would be

relatively trivial,

Mie Coefficients (Dave, 1969a, Egs. 2?3)

An(z) n
= Lo T wn(x) _ wn—l(x) (16a)
& ° An(z) n
m * x ;n(x) - Cn—l(x)




11

@ 2y o -

b
n

= - (16b)
@)+ 2 0 -t

Here we have used the Debye and Van de Hulst (1957, Sec. 9.22) notation

for the Riccati-Bessel functions Wn and Cn, which are defined below

along with the function An.

Ricatti-Bessel Functions (Abramowitz/Stegun, Sec. 10.3)

Wn(X) = xj_(x)

Xn(X) - xyn(X)

g, (%) wn<x> + ixn(X)

where jn’yn are the familiar spherical Bessel functions. The Riccati-

Bessel functiors satisfy the same recurrence relations as j ,y
n’’n

(Abramowitz/Stegun, Eq. 10.1.19), namely

2n + 1

Cn+l(x) X

g (0 -5 _ . an

Furthermore, by a simple modification of the cross-product relation
for spherical Bessel functions (Abramowitz/Stegun, Eq. 10.1.31), we

find

Y (%) x -1
Y1 () = . Tt . (18)

Xn(X)

The initial values are (Abramowitz/Stegun, Eq. 10.3.2-3)

sin x (19a)

I

b, )

XO(X) cos x (19b)
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[

wl(x> WO(X> - xo(x) (19¢)

E I T

Xq () X (2 + WO(X) . (194)

Careful attention to the accuracy of the wn’xn calculatiqn is
necessary because: first, the wn up-recurrence is numerically unstable
(Abramowitz/Stegun, Introduction «7); second, the convergence of the
Mie series hinges on the rapid decay of wn to zero when n 2 X, with a
concomitant blow-up of Xn’ which forces a and bn (Eq. 16) to zero;
third, phenomena like the glory, surface waves, and resonances depend
on Mie series terms with n 2 X, and hence are particularly sensitive
to errors in wn oT X .

Dave (1968a, 1969a) used upward recurrence (Eq. 17) for En’ i.e.,

for both wn and Xn’ He needed IBM double precision (equivalent to CDC
or CRAY single precision) to minimize numerical instability, i.e., to
minimize error growth relative to the magnitude of wn as the recurrence
proceeded. In our own early experiments on a UNIVAC 1108, we also
found that up-recurrence on wn deteriorated much too catastrophically
for n > x when single precision (8 digits) was used, and it was
necessary to go over to UNIVAC double precision (18 digits) to achieve
satisfactory accuracy.

We tested three possible schemes for computing wn' (xn is always
computed by upward recurrence, which .is stable.) These were:

(a) wupward recurrence (Eq. 17)

(b) cross product (Eq. 18)

(¢) downward recurrence (Abramowitz/Stegun, Sec. 10.5) .
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All computations were carried out in CDC single precision (14 digits).
Scheme (c), which is stable, was used for determining errors in the

other two schemes. It was initialized, in the manner of Miller, by

where N* exceeds the largest index N for which wn is needed. We
tried both N* = 1,9 N and N* = 1.5 N and obtained identical values
of wn (n = 1 to N) in either case, which satisfied us that the down—
recurrence was an accurate and reliable benchmark.

Schemes (a) and (b) prove to be almost as accurate as down-—
recurrence for n < x (except as noted below). Only when n > x do they
begin to deteriorate, and their errors grow monotonically as n con-
tinues to increase beyond x. Both schemes invariably have their
largest error at n = N; these errors are shown in Table 1 fof a wide
range of x's., Up-recurrence is always more accurate than the cross-—
product relation; typically, its error is two to four times smaller.
This situation holds for n < N as well.

Furthermore, up-recurrence has an acceptable error, as Table 1
witnesses (remember Table 1 shows worst errors; errors are much smaller
for n < N). And since down-recurrence requires considerably more com—
putation, more storage, and is also subject to overflow failure
(because wn grows when recursed downward), up-recurrence on wn
was the obvious choice for our algorithms. Thus, in the end, we
made the same choice as Dave, but our confidence in that choice was

considerably raised.
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Table 1. Percent error in wN(x), as computed by two different methods,
where N is the largest index required in the Mie series.
Exact values of wN'were from downward recurrence. All com-

putations done in CRAY-1 single precision.

Z error in ¥ % error in Uy
X N from up-recurrence from cross-product
1 5 1.7 x 107° 2.5 x 107°
5 12 8.2 x 107° 17 x 107°
10 19 2.0 x 107 -13 x 1074
20 31 2.7 x 1074 5.6 x 10°°
40 54 7.2 x 107° 15 x 107°
80 98 1.9 x 1073 6.0 x 1073
200 224 1.4 x 1073 4.5 x 1073
400 430 2.4 x 1072 5.5 x 1072
600 634 5.6 x 107% 266 x 10°%
800 837 2.6 x 1073 3.5 x 1072
1,000 1,040 3.6 x 1073 10 x 1073
2,000 2,050 5.5 x 103 15 x 1072
4,000 4,063 0.010 0.047
8,000 8,080 0.026 0.090
12,000 12,091 0.060 0.095
16,000 16,100 0.041 -0.17
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There are also occasional values of n < x at which the accuracy
of both schemes (a) and (b) is reduced. These are invariably where

wn falls several orders of magnitude below its neighboring values
wn—l and wn+l' In all such cases, up-recurrence 1s still preferable
to the cross-product relation and still has acceptable error.
Since the zero-subscript feature is not widely available in
FORTRAN, the quantities actually calculated in the codes are $n = wn-l

and En =T (Xn is never used explicitly).

Ap (Logarithmic Derivative of Y_)

v ' (2)
An(Z)E g,—n'm— .

This can be calculated by up-recurrence (Dave, 1969a)

A = -24-1 (@ = 2,000, (20)
z An—l(z)
with initial value
_ 1 tan z
Al(z) = > +— . 21)

L tan z = 1
z

Dave worried about two problem cases. First, z = krm for any integer
k # 0 leads to A0 = cot z = ©; but we never actually need Ao, and Al’
written as in Eq. (21), is perfectly well-conditioned at z = k.
Second, 1if tan z is written simplistically as sin z/cos 'z, exp(Im(z))
will occur in both numerator and denominator, causing overflow if
Im(z) is large; but we circumvent this problem by writing tan z as

2e2y sin 2x + i(e4y -1
2e2y cos 2x + 1 + eéy

tan(x + iy) =
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which is calculated by the function CTAN listed in Appendix I, There
remains the problem that tan z blows up when z is an odd multiple of
m/2, but because of round-off in computing the denominator this never
actually occurs.

Kattawar and Plass (1967) pointed out the instability in up-
recurrence of An when Im(z) 1s appreciable, They suggested down-recurrence
1

n
2z + AH(Z)

(z) =

Sl=
[}

-1 (n=N,.0.,Nyu0e,2) (22)

as an alternative, and showed that it was stable. However, neither
they nor subsequent investigators offered a clear-cut criterion as to
when down-recurrence should be used. We have developed such a criterion,
which is described in Sec. 5.

Kattawar and Plass, Dave (1969a), and many subsequent investigators

initialized the down-recurrence by

Ap(2) = 0

. Dave found that

where, in principle, one must have N' >> lz
N' = 1.1 |z| +1

was sufficient. Of course, this causes more values of An to be
calculated than are actually needed in the Mie series, since N' > N
and possibly N' >> N,

We found it preferable to initialize tﬁe down-recurrence by
calculating AN(z) correctly to 5 or 6 significant digits, using the
newly-developed method of Lentz (1976) discussed below. Besides

being more aesthetic, this results in less computation and greater
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code reliability, especilally in difficult cases (e.g., lml >> 1 or
[m - 1] << 1), |

We note in passing that our early experiments on a UNIVAC 1108
showed that neither up- nor down-recurrence of An was sufficiently
accurate i& its 8-digit single precision. The down-recurrence some-
times deteriorated badly as n + 1, UNIVAC double precision of

18 digits had to be employed.

AN from Lentz Method

The standard continued fraction representation of AN’ which

follows directly from the down-recurrence (22), is

AN(z) = il-J';mm[al,az,...,ai] (23)
where )
1 1
[al,az,...,ai] = 3 +';f+ T (24)
2 i
a; = N+ 1)/z (25a)
g = (DN on -1y w=2,3,...) . (25b)

But this is really no different from Dave's procedure; setting AN' =0

amounts to setting AN = [a Thus many terms are

l,az,...,aN,_N].

frequently required for convergence of the continued fraction (24),

and recursive computation is impossible because [al,...,éi+1] is
not simply related to a few prior values of [al,...,ai] but must be
computed completely anew.

Lentz has discovered a product represeﬁtation of Eq. (24) which

can be computed recursively, and which requires, in just those cases
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where down-recurrence of An 1s necessary, far fewer steps than Dave's

method:
[a),ee0a,] = 1§ T, (26)
k=1
where
al k=1
T = @2n
k Nk/Dk k>1
Nk = [ak,...,al] (28a)
Dk = [ak,...,az] (28b)

and where, by definition,

a, . = N
[J’ aJ] aJ

Unlike Eq. (24), Eq. (26) is well-suited to recursive computation in

that

[a15000sa)] = CITRRTE IS I (29)

and both the numerator and denominator of 'I‘i follow immediately from
the numerator and denominator, respectively, of Ti 1

N, = a, + — (30a)
D, = a, + — , (30Db)

We deem the iteration to have converged when Ti = 1 to a certain degree

of accuracy, i.e., when

IRe(Ti) -1 <e, and | T(T)] < €, (31)
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where we generally take €2 = 10—8 and, as a result, obtain at least
5 to 6 significant figures in AN.

It may occur that

< & (32)

where El << 1 (we generally take El = 10_2); this means that Eq. (30)

has resulted in loss of significant digits in Ni and/or Di’ which

would be magnified in N and/or D

In thils case, we can side-

i+1 i+1°

step the ill-conditioning by skipping the convergence test (31) and

striding two iterations instead of one; i.e., we go immediately to

[al,...,ai+l] = [al"'°’ai—l] T, Ti+l (33)
where
€l
Ti Ti+l = E—- (34a)
2
8 % lHa N (34b)
8 % ltag, D . (34¢)

Unlike the ratios Ti or Ti+1 individually, their product (34a) is
well-conditioned. 1In order to re-start the iteration (30) without
requiring the ill-conditioned results Ni+l or Di+l we can use

Eq. (30) twice to obtain

N
_ 1 ) i
Nigp = 334, 7 L L T an® 1 (35a)
41 N
Di+2 = ai_*_2 + E— R (35b)
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In Table 2 is shown, for selected values of m and x, the number
of iterations of Lentz's method necessary to achieve convergence, i,e.,
the value of i such that condition (31) is satisfied for either
€2 = 10-6 or 82 = 10-8. Note that, for x 2 100 and Im(m) small
enough, the number of iterations is roughlyAlm - 1lx. This is about
the same number of iterations required by Dave's method [(l.lfml—l)x].
But these cases of small Im(m) can be handled by up-recurrence (see

Sec. 5). And for larger values of Im(m), Lentz's method requires

far fewer iterations‘than Dave's.

Angular Functions

m (W) Pn'(u)

2 '
Tn(u) uwn(u) - (1 -u9 m () (36)

(Dave, 1969a) where Pn is a Legendre polynomial. These functions can
most simply be calculated by upward recurrence, which is numerically
stable (Abramowitz/Stegun, Introduction.?7). Since these recurrences
are buried in the 6-loop where Si (Eq. 10) are calculated, formulating
them more efficiently can lead to a substantial saving of computer
time. Dave (1969a) gives particular forms for these recurrences; but
we have discovered better ones which we derive below,

The usual 3-term recurrence relation for Legendre polynomials is

DB = @t wp W - ) .

Differentiating this, and using the relation

T =T (W) = (20+1) P (W
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Table 2. Number of Lentz method iterations (Eq. 29) necessary to
converge to AN(mx) for a range of size parameters x and
refractive indices m. First figure refers to €2 = 10—6,
second (in parentheses) to €2 = 10_8.

number of Lentz method
X N m iterations to get AN(mx)
1 5  1.05 {10:2 - 1} 4 (5)
. 1.95 - {10 ° - 1}i 5 (6)
10 19  1.05 {10:2 - 14 7-8 (8-10)
1.95 - {10 ° - 1}1i 11-12 (14)

100 119 1.05 {10:2 - 1 13 (16)

1.50 - {107° - 1072}1 51-52 (55-57)

1.50 - 0.1 1 40 (46)

1.50 - i 5 18 (22)

1.95 - {10~ - 10 “}i 97-99 (102-103)

1.95 - 0.1 1 79 (87)

1.95 - 1 25 (31)
1,000 1,040 1.05 {10:2 - 1073 59-50 (58)

1.05 10 “i 44 (53)

1.05 - 0.1 1 25 (32)

1.05 -4 o 3 15 (20)

1.50 {10_2 - 10 “}i 500-502 (509-512)

1.50 10 ° i 459 (479)

1.50 - 0.1 1 104 (135)

1.50 - 1 o 3 22 (28)

1.95 - {10_, - 10 7}i 953-956 (964-967)

1.95 10 © i 880 (919)

1.95 - 0.1 i 203 (254)

1.95 - 1 33 (42)
10,000 10,086  1.05 {10:2 - 10741 492-495 (510-513)

1.05 10 ° 1 183 (232)

1.05 - 0.1 1 31 (40)

1.05 -1 o s 16 (20)

1.50 - {10_, - 10 '} i 4496-5001 (5017-5021)

1.50 10 “ 4 1092 (1384)

1.50 - 0.1 1 124 (161)

1.50 - i o, 23 (30)

1.95 {10_2 - 10 '} 9501-9510 (9525-9533)

1.95 10 © i 2055 (2599)

1.95 - 0.1 i 236 (309)

1.95 - 1 34 (44)



from Whittaker and Watson (1965, chapter 15) leads to

nm = (2o + 1) T (W) = (o + 1) =1 (W

which for our own purposes we write in the strung-out form

s = um (W (37a)
t = s - Toeg (W (37b)
T W = s +(“—:—l) £ . (37¢)

Written thus, only two multiplies and two adds are required, since
the purely numerical factor (n+1/n) may be precalculated.

For Tn’ differentiate the relation
2 =
(L - u%) T = n[Pn_l(u) HE_ (1) ]
and use the relation
nP = ) - ()
(both from Whittaker/Watson, chapter 15) to obtain
2 ' = - -
@A=-w)m ' = 2um (W) - (n + 1) wm W = _ G0l .

Putting this into the definition (36) of Tn leads to

1]

Tn(u) n+1)t-3s (38a)

nt - T (W) (38b)

where t and s were defined in Eq. (37). This requires only one multiply
and one add, for a total of three multiplies and three adds to calculate

ﬂn+l and Tn. This compares with six multiplies and four adds in Dave's

(1969a) recurrences.
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The recurrences are initialized by

T = 0 . (39a)

o= 1 ., (39b)

Note that we actually require, not Wn and Tn separately, but their

" )
sum and difference, to obtain S~ (Eq. 10). Using the definition (36)

DRI AL ]

Yet, in spite of this simple form, we were unable to come up with a

=
i+
—
/]

N

'—l
I+

recurrence directly for "n * Tn’ which avoided calculating Wn and Tn

individually, and was at the same time more efficient than Egqs. (37-
38). This must remain a challenge for future investigators.

By using a_fixed set of angles Um, one could precalculate the

angular functions once for all, as matrices A m ST (M) and
n n' m:

Bnm =z Tn(um). This might offer advantages if one were to restrict

oneself to Mie series no longer than " 1000 terms and to no more
than 50-100 angles. But outside these limits the computer storage
requirements would be prohibitive; and even with only 100 terms and
50 angles, Anm and Bnm would take up a total of 10,000 words of
storage, which might well strain a smaller computer. Furthermore,

a fixed set of angles would be too inflexible for many applications.
Thus, in the interests of a general purpose code, we have rejected

this approach.
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4. MIE SCATTERING FORMULAE—SMALL PARTICLE LIMIT
It is necessary to compute the small-particle (Rayleigh) case,
X - 0, separately, not only ﬁecause 1/x occurs in several places in
the Mie formulae, but because:
(a) the calculation of An 1s numerically ill-conditioned as

X > 0; e.g.,

N § 1 _ 2
Al(z) = - + T - + 0(z)

tan z

1
z
and the subtraction of 1/tan z from 1/z causes significant

digits to be lost; similarly,

1

2
Pl Al(Z)

= -2
A2(z) = - +

and the subtraction of Al(z) from 2/z further compounds
the ill-conditioning,

(b) The éubtraction in the upward recurrence for wn loses
significant digits, and the ill-conditioning rapidly
compounds; e.g.,

2 2

wl(x) = -i sin X = cos x = (1 - %L- + ...) - (1 + %—-+ ces)
x2
= 3 + oeee
3 3 x2
WZ(X) - Wl(x) - wo(x) = 3 63— + ...) - sin x

(x+ .00) = (x+ ..0) .
(¢) The subtraction in the numerator of bn becomes ili—conditioned.
The x * 0 formulae are also computationally faster, which would
make them desirable even were they unnecessary. We should bear in mind

Van de Hulst's (1957, Sec. 10.3) warning, however:
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"Aside from their simplicity, they (the small~-x formulae)
have little advantage. 'They descriBe the very first deviations
from Rayleigh scattering, but further deviations appear very soon
after the first have become prominent, so that the full Mie
formulae have to be used."

In view of this warning, we set ourselves the modest goal of applying
the x -~ 0 formulae only over a range of x sufficlent to avoid serious
ill-conditioning and to give six significant digits in all Mie quan-
tities. The x -+ 0 formulae which we found most suitable, and the
range over which they are to be applied, are given below.

The obvious approach is to expand the Mie coefficients (Eq. 16)
in powers of the size parameter x. It is necessary to expand the
dominant coefficient a, at least out to O(x6), or else the extinction
efficiency (Eq: 6) for Im(m) << 1 will be vanishingly small; for the
first nonnegligible contribution to Qext is o(x6) in such cases, But
by carrying al out to O(x6), one must for consistency keep a, and bl
also, for they are both O(XS). The remaining values of a_ and bn
are O(x7) or higher.+

Some authors insert the expansions for a and b, into Egqs. (6-9)

1’ %2 1

and continue expanding and truncating those series. This is useful for

+The asymptotic forms as x - 0 are:

. n+1 mz-l 2n+1
Y DD 1 2 X
oo Y mm” + n+l
2
b Nog m =] x2n+3 .

(20+3) [ (2n41) 1112



seeing the leading terms, but every additional step of expansion/
truncation must cause additional error, so we have chosen instead to

use Eqs. (6-9) as is, namely:

Qygr = 6% {Re(z;l + Ql) + % Re(§2)} (40a)

0, = 6x'r (40b)

8 = Rela (a, + b )*]/T (40c)

S, = 37 (3 + 6, + 2 3 )u] (40d)

5,00 = 35 by + a,u + 23 @l - 1) (40e)
where

T = lgllz + lgllz +—§- ]32]2 (40£)

and where a factor of x3 has been taken out of each coefficient,

a

A - -—l

a; = 3 » etc.
x".

in order to avoid g-singularities as x + (.

An additional advantage of Eqs, (40) is that, unlike many of
the expansions one finds in the literature, they are internally con-
sistent, being simply special cases of the Mie formulae with
a3 =a, = .. = b2 = b3 = ... =0, For‘example, Eqs. (40a-c¢) can
be derived directly from Egs. (40d,e).

Comparisons were made between the exact Mie results and Eqs. (40),
using two different approximations for 21, 22 and gl’ for a wide range
of values of x and m, First, we tried the 3-term expansion of al and

the l-term expansions of a, and bl’ as given by Van de Hulst (1957,

Sec. 10.3), to wit,
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a, = i-% 1L+s 5 x“ -1 %- E%—:—l x50 + 0(x™)
m -+ 2 m + 2 m + 2
(41a)
o m2 - 1 2 4
bl = 1 5 X + 0(x ) (41b)
~ i n? - 1 2 4
a, = — —= x" +0(x") . (41c)

2 15 on? 43

(Errors may still be found in such results; e.g., Kerker (1969, Sec. 3.9)
has the wrong sign for bl.) These were found to give our desired
6-digit accuracy for all Mie quantities, provided Im(m) was large

enough. But when Im(m) << 1, the accuracy of Qext’ Re(Sl) and Re(Sz)
deteriorated to as little as 3 digits even for very small values of x.
Examples of such errors are shown, for Qext’ in Table 3. The remaining
quantities, like Qsca or Im(Sl), retained 6-digit accuracy out to

x v 0,08,

We diagnosed the problem to be that Qext’ Re(Sl) and Re(Sz) all
depend only on the real parts of 31, 32 and €l. For Egs. (41), with
Im(m) << 1, only the smallest-order term in 21 contributes to Re(gl),
and both Re(gz) and Re(gl) are nearly zero., Clearly a correction term
would be desirable in Re(gl), and presumably in a, and b, as well., Such

2 1

a correction term can only be obtained by continuing the expansion of

al out to O(xs). We also realized that it would be preferable to leave

A
al in quotient form, that is, to just expand its numerator and denom-
inator in Eq. (16). The further expansion of the quotient as a poly-

nomial is just an extra and unnecessary step of approximation. Hence

we used the following formulation:
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Table 3. Values of Qext in the small-particle limit, as given by Mie
theory and by Eq. (40) with two approximations for aps a,
and bl. The digits in error are underscared for each
approximation.
X m Egs. (40,41) Egs. (40,42) Exact
0.02 1.5 - 107% 7.67794 x 1070 7.67805 x 10°° 7.67805 x 107°
1.95 - 1075 1.27341 x 1077 1.27355 x 1077 1.27355 x 107
1.95 - 107°1 3.77644 x 1077 3.77659 x 107/ 3.77659 x 107/
0.04 1.05 - 10°% 1.12183 x 107/ 1.12179 x 107 1.12179 x 1077
1.5 - 10°%  6.70337 x 1077 6.70403 x 107 6.70403 x 10~
1.5 - 107% 8.57001 x 107° 8.57007 x 10°°  8.57008 x 10°°
1.95 - 1074 7.16164 x 107° 7.16259 x 107° 7.16259 x 10°°
0.08 1.05- 101  3.28743 x 107’ 3.28478 x 107/ 3.28478 x 10/
1.5 - 107% 9.60869 x 107° 9.61291 x 107 9.61292 x 107°
1.5 - 107%  2.54505 x 1077 2.54547 x 107> 2.54547 x 107>
1.95 - 107%1  3.66727 x 107> 3.67335 x 1070 3.67336 x 10~
0.20  1.05 - 0.011i  5.25292 x 1073 5.25256 x 107> 5.25263 x 10°3
1.05 - i 5.79042 x 10 % 5.78532 x 10°°  5.78539 x 107t
1.95 - 0.01i  3.88981 x 10 ° 3.90526 x 107> 3.90548 x 1072
1.95 - i 2.58547 x 107t 2.58626 x 10 % 2.58637 x 107%



2 N
A _ . m -1 "1
a; = 2i 3 5 (42a)
1
1 2, 4m+5 4 6
Nl = 1~ 10 % + ~1ioo ¥ + 0(x")
2 4 2
- 2 _ Im 2 _ 8m - 385m” + 350 4
Dl = m + 2+ (1 15—) X 1400 ple
2
m -1 3 1 2 6
+ 21 3 x~ (1 - 10 ¥ ) +0(x)
2m2 -5 2 4
2 1 +——=x" +0(x")
A~ m - 1 2 70
b = i X (42b)
1 45 2m? -5 2 4
1- —3p X + 0(x")
1 2 4
A~ m2 -1 2 L- g * * 0" (42¢)
a i X
2 L 2 2’ - 7 2 4
2Zm” + 3 - =/ x" + 0(x ")
14
To be consistent, and because the amount of extra computation

is trivial, we have expanded bl and a

A
2 to the same order as a

l’

even though nefther one acquires thereby a significant real part when

Im(m) << 1, and therefore neither one significantly improves the

approximation to
PP Qext

in such cases.

But we have ignored g

~

2 and a3,

the leading terms of whose expansions contribute at the O(xa) level;

these leading terms are purely imaginary when Im(m) = 0, and there-

fore do not improve the approximation to Q e
ex

Carrying b

2 and a3

only extends the range of the apbroximation slightly (cf, the

Van de Hulst quote earlier in this section) and simply would not be

worthwhile.

Even though the neglect of b2

the practical effect is nil.

A
and a3 is a technical inconsistency,

As Table 3 indicates, Eqs. (42) lead

to a dramatic improvement in accuracy over Eqs. (41) in both problem

(Im(m) << 1) and normal cases.

The more accurate formulation retains
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4=5 significant digits at x = 0.2, and 2-3 significant digits even at

x = 0.5. In order to retain 6 significant digits, we selected the
rather conservative criterioﬁ that the small—garticle formulae (Eqs. 40
and 42) are to be used whenever

lm| x S

0.1 (43)

where the factor lml was included based on the well-known fact (cf.
Kerker et al., 1978), which is also apparent in Egs. (42), that the

approximation breaks down as lml increases.
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5. An UP-RECURRENCE CRITERION

Kattawar and Plass (1967), Dave (1969a) and subsequent investi-
gators were aware that up-recurrence for An may fall, but were unclear
as to exactly when this would occur, except that Im(m) had to be
significant and x >> 1 (the latter condition ensures sufficiently
many iterations for the instability to develop).

To determine the precise regions of size parameter x and refractive
index m wherein up-recurrence is satisfactory, an extensive comparison
was made between exact Mie results and results obtained using up-
recurrence for An' Exact Mie results were generated using down-
recurrence for An, which is always stable, and a stringent convergence

10

criterion of 82 = 10 for the Lentz method calculation of AN. Up-

recurrence was regarded as failing whenever its concomitant values of

-6
Qext’ QSca or g (Eqs. 6-8) had relative errors exceeding 10 -, or

its scattered intensity or degree of polarization

, C e 12 2
i, +1, = lsll + |52| (44)
2 2
4 lszl - Isll (45)
pol 2 2
[8,1% + s, |

had relative errors exceeding lO_S at any of 61 Lobatto quadrature
angles. (These angles are such that they cluster in the forward peak
(6 2 0°) and glory (6 < 180°) reglons and are relatively more sparse
around 8 = 90°,)

In practice, it was always these angular functions which first

heralded failure; the relative errors in Qext’ Qsca and g were always

between lO—12 and 10_8 when some angular function error reached 10_5.
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Q » & series,

This is because there is no cancellation in the Q s
ext sca

whereas at some angles the n < x terms in the Sl’ 82 series almost
cancel, leaving only the n > x terms, which are most affected by An
up-recurrence instability.

The calculation was structured in the form of an upward search

crit
im °?

such that up-recurrence on An failed. (Preliminary study showed that,

on mim’ for fixed L and x, to determine the smallest value, m

crit

when failure occurs for m, = m;, "~ it continues to occur for all
im
crit crit . ,
m, > m, .) The search for m,, Was successively refined to

pinpoint it to 3 significant digits., Size parameter was varied in
the range 1 2 x S 10,000 and mre was varied from 1.05 to 2,50 in steps
of 0,05,
It very quickly became evident that, for fixed mre’ as x increased
crit

the product Xmim rapidly approached, from above, an asymptote. Thus

there was a function f(mre) such that

crit >
Xm, -

crit)
im

min (xm,
X im

= f(m ) (46)

and such that the inequality was, in fact, roughly an equality over
almost the entire range of x. The data for m%n(xmggit) as a function
of m_, are given in Table 4 and plotted in Fig. 1.

It is plain from Fig. 1 that f(mre) has an upward curvature. A
straight line would not give a very good fit. Therefore, we fitted a
quadratic to the data and then subtracted 1.0 from the constant term
of the quadratic in order that the fit might lie slightly under all
the data points (except for two which are obviously out-of-line).

The function so obtained is:



)

crit

min (xm,

120

110 -

100 - ® Data from Table 4
90} —— Eaq. (47)

(%9

8 20 22

2.4
Mre

Figure 1
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Table 4. The smallest value of the product xm(.:rlt at each value of
crit | m .
mre’ where mo i1s the value of m, above which up-recurrence

on An fails (x S 10,000 for this study).

mre m>jEn (Xmiffllt) mre m}jin (Xmi:llt>
1.05 12.2 1.80 53.0
1.10 14.9 1.85 57.8
1.15 16.9 1.90 60.7
1.20 19.6 1.95 65.2
1.25 22.2 2.00 67.5
1.30 264.7 2.05 72.1
1.35 27.0 2.10 75.5
1.40 30.3 2.15 80.0
1.45 33.2 2.20 81.9
1.50 36.0 ' 2.25 88.6
1.55 © 39.5 2.30 91.2
1.60 40.7 2.35 97.2
1.65 464.5 2.40 99.0
1.70 47.4 2.45 104.8

1.75 50.6 2.50 110.4
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- 2 k
f(mre) = 16.35 m +78.42 m_, = 15.04 (47)

and it is plotted in Fig. 1 as a solid line.
From Eq. (46) we deduce that up-recurrence may be used for An if

f(m )
m, < —I& (48)

im X

but that, otherwise, down-recurrence should be used. This criterion,
since it concerns the onset of numerical instability, is obviously
precision-dependent, although probably not sensitively so. Also,
being only empirical, it may break down for values of mre which are
much larger than 2.50, as may occur for water in the microwave region

for example.
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6. NUMBER OF TERMS IN MIE SERIES
Dave (1969a) stopped summing the Mie series at the first value

of n for which

IZ =14

la_|® + b_|% < 10 (49)

(cf. Eq. 16). He was confident that this led to 6 significant digits
in the results. We used this criterion for several years, but were
forced to abandon it in order to attain vector speed in our Mie codes.

The reason is simply that vector processing is not possible for
a loop containing a test like (49). Calculation of the entire vectors
{al,...} and {bl,...} at one stroke cannot occur if the value of each
an’bn decides whether or not to calculate an+1’ bn+l'

We were just as glad to abandon Dave's criterion for two other
reasons as well. First, the figure 10_14 may not be applicable to
computers.of differing precision. Related to this is the fact that
the upward recurrence on wn, whose fall to zero for n ® x is the
Primary cause of Mie series convergence, rapidly becomes unstable
near the very point where (49) must be satisfied. Eq. (49), in effect,
is asked to "head off" the mushrooming instability in the wn calcu~-
lation, and this seems too heavy a burden to lay upon it.

Second, even though our codes always carried the same precision
(14 digits) as Dave's, the test (49) would sporadically fail in the
middle of 1lengthy calculationms, typically for x > 800 or so.
Examination of every such case revealed that failure was caused by
[anlz + Ibnlz falling to, but not below, some low level (e.g.,

> x 10-14). Further examination showed that convergence was nevertheless



37

satisfactory in such cases, and the rest (49) merely falled to recog-
nize it.

For these reasons, the test (49) was replaced by an a priori
estimate of N, the number of terms in the various Mie series (6-10).
We first determined N for a wide range of size parameters (0.1 S x
S 20,000) and refractive indices (1.05 S o £2.50; 0Sm, =1

im
14

using criterion (49) with 5 x 10”14 replacing 10 ', Table 5 shows

selected results for the range [N

min® Nmax] of values of N at each

Size parameter,

It is immediately apparent that N exhibits only a slight dependence
on refractive index. This bears out what we said earlier about wn and
Xn’ which are functions of x alone, being the prime controllers of
convergence. And since ¢n decreases rapidly for n 2 X, it is clear
why N Vv x is a.good first approximation.

Several authors (e.g., Khare, 1976) have suggested, on theoretical

grounds, the following functional form for N:

N = x + cxl/3 .

We have found that the following modification of this formula fits

our data for N exceptionally well:
max

x4 4xt3 41 0,02 < x <3
N o= 4w+ 40553 £ 2 8 < x < 4200 ' (50) -
max
| x + 4xt/3 4 5 4200 < x £ 20,000

This gives an almost perfect fit to 135 Nmax values which we generated.
It is low by 1 at 8 of these data points, and high by 1 or (rarely) 2

at 35 of them: at the remainder, 1t is exact. We set N = Noax®
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Table 5. The range [N ., , N ] of the number of terms in the Mie
mi max

n
series, as a function of size parameter x. The range was
determined by varying Re(m) from 1.05 to 2.50 and Im(m)

from 0 to 1 in small steps.

X Nmin " Nmax X Nmin B Nmax
0.1 2-3 3,000 3,052-3,058
0.3 3-3 6,000 6,068-6,074
1 5-5 8,000 8,076-8,080
3 8-9 10,000 10,081-10, 087

10 18-20 12,000 12,086-12,092

33 | 4447 14,000 14,090-14,097

100 117-120 16,000 16,087-16,101
333 357-362 18,000 18,094-18,105

1,000 1,038-1,041 20,000 20,102-20,108



7. MIE SCATTERING SUBROUTINES

The present section describes the two Mie scattering subroutines
MIEVO (Sec. 7.2) and MIEV1 (Sec. 7.3), which are based on the techniques
and equations given in Secs. 3-6. Why two subroutines are necessary
was explained in Sec. 2. These subroutines are listed and flowcharted
in Appendices I and II. Detailed timing studies are Presented in
Sec. 7.5 and a description of testing procedures in Sec. 7.4, Sample
results from the subroutines are given in Appendix III.

An important & priori decision was whether or not to take advantage
of FORTRAN complex arithmetic. Ip my earlier Mie routines, I avoided
complex arithmetic entirely because 1t tended to be considerably slower
than real arithmetic (for example, nultiplying a real by a complex
variable would compile as four floating point multiplies, instead of
two). But the loss of code readability and simplicity from separating
every expression into real and imaginary parts was drastic. In recent
years, the dramatic rise in use of complex arithmetic, primarily
because of the invention of the Fast Fourier Transform, has forced
compiler-writers to do a much berter job with it. [t is, therefore,
increasingly possible to write dramatically simpler Mie codes
without loss of speed, using complex arithmetic; that is the path
chosen here.

Double precision arithmetic is not used anywhere in.the subroutines,
but users whose machines carry less than roughly 11 digits in single
Precision should carry out the Cn and An recurrences in double precision

and truncate the results back o single precision.
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The two subroutines share a substantial amount of coding, in

particular: the small-x limit; the N formula; the An computation:

N ,
and the 6-loops where s, Sl and 82 are calculated. They both rely

on compiler recognition of repeated subexpressions (an increasingly

common capability),
The input and output variables used by MIEVO and MIEV1 are in

8 common block (an argument list would be computationally slower)

and are thoroughly described in comment cards. The only question
which might arise is: How would one go about picking a value of

the input variable N2CUT? (The code assumes Im(m) = 0, and takes
faster branches, when [Im(m)f N N2CUT.) There is no eaéy answer,

It depends on the largest size of particle being copsidered; the
largest optical depth being considered (individual sphere absorptions
may be very small and yet add up to a substantial value in an
optically thick medium); and how small absorption must be before

‘one is willing to neglect it. The user must either experiment a

little with N2CUT——or set it to zero and forget about it.

7.1  VECTORIZATION

A few Preliminary comments on vector processing are in order
(Johnson, 1978, gives a good introduction to the subject in relation
to the CRAY~1 computer). It should be emphasized at the outset
that the Mie codes are designed to execute perfectly well, albeit
more slowly, on ordinary "scalar" computers; but they have been
written specifically to take advantage of vector processing when

it 1s available.
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Vector processing is applicable to loops of a very special form,
in which entire arrays can bé operated on as if they were scalars.
Any so-called "vector depeadencies" (e.g., in the recurrences for
{Co,...,CN} or {AL,...,AN}), where one array element depends on one
Or two previous array elements, prevents ''vectorization" of the
associated loop. Such reécurrences are unvectorizable ég_princigle.
Other constructs, such as scalar temporary variables, user-defined
function or subroutine references, and certain IF Statements, may

superficially prevent vectorization of a loop in which they occur; but

a redesign of the loop coding often allows vectorization. Loops in
which only some parts are unvectorizable can often be split into two
loops, the first of which isolates the unvectorizable parts and the
second of which is tully vectorizable. Some operations, like summing
the elements of an drray, which at first glance seem unvectorizable,
can be "partially vectorized"; this is exactly what is done in MIEV]1
to sum the series for > Q and g. These tricks, and others, are
ext sca
discussed at more length by Higbie (1978). All this, of course, leads
to code which seems, i1 some sense, "unnatural," but one is quickly
reconciled to such unnatural code when one sees the dramatic speed
increases it produces.

In Mie calculations there are two types of loops: over number N
of terms in the Mie series und over number Nang of angles. A third
type of loop, uver size paraméter X, is often used, for example, when
integrating Mie quantities over a size distribution. This loop is
normally outside the HMie subroutine. Some advantage could be reaped

by having this loop inside the Mie subroutine. In particular,
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unvectorizable elements in MIEVO and MIEV1, like the An and Cn
recurrences, could be vectorized by makiﬁg the x-loop the innermost
one and adding an extra x-dimension to An, Cn’ etc., However, two
disadvantages also accrue: the Mie subroutine would be much less
general-purpose, and the memory requirements could become prohibitive.
Users who wish to try this route should be warned that: (a) if Nan
is, say, 30 or more, little speed-up will be realized, because the
Nang-loop dominates the execution time; (b) N depends on x, and with
x—-loops innermost and N-loops outside, this dependence cannot be
accounted for (taking N sufficient for the largest x could cause
the An and Cn up-recurrences for smaller x's to go wildly unstable).
Calculating Sl and S2 involves one N-loop and one Nang-loop,

nested. But only inner loops are vectorizable. In the N-loop, Sl

and 32 are computed by summing, which is only a partially vectorizable

operation; hence, the natural cholce was to make the Nang-loop the
inner one (it is completely vectorizable, provided several arrays are
furnished to contain temporary variables). The Nang—loop-innermost

structure is found in both MIEVO and MIEVI.

7.2 MIEVO

MIEVO aims at minimum storage. The only significant dimensioned
array is for An. (Arrays dimensioned only by the number of angles
are usually short and rarely contribute significantly to the storage
burden.) It requires a storage allocation because it may have to be
precomputed by down-recurrence. The rest of the computation unfolds

naturally as an up-recurrence requiring no storage of intermediate
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results. Because of this, MIEVO appears simple and straightforward,
especially by comparison to MIEVL,

The only significant vectorization in MIEVO is of the Nang—loops
necessary in the Sl,S2 computation, as described in Sec. 7.1. But,
as the timing studies will show (Sec. 7.5), these are by far the most
important loops to vectorize if Sl and 82 are computed at any reasonable
number of angles.

By setting Nang = 0 in MIEVO, one can calculate Qext’ QSca and g
only, which is all one needs for simple radiative transfer approximations
like delta-Eddington (Wiscombe, 1977). But MIEVO is two to three times
slower than MIEV1 in this mode, so MIEV1 should be used for such
applications whenever possible.

The numerical coefficients needed in the various Mie series are

formed in MIEVQ by the following efficient procedure:

2n +1 = n+ (o + 1) (51a)
b+ D@-1 _ 1 (51b)
n n
atl _ 1 +-l (51c)
n n ,
2n +1 _ 1 1
n(n+1)  n + n+1 ° (51d)

Only one division is actually done (1/n+l) because the value of 1/n
is saved from the previous pass through the n-loop., The coefficient
(—l)n+'1 is contained in an integer variable which is initialized

to 1 and then has its sign flipped each time through the n~loop.
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7.3 MIEV1

MIEV1 aims for the maximum amount of vectorization. It vectorizes
all those Nang—loops which are vectorized in MIEVO and, in addition,
1t vectorizes several N-loops. To do so it divides computations into
separate loops which were combined into a single loop in MIEVO. Also,
'MIEV1 requires 11 arrays of length N, rather than 2 as in MIEVQ (a
complex array counting as 2), even though every effort has been made
to minimize storage.

‘Four of ‘the 11 N-arrays in MIEV1 contain the numerical coefficients

" 2n+ 1 n(n + 2)
n, 2n + 1, ;?;—:fis', and o F 1 » (52)

It is necessary to store these in arrays in order for certain N-loops

to vectorize. Vectorization is inhibited unless all operands in an
arithmetic expression are either constants or vectors; funections of -
the loop index like (52) are, as they stand, neither.
£ les £ . 6=
Summing of the series for Qext’ QSca and g (Eqs. 6~8) is done in
MIEV1 using a partially-vectorized subroutine. It is based on the following

conceptual rearrangement into matrix form of the linear array being summed:

[ x
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Each successive group of 64 elements in the array is regarded as a
column of the matrix, Matrix row sums are then formed in a loop

which vectorizes:

5, = X F Yyt e (A=1to 64) . (53)

Then these row sums are added in an unvectorizable loop to give the

desired sum:

s = S+ .uu ¥ s64 . (54)

It is because this last loop 1is unvectorizabie that we call the pro-
cedure only "partially vectorized."

The above procedure has been coded into the FORTRAN subroutine
TOTAL, listed along with MIEV1 in Appendix II. Obviously, TOTAL
offers no speed advantage when less than 65 elements are to be summed ;

"in that case TOfAL branches to a simple scalar loop

TOTAL = A(1)

DOLI = 2,N (55)
1 TOTAL = TOTAL + A(I) .

According to Johnson (1978), summing may be speeded up even more
on the CRAY-1 by doing a vector add between steps (53) and (54). This
extra step is vectorizable and results in having to sum only 8velements,
instead of 64, in the final unvectorizable step (54). Unfortunately,
it is necessary to use assembly language coding to reap this extra
speed and this would make MIEV1 nonportable. ‘But those who use MIEVL

on the CRAY-1 may want to avail themselves of this fast sum routine.
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Timing comparisons for sums of various lengths are presented in
Table 6 for the three summing methods: standard (Eq. 55), TOTAL, and
assembly language. For sumé of more than 40 terms, assembly language
summing takes only one-third to one-sixth the time of TOTAL. Note
also that TOTAL is actually slower than the standard method for sums of
less than about 100 terms; the overhead associated with calling a
subroutine outweighs the benefits of vectorization up to this point.
But beyond 100 terms, TOTAL quickly shows its advantage on just those
sums which take the most computer time. For sums of 1000 terms and
more,.it éakés oﬁly oné-fourth t6 one—fiftﬁ the computer time of the
standard method, albeit a factor of 3 to 4 more time than the assembly

language method.

7.4 TESTING
The following parts of the basic routine MIEVO were tested

extensively by themselves:

e the recurrences for wn’ Xn and An’ particularly their
possible instability (Sec. 3)

e the Lentz method (Sec. 3)

e the recurrences for Wn’ %n (Sec. 3)

® the small-x limit (Sec. 4)

e the empirical function N(x) (Sec. 6)

e the An up-recurrence criterion (Sec. 5) .

MIEVO was then tested as a whole for internal consistency, for stability
and for well-conditioning; its results were compared to a considerable
varlety of publlshed Mie scattering data, and to the author's previous

Mie code.



Table 6.

Number of
terms summed
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Timing comparisons between various summing methods:

standard (Eq. 55), partially-vectorized FORTRAN (TOTAL),

and assembly language (Johmnson, 1978).

Standard method
time (millisec)

Ratio of TOTAL
to standard
method time

Ratio of
assembly language
to standard
method time

5

10

20

40

60
100
150
200
300
500
1,000
2,000

20,000

2.1 x 10

3.

7

X

0.1

0.3

0.6

6.5

3

1073

1073

1072

1072

1072

1072

1072

1072
6
3

5

1.8
1.5
1.3
1.2
1.2
0.93
0.68
0.56
0.43
0.32
0.25
0.21

0.18

1.3
0.77
0.45
0.27
0.21
0.15
0.12
0,10
0.084
0.071
0.061
0.057

0.052
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The internal consistency checks consisted in ascertaining, in
numerous test cases, that the code reéults were the same to at least
6 significant digits when (é) various formulas were restructured,

(b) varyipg léVels of precision were used, and (c¢) convergence flags
were varied within reasonable limits,

The stability and well-conditioning tests consisted in exercising
the code over broad ranges of x (up to 20,000) and m (real part from
1.05 to 2.50; imaginary part from 10~/ to 1) aﬁd seeing 1f any over-
flows or unreasonble results turned up, No published data exist over
most of these ranges, but there are a number of checks which one can
make; e.g., that Qext -+ 2 and QSca and g apprpach well-known asymptotes
as x + o5 that these approaches should be more rapid-—the larger Im(m)
is; that incfeasing Im(m) damps out the ripple structure--the more so
the larger x is; that rainbows and glories should occur; and so on.
Numerous graphs were made of the results and, aftér considerable
experience with Mie scattering data, I have found that calculational
errors are relatively easy to spot on such graphs since they cause
deviations from what is usually é fairly regular patpern. The final
form of MIEVO in Appendix I has passed all such tests,

The published data against which MIEVO was tested included both
graphs and tables in Van de Hulst (1957), Irvine (1965), Kerker (1969),
Dave (1968b), and Deirmendjian (1969); and tables in Deirmendjian (1963),
Denman et al. (1966), and Dave (1968a). Such data are restricted to
x = 1000 and, while being able to reproduce them gave considerable con-
fidence in the codes, the sorts of tests described in the last paragraph
are equally as important; for extrapolating the code to x < 20,000 might

overwhelm numerical techniques which are perfectly adequate for x < 1000.



49

Of course the Mie codes were modified and improved several times after
their initial testing. Rather than rerun the tests, comparisons were made
for wide ranges of x and m between all output quantities of the new and
old versions. This enabled errors to be quickly detected and ensured that
the final versions presented here passed all the tests that their prede-
cessors did. It also was the method used to test MIEV1 (against MIEV0).

Sample results from MIEV1, rounded to 6 significant digits, are
presented in Appendix III. Users should reproduce these results before
attempting to apply MIEVO or MIEV1. There are 8 cases: x = 10, 100,

1000, and 5000; for each x, m = 1.5 and m = 1.5 - 0.1 i.

Qext’ Qsca’

= - and the time to execute each case are shown. as
Qabs Qext Qsca’ &» ’

well as Sl and §, for 0 = 0° (5°) 180°. The intensity and degree of
polarization (Eqs. 44-45) are also shown; these were tabulated by Dave
- (1968a) for our-two x = 1000 cases, and the Appendix III results agree
with his to all digits which he tabulates, except that the sign of our
degree of polarization is opposite to his (we believe his is wrong in
this respect).

Note that Dave gives execution times of 50.36 sec. (m = 1.5) and

52,32 sec. (m = 1.5-0.1 i) for his test cases. The MIEV] times are

3300 and 2900 times faster, respectively.

7.5  TIMING

Claims of computer code timing superiority turn up frequently,
although rarely are they backed up by the sort of thorough, quantitative
study éresented below for MIEVO and MIEVI. Therefore, I would like to
begin with a few general comments on the meaning and utility (or iack

thereof) of timing comparisons.
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My main observation-~and this has been seasoned by years of
experience with a variety of codes and computing systems--is that
many claims of timing superiority are meaningless. They are simply -
down in the noise level. I base this incredulity on several elements
of experience.

First, the comparisons are almost never thorough or comprehensive,
but rather are based on a tiny sample of cases which may. not .be repre-
sentative or even important.

Second, timing on a computer is inherently a noisy operation, . and
the results may not be exactly reproducible. It depends on the work-
load, the I/0 burden, and many other unreckonable fac;ors. It may
vary even among computers of the same kind, depending on the sophisti~
cation of their operating systems and compilers (which are often a
local product or an extensively modified company product). The
'perfect! timing study would be a pure CPU job, involving no I/O other
than printing the times at the end, and executing with no other jobs
present. These conditions are rarely met.

Third, the putatively slower code is not usually optimized., I
have seen professional 'code speeder-uppers' reorganize a code, put
the slowest or most frequently executed'parts in assembly language,
etc., and improve the timing by several factors. Indeed, after such
optimization, the slower code might become the faster one.

* As a result, I have come to regard, as a fough rule-of-thumb,
that only a timing factor of 4 or more between two eﬁtirely different
codes is 'significant. (Of course, timing improvements from modifying
similar codes on the same computer are significant at a much lower

level, possibly as low as 5-10%.)
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Another point to bear in mind 1s what benefit will accrue from a
timing improvement. A code'executing in 1 microsecond will not bene-
fit from a speed-up unless it is called many millions of times, At.
the other end of the scale, a code requiring 100,000 hours will not
become any more feasible with a factor of 10 speed-up. It is usually
only calculations requiring times in the mid-range (seconds to hours)
which will benefit from a speed—up.' Mie calculations are of such a
type.

By way of an example of a useful timing comparison, Table 7 shows
times for Dave's (1969a) Mie code, for 182 angles and x = 1, 10, 100,
1000 and 5000; and corresponding times for vectorized MIEV1. MIEV1 is
3000-4000 times faster, which divides up as follows. Our scalar-mode
CRAY-1 1is roughly 100 times faster than Dave's IBM 360/50. Another
factor of roughly 5 is due to our improvements in numerical technique
and a final factor of about 7 can be ascribed to our partially-
vectorized code design.

Palmer (1977), using the same kind of computer as Dave, reported
a new numerical technique (continued fractions instead of series)
which gave factors of 9-15 improvement over Dave's times in Table 7
for x = 1, 10 and 100. The fact that both Palmer and I obtained such
large improvements from entirely different directions suggests that,
from the timing standpoint, Dave's codes were far fromAideal.

We now examine the times required by three versions of our codes:
unvectorized MIEVO, vectorized MIEVO, and vectorized MIEV1. These
times, in CRAY-1 milliseconds, are presented in Tables 8-10, respec-
tively, for size parameters from 1 to 5000, for numbers of angles from

0 to 255, and for two imaginary refractive indices~-0 and 0.1. Each
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Table 7. Execution times for Dave (1969a) Mie code compared to
vectorized MIEV]1 time. 182 angles were used for both
codes. Dave used an IBM 360/50, which is roughly

100 times slower than the CRAY-1 in its normal scalar

mode.
Dave (1969a) vectorized MIEV] ratio
X code time (sec) code time (sec) of times

0.1 0.7 1.8 x 107° 3900

1 1.1 3.6 x 107% 3100

10 : 3.7 9.8 x 107% 3800
100 22 5.4 x 1073 4100
1000 194 4.56 x 1072 4300

5000 ° 945 0.222 4300
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Table 8. CRAY times in milliseconds to execute the unvectorized

MIEVO code for various combinations of size parameter and
number of angles. Each time represents an average over

Re(m) = 1.1 (0.2) 2.5.

Im(m) = O
No. of Mie Size Parameter

Angles 1 3.3 10 33 100 333 1000 5000
0 0.081 0.11 0.19 0.41 1.0 3.0 8.4 41
3 0.13 0.18 0.33 0.72 1.8 5.3 15 74
7 0.16 0.24 0.44 0.98 2.4 7.3 21 101
15 0.23 0.35 0.66 1.5 3.7 11 32 155
31 0.38 0.58 1.1 2.5 6.3 19 54 262
63 0.66 1.0 2.0 4.5 11 34 98 476
127 1.2 2.0 3.7 8.6 22 65 186 905
255 2.4 3.8 7.3 17 42 127 363 1760

Im(m) = 0.1
0 0.099 0.14 0.24 0.50 1.2 3.7 12 53
3 0.14 0.21 0.37 0.82 2.0 6.1 19 86
7 0.18 0.27 0.48 1.1 2.7 8.0 25 113
15 0.25 0.38 0.70 1.6 3.9 12 36 167
31 0.39 0.61 1.1 2.6 6.5 20 58 274
63 0.68 1.1 2.0 4.6 12 35 - 102 488
127 1.3 2.0 3.8 8.7 22 66 190 918

255 2.4 3.8 7.3 17 42 127 367 1780
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Table 9. CRAY times in milliseconds to execute the vectorized MIEVO
code for various combinations of size parameter and number
of angles. Each time represents an average over Re(m) =
1.1 (0.2) 2.5,
Im(m) = O
No. of . Mie Size Parameter
Angles 1 3.3 10 33 100 333 1000 5000
0 0.081 0.11 0.19 0.41 1.0 3.0 8.4 41
3 0.12 0.18 0.32 0.70 1.7 5.1 5 71
7 0.13 0.18 0.32 0.71 1.7 5.2 15 72
15 0.14 0.20 0.35 0.78 1.9 5.7 16 79
231 0.16 0.23 0.41 0.92 2.3 6.8 19 94
63 0.20 0.30 0.54 1.2 3.0 8.9 25 123
127 0.28 0.43 0.80 1.8 4.4 13 38 182
255 0.46 0.72 1.4 3.0 7.6 23 66 315
Im(m) = 0.1
0 0.099 0.14 0.24 0.50 1.2 3.8 12 53
3 0.14 0.20 0.36 0.78 1.9 5.9 18 83
7 0.14 0.21 0.37 0.80 2.0 6.0 19 84
15 0.15 0.22 0.40 0.87 2.1 6.5 20 91
31 0.17 0.25 0.46 1.0 2.5 7.5 23 106
63 0.21 0.32 0.58 1.3 | 3.2 9.6 29 135
- 127 0.30 0.45 0.82 1.8 4.6 14 41 194
255 0.48 0.74 1.4 3.1 7.8 23 69 327
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Table 10. CRAY times in milliseconds to execute the vectorized MIEV1
code (the fastest one) for various combinations of sige
parameter and number of angles. Each time represents an
average over Re(m) = 1.1 (0.2) 2.5.

Im(m) = 0

No. of Mie Size Parameter
Angles 1 3.3 10 33 100 333 1000 5000
0 0.062 0.074 0.11 0.19 0.38 0.99 2.7 13
3 0.11 0.15 0.24 0.50 1.2 3.3 9.4 45
7 0.11 0.15 0.25 0.51 1.2 3.5 9.7 47
15 0.12 0.17 0.28 0.58 1.4 4.0 11 54
31 0.14 0.20 0.34 0.72 1.7 5.0 14 69
63 0.18 0.26 0.46 1.0 2.4 7.1 20 99
127 0.27 0.39 0.71 1.6 3.8 11 32 157
. 255 0.45 0.68 1.3 2.8 7.0 21 60 290

Im(m) = 0.1

0 0.083 0.10 0.14 0.25 0.53 1.5 5.6 21
3 0.13 0.18 0.28 0.57 1.3 3.8 12 53
7 0.13 0.18 0.29 6.59 1.4 4.0 13 55
15 0.14 0.20 0.32 0.66 1.5 4.5 14 62
31 0.16 0.23 0.39 0.80 1.9 5.5 17 77
63 0.20 0.29 0.51 1.1 2.6 7.7 23 106
127 0.29 0.42 0.75 1.6 4.0 12 35 165
255 0.47 0.73 1.3 2.9 7.2 22 63 298
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time represents an average over eight real refractive indices from 1.1
to 2.5 in steps of 0.2.

For Im(m) = 0, up—recufrence 1s always used for An’ as well as
faster code branches for calculating an,bn, so these times are invari-
ably less (typically by 5-30%) than the corresponding ones for Im(m)
= 0.1. For Im(m) = 0.1, up~recurrence for An may or may not be used,
depending on Eq. (48); for Re(m) = 1.1, for example, it 1s used only
for the x < 100 cases, while for Re(m) = 2,5 it 1s used for éll except
the x = 5000 case. The sudden switch to down-recurrence on An thus
occurs somewhere between the x = 100 and x = 5000 columns of the
tables, but the elevating effect of this on the quoted times is dimin-
ished somewhat by averaging over the eight values of Re(m).

The patterns in Table 8§ are typical of what one may expect on
computers without vector capabilities. For fixed x, the Nang—loop

‘émbedded in th? N-loop increasingly dominates the computation time,
until, for Nang 2 31, the time is almost linear in Nang' For fixed
Nang’ the time rises a bit less than linearly with N or, equivalently,
with x + 4x/3 (c£. Bq. 50).

For vectorized MIEVO, Table 9, the times for 0 and 3 angles are
almost iaentical to those for unvectorized MIEVQ, Table 8; this is to
be expected, since only Nang—loops have been vectorized. But for
Nang > 3, the times in Table 9 incrgase much more slowly with rising
Nang than they di§ in Tablg 8. For 15 ang1e§, there is_an’advantage
of 1.8~1.9 over unvectorized MIEVO for all x; for 31 angles, 2.4-2.8;
for 63 angles, 3.5-3.9; up to 5.2-5.7 for 255 angles. This advantage

factor rises roughly logarithmically in Nang’ increasing by about unity
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every time Nang doubles. As x increases for fixed Nang’ the times in
Table 9 rise in almost the exact same way they did in Table 8 (linearly
in N); again, this is not surprising since no N-loops are vectorized.
The fastest code times are those for vectorized MIEV1l, in
Table 10. Compared to Table 9, improvement over MIEV( 1is greatest
for 0 angles--as large as a factor of 3 and at least a factor of 2
whenever x € 33. This shows the advantage from vectorizing N-loops
in its best light. For Nang 2 3, on the other hand, vectorized MIEVO
never takes over 607 more time than vectorized MIEV1; vectorized MIEV1
offers the most advantage for 3 < Nang % 63 and x < 100, in which
regime vectorized MIEVO takes 25-60% more time. (Of course, it is
just this large~x regime which requires the most computer time.) But
for 255 angles, Table 9 times are never more than 10% above those in
‘Table 10, reflecting the almost total dominance of the Nang-loops at
that point.
There 1s a big rise, by a fagtor of 2-3, between the times for
Nang = 0 and those for Nang = 3 in Table 10. But after this initial
jump, the further rise as Nang increases is slow; it is necessary to
go all the way to 63 angles to double the Nang = 3 time. Beyond
63 angles, the rise in execution time is more rapid, approaching
linearity in Nang; this reflects the vector length of 64 on the CRAY-1.
For x < 33, the Table 10 times rise considerably more slowly than
linearly in N, reflecting the vectorization of N-loops. For x 2 100,
the times go up more nearly linearly in N, again due to the CRAY-1
vector‘length. |
Using the assembly language sum routine (Sec. 7.3) can speed-up

vectorized MIEV1 by anywhere from 1% to 20%. Unfortunately, the larger
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speed gains are associated with the smaller values of X and Nang’
which take less computer time anyway. For example, for x = 33, the
gain ranges from 15-18% for b angles to 0-2% for 255 angles; while
for x = 333 it never exceeds 7%. TFor maximum speed the fast sum
routine can certainly be recommended, especially for Nang = 0 cases,
but no dramatic improvements in timing result therefrom.

These timing studies furnish a more solid basis than has here-
tofore existed for (a) estimating how much time a particular Mie

computation will require and. (b) establishing by how much, and in

what cases, future Mie codes improve on these times.
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8. SUMMARY
This document describes a number of improvements in numerical
technique for Mie scattering calculations, and incorporates them into
two well-documented and tested computer codes. These lmprovements
are as follows:
1. Design for vector processing (Sec. 7.1)
2, Lentz method for starting the downward recurrence
of An (Egqs. 23-35)
3. New criterion for down-recurrence of An (Sec. 5)
4, Better treatment of small-particle limit (Sec. 4)
5. A priori formulas for number of series terms (Sec. 6)
6. Simpler nn(u), Tn(u) recurrences (Eqs. 37, 38)
7. Faster branches for no-absorption cases (Sec. 7.5)
8. St, Father than Sl’SZ’ calculated internally, for
greater speed (Egqs. 9-12)

9. Complex arithmetic, no double precision (Secs. 3, 7) .

The codes execute some 30 to 40 times faster than those of Dave
(1968a, 1969a) even after differences in machine speed are factored
out. While this may seem a bit like flogging a dead horse, considering
that Dave's codes may have been very inefficient to begin with (see
Sec. 7.5), the statistic is important because many people are still
using Dave's codes or slight variations thereof.

With codes such as those presented herein, Mie calculations which
were literally unthinkable only 5 to 10 years ago may now be done

routinely.
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APPENDIX I. MIEVO FLOW CHART AND LISTING

Im{x > 0.1

Ca]cuiate N
(Eq. 50)

| Im(m) [>N2CUT | Im(m) | <N2CUT

|

Calcuate A]""’AN
by up-recurrence
for general m

(Egs. 20, 21)

|

im{x < 0.1—] (Egs. 40, 42)

Small-x limit

IRETURN]

/\

Eq. 48 TRUE

Eq. 48 FALSE

l

Calculate A .. LA

1°°
by up-recurrence

assuming Im(m)=0
(Eqs. 20, 21)

N

Calculate AN(mx) by
Lentz method
(Egs. 23-35)

Calculate AN_],...,A1
by down-recurrence
(Eq. 22)

Initialize: Zos &1 (Eq. 19)

n, ]/n’ ('] )n+]

0

T (u), my (u) (Eq. 39)
Zero variables used to accumulate

+
sums for Qext’ Qsca’ g, Si(u), S7(-u)

!}




A2

WV
(__LooP: n=1tonN )

Calculate numerical coefficients (Eq. 51)

| Im(m) | >N2CUT | Im(m) | <N2CUT

| | |

Calculate a s bn for Calculate a s bn assuming

general m (Eq. 16) Im(m)=0 (Eq. 16)

Increment Q. sum (Eq. 7) A””””’,,—”,,,,,,,,,

— Increment Qext and g sums (Egqs. 6, 8)

2n+l n+l  2n+}
Calculate n—(m)— (anibn) and (-]) m (anibn) (Eq ]O, ]2)

[
( LOOP: j=1 to (Nang+1)/2 f:)
' [
Calculate T, (Eq. 38b)

Increment sums for Si(uj), Si(-uj) (Egs. 10, 12)
Advance ™, recurrence (Eq. 37c¢)

. |
Nang™=0 (i:_ END j=LOOP j:)

l

Advance ¢, recurrence (Eq. 17)

Update n, 1/n, (-1)n+1

¢ END n-L00P )

Put Q » 9 in final form (Eqs. 6-8)

ext’ Qsca

+
Calculate 51, S, from S7(Eq. 11)

lRETURN%’
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CRAY FORTRAN COMPILER VERSION 1.0 32/27/7% )
COMPILATION DATE AND TIME 027G69s79 - 22114130

1.

nonnnonnonnnnnnnnnnnnnoononnonnnonnnnnnnnnnnnnonnnnnnnnonnnn

SUSROUTINE MIEVO

COMPUTES MIE SCATTERING AND EXTINCTION SFFICIENCIES, ASYMMETRY
FACTOR, AND ANGULAR SCATTERING FUNCTIONS

VERSION @-= STRUCTURED IN ORDER TO USE THE ABSOLUTE MINIMUN AMOUNT
OF COMPJTER MEMIRY, WHILE STILL VECTORIZING LOOPS
OVER SCATTERING ANGLE (WMHICHy WHEN UNVECTORIZED, CAN
ACCOUNT FOR THE LION®S SHARE OF COMPUTING TIME)

THIS CODE 1S DOCUMENTED IN-- zMIE SCATTERING CALCULATIONS~~

IMPROVEMENTS IN TECHANIQUE AND FAST, VECTOR-SPEED COMPUTER CoDEsS2,
3Y WARREN J. MISCOM3E, NCAR TECH NOTE (1979)

I NPUT VARI ABLES

XX " MIE SIZE PARAMETER (2°PI®RADIUS/NAVEL ENGTN)
10R COMPLEX REFRACTVIVE INDEX (IMAG PAQT MUST BE NEGATIVE)
N2CUT THE MAGNITUDE OF THE INAGINARY REFRACTIVE INOEX, BELOM

WHICH IT IS REGARDED AS 2ZERO (THE COMPUTATION PROCEEDS

FASTER FOR ZERO IMAGINARY INDEX) ' 4
NUMANG NUM3ER OF ANGLES AT WHICH SCATTERING FUNCTIONS

ARE TO BE EVALUATED. NUNANGEQ SIGNALS THAT OMLY QEXT,

QSCA, AND GFAC (SEE OUTPUT QUANTITIES BELOM) ARE YO 8E

EVALUATED, ALL POSITIVE INTEGRAL VALUES OF FUMANG ARE

PERMITTED, BUT IF IT IS ODD, 90 DESREES MUST BE ONE OF

THE ANGLES (IF NUMANG=%1, 90 DEGREES MUST BE ONLY ANGLE)
XMU(N) g N34 TO NUMANG COSINES OF ANGLES AT WMICH SCATTERING

» FUNCTIONS ARE TO 3E EVALUATED--THE ANSLES MUST 3E

MONOTONE INCREASING AND MUST BE MIRROR

SYMMETRIC ABOUT PL/2, SO THAT IF PI/2-A IS AN ANGLE

THEN SO LS PI/24A, WMERE A LIES BETWEEN ZERO ANO PI/2

ovVuTPUT VARTITABULES

e e = e

QEXT EXTINCTION EFFICIENCY FACTOR, DEFINED AS .

(2/XX*®2)SSUN( (2NeL)*RE(AIN) ¢B(N)) ) L
Qsca SCATTERIN, EFFICIENCY FACTOR, DEFINEO AS

(2/7xx®*2)*Sun( (ZNe1)®(CA3S(A(N)I)®®2¢CABS(BI(N))®*2) )
MAERE A(N) AND B(N) ARE THE USUAL MIE COEFFICIENTS
LITTLE~A-SUB=-N AND LITTLE-B-SUBS<N
GFAC ASYMNETRY FACTOR, DEFINED AS
(b/7XX®%2) BSUN( (N=3/N)®*RECA(N-1)CCONJG(AINI D3 (N=L)*CONJG(B(N)))
SLZNGLI /7 (NIN®L) ) PRE(A(N)®CONJG(I(NI)) ) /7 QSCA
SLUIM)yS2(N)yN=l TO NUMANG AT EACH ANSLE SPECIFIED BY XMU ARRAY,
THESE ARZ THE USUAL MIE ANGULAR SCATTERING FUNCTIONS
BIG-5S-SUB-ONE AND BJG~S-SUB-TNKO, DEFINED AS
S1=SUML (2NeLY/ZUNINGIV ) [A(NYSPI (N) ¢B(N)®TAU(N)) )
S22SUM{ (2N¢1)/(NINGL))®(A(N STAUIN) ¢8(N) *PI(N)) )
AND MHERE PI(M) AND TAU(N) ARE THE USUAL MIE QUANTITIES
LITTLE-PI-SUB-N AMO LITTLE-TAU-SUB~N

==NOTE=~~THE PHASE FUMCTION, OR AMGULAR GCAIM, FOR A PARTICULAR
MIE SIZE PARAMETER IS OBTAINED BY MULTIPLYING
IL1eI2 = CABS(S1)®®2eCABS(S2)*®?2 :
8Y 2/7XXx®*2, HOWEVER, IT IS ILeI2, NOT TH1S PHMASE FCN,
WHICH MUST BE INTESRATED OVER SIZE3 MMEN A SIZE DISTRIBU-
TION IS INYVOLVEOD., THIS INTEGRAL MUST THEN BE NORMALIZED
TO GIVE THE CORRECT PHASE FUNCTION., SIMILARLY, IT IS THE
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T A Al At b i

A4

S
CROSS- SECYIONS,’?RJ’ORYIQ&AL TI "(xX*®2/2) "TIRES REXT AND

QSCAy WHICH SHOULD BE I&YEG!ATEO OVER SIZES, NOT QEXT AND
QSCA YHEHSELVES.

INTERNAL

NTE
MANGL2

NN2

NN
NOANGS
NOINAG

AIMIOR
REIOR
ALyA2,81

TORSQ, RAT,TEN
NT

NTPL

XINV

ZINY

F

FF

AKX )yKKy DEN,DTD,
MUMp NTN, TT

L1,

KOUNT

MAXI Y

EPSY

EPS2

BIGA (N}

CTAN

REZ
REZINV
€EQBIGA

IORINY
RIORIV

PSINPL
CHIN)CHINPL
ZETN,ZETNPY
AN, BN

ANML 48NN
ANP

BNP

ANPH

BNPH

PINCS) o TAUN(Y)

e AND =i ALTVERNATELY.

VARIABL E) ﬁ

PARAMETER . MAX. POSSXBLE NO. OF TERVKS IN MIE SERIES.
PARAMETER. MAX. POSSIBLE NO., OF ANSLES FROM 0 TO

90 DEGREES.

NUMANG e}

NN2/2-=NO. OF ANGLES FROM'D TO $0 DEGREES

TRUE, SKIP CALCULATION OF S1,S2

TRUE, ASSUME IMAGINARY REFRACTIVE INDEX IS IERO AND
TAKE COMPUTATIONALLY FASTER BRANCHES IN CODE
MAGNITUDE OF IMAZINARY REFRACTIVE INDEX

REAL PART OF REFRACTIVE JINDEX

MIE COEFFICIENTS LITTLE-A-SUB=1,LIVTLE-A-SUB-2,
LITTLE-3~-SUB=-1y, WITH NUMCRATOR AND DENOMINATOR
EXPANDED IN POWERS OF XX, ANO A FACTOR OF XX**3 DIvVI-
DEO OUT (USED IN SMALL-KX LINIT)

TEMPORARY VARIAILES USED IN SMALL-XX LINMIT

MO, OF TERMS IM MIE SERIES

NTel )

17xx

17 (IOR®XX)

ARITHMETIC STATENENY FUNCTION USED IN OETERMINING
WHMETHER TO USE UP- OR ONDNN-RECURRENCE FOR BIGA
COMTAINS INTERMEDIATE AXO FINAL VALUES OF LENTZ
CONTINJED FRACTIONN FOR BIGACNT)., ALSO USED AS TEMPO-
RARY VARIABLE IN INITIALIZING UP-RECURRENCE FOR BIGA.
TENPORARY VARIABLES USED IN CONPUTING FF

USED IN COMPUTING FF,
ITERATION COUNTER FOR FF COMPUTATION

NAXIMUN ALLOMWED NO. OF ITERATIONS IN FF COMPUTATION
ILL-CONDITIONING CRITERION FOR LENTZ CONTINUED FRACN.

SPS,SKS

_CONVERSENCE CRITERION FOR LENTZ COMTINUED FRACTION

*N/2 ¢ J=-SUB=(N-1) OF 2/4-SUB=N OF I, WHERE Z=IOR®XX
AND J=-SUB=N IS THE NTH-OROER SPHERICAL BESSEL FUNCTN.
EXTERNAL FUNCTION FOR COMPLEX TANGENT (USED TO INI-
TIALIZE UP-RECURRENCE FOR !IGA)

REAL(IOR) *xX

1/REZ

REAL ARRAY EQUIVALENCED TO BIGA. USED TO CONTAIN
BIGA WMEN NOIMAG=TRUE, MHEN BIGA IS PURELY REAL.,
1/7I0R (USED IN AN CALCULATION)

1/7REAL{IOR) (USED IN AN CALCN. WHEN NOIMAGSTRUE)
FLOATING POINT VERSION OF LOOP INDEX N IN 500-L00P
Mot

17N

1/7(Ne})

ZNet '

(2Ne1) 7 (t(Ne1))

TInet) /N

RICATTI-BESSEL FUNCTION PSI-SUB-(MN=1) OF XX
RICATTI-BESSEL FUNCTION PS[-SUB=-N OF XX

LIKE PSIN,PSINPL BUT FOR FUNCTION CNI

LIKE PSIN,PSINPL BUT FOR FUNCTION ZETA=PSI+I®CMI
MIE COEFFICIENTS LITTLE-A=-SUB-Ny LIYTLE-B-~SUB-N
ANyBN BUT FOR (N=1) INSTEAD OF N

(2N L) /7 (M(N+L)) B (ANGBN)

(2NeL) 7 (M(NeL)) ® (AN-BN).
(~1)%%(nel) ® ANP

(=1)%%(net1) & BNP

ANGULAR FUMCTIONS LITTLE=-PI=-SUB-N
N AT JTH ANGLE

ANO LITTLE-TAU-SUB-



USE

OO0OO0OOOO60

CEND

(2 X e X2l (2]

c

PINHLLSY T T T LITTLESPI=SUB=(N=1) AT UTH ANGLE
TMP{ Q) TEMPORARY ARRAY USED IN COYPUTING PIN, TAUN
SP(J) Se = S1¢52 FOR JVH ANGLE
SH(J) s~
SPS( ) Se
SHS(J) S~

- - e

S1-S2 FOR JTH ANGLE
S1¢52 FOR (NNZ=J)TH ANGLE
$S1-S2 FOR (NN2-J)TH ANGLE

L S

conlo
ANGULAR ODIMENSIONS
PARAMETER (NANGL=255)
COMPLEX JOR, S1, S2
REAL N2CUT
COHNONIINOUT/KX.IOR.NZCUT.NUNANG,XHU(N‘NGL) QEXTy QSCAyGFAC,
b S1INANGL) ySZ(NANGL)

PARAMETER (NANGL2=(NANGL®1)/72)
PARAMETER (NTL1=20150)

REAL NPLIDN

LOGICAL NOIMAS, MOANGS

COnMPLEX CTAN

COMPLEX AL A2,B1,IO0RSI,RAT

COMPLEX Zlnv.FF.AK,DEN.NUN.N!N.DTO.1!.BXGA,IORINV.AN.ON,ANN&,BNHt,
-8 ANP,BNP ) ANPK,BNPH, ZETL2ETN, ZETNPLySPSH,SPS,SNS

OIMENSION SP(NANGL2) g SNINANG.2) g SPS{NANGL2) g SHSINANGLZ)

. PIN(MANGL2) yPINMLINANGL2) ) TAUNCNANGLZ) s THP(NANGL2) yBISAINTL),
. EQBIGA(NTY) -

EQUIVALENCE (8IGA(1),ZQBIGA(L))

EQUIVALENCE (S1(1),PINC1)) o (SLINANGL2Y 4PINNLI(L)),
hd (S2(1) 9 TAUN(1) ) g U{SZ(NANGL2) s THP(L])

FCREM) = =1S5.04 ¢ REN®(8.42¢L6.35°REM

OATA EPS1/i.E-2/; EPS2/L1.E~8/

OATA MAXIT/10608/

TFINUMANG GCT. NANGL o+OR. NUMANG.LT.0) STOP 1000
NN2 = MUMANG*} ' '

MN s NN2/72

.O‘NGS s NUMANG.EQ.S

AIRIOR = ARS(AIMAG(IOR))

REIOR = REAL(TOR)

NOIMAG = AIMIOR.LE.N2CUT

[F(CABS(IOR)*XX.CT.0.4) 60 TO 7
SMALL-PARTICLE LINIT

IORSQ = JOR®**?

RAT = (0.00.66666666666667)°(IORSQ-1.0)

AL s RAT®(1.0-0.1%X("®2¢{4,®TORSQe5.) /72800, %(XX®*4))
. /(IORSQ¢2.8¢(1.0-0.7°ORSQ)® (XX®*2)~(8.*I0RSQ®*2-385.°10PSQ
. ©350.) 71000.% (XX®®4) ¢ {XX®O3) SRATO (1.0 =L, 1*XX®¢2))

Bl = (XX®92/33.)%RaT®(1.0¢(2.%10RSA=5.)7/70.%(XX®%2))

J 701 .8-(2.%10RSQA-5.)/30.%(XX**2)) :

A2 & (0.1°XX®®2)*RAT®(1.8-XX®®2/14.)

. 7(2.%10RSQ¢3.~(2.°I0RSA-7)/16.%(XX®®2))

TEN = CABS(A1)®®24CABS(31)®%2e(5,/3.) *CABS(A2) *F2

QSCA = 6.%(XX*®4) S TEN ‘

GFAC = REAL (AL®CONJG (AZ+81) )/ TEN

QEXT = QSCA .

IF(AIMIOR.GT.1.E~12) QEXT ® §,®XXSREAL(A1¢B1¢($./3.)%A2)

TEM s §,5%XX"*]
A2 = (5./73.)°%A2

®esss YECTORIZABLE LDOP Otses

00 5 J = §,NN
Si(d) = TEN‘(AI'(IiOIZ)‘XNU(Ji)



Ab

’Lxr““‘?rSz\J)‘E‘Ten-(axolxbx~U(J>612‘\7:-1nu(Jr~-2411)r‘“‘
C ®%%%¢ VECTORIZABLE LOOP eeses

L2, 00 6 J & {.NN
a3, SLINNZ=J) = TEM®(AL-(B14A2)%XRU(J}])
b, 6 SZINN2=J) = TEMS(BL-ALSXNULJ) ¢A2° (2.9 XHU(J) ®92-1.))
&5, REVURN
c .
c ‘ ' : :
¢ CALCULATE NUN3ER OF TERMS IN MIE SERIES (A LEAST UPPER BOWND)
¢ USING ENPIRICAL FORMULAS WHICH VERE FITTED FOR SIZE PARANETERS
. (4 UP 10 20,800
. c
86, 7 IFG(XXLLECB.0) NP = XKoA.®XX®S(4,/7.)eq. '
aT. IFAXXGTo8.C oAND. XXoLToN200.) NT o XX0M,05°XX®S(1./3.) 02,
8. IFIXX 5E.0200.) NT & AXtuo®XK®®(3,/3,)02,
T H NTPL = NTeq _
c MAKE SURE ARRAY BIGA MILL BE .ARGE ENOUGH
se. IFCNTPLLLE.NTL) 6O TO 18
- S1. WRITE(6,820C) NT, xx

52, 8000 FORMAT(///% ESTINATED LENGTH OF MIE SERIES WNI=®16,
® * FOR SIZE PARAWS®F12,2/% ENCEEOS 8IsA O NENSIONS®)
53. STOP 1801

COMPUTE 816A

OO0

54, 10 XINV = 1.0/XX
5S. ’ TInv = XINV/IOQR

c OECIDE WHETHER BLISA=N CON BE CALCULATED BY UP-RECURRENCE
. 56 IFCAINMIOR oLT. F(REIORI/ZXX. 30 T7O 100
c
c PREPARE FOR DOWN-RECURFNENSE=we
c CONPUTE INITIAL HISH-0RDER (BIGANM USING LENTZ WMETHOO
¢ ’ ..
57. FF = NIPL®ZINY
S8 LLEE DY
.59, KK s 285NTe3
— bl. AV = (MAOKK)®ZINY
61, DEN = ax
62. NUM s DEN o L.8/FF
83. KOUNT = §
. c :
[ T X% 20 KOUNT = KOUNT ey .
5. IF(KCUNT.GT.NAXIT) 50 TO &0 : .
66, IFICABSINUN/AK) 2T,.EPSY .AND, CABS(DEN/AK) (6T, EPS1) 60 TO 33
1+ ILL-CONDITIONE') CASE~~STRIDE TWO TERNS INSTEAD OF ONE
67. Y s emn
- b8, . KK & KK&2
. 89e . AK ® (WOKK)STINY
78, NIN =& AX®NUNM ¢ 1.0
71 DYD = AK®ODEN ¢ 1.0
T2. FF = (XTN/DID) % FF
3. AN = et
Ta, KK = KKX¢2
. 15 AK = (RMOKK) ) INV
. T6e "MUM 8 AK ¢ NUA/NTN
7. DEN s AX ¢ DEN/DTO
T8, -XKOUNT = XOUN(e}y
79. 60 T0 28
c
. 88 30 TT = NUM/DEN
81, FF = TT%FF
c CHECK FIR CONVERSENCE . '
82. © UF(ABS(REAL(TT)I=2.8) LT EPS? «AND, ABS(AIMAGITI)).LT.EPS2) COTO $Q
83, AN = =pNM .

[T KK = KKe2



85,
86.
7.
88,

9.
9.

. 91.
92.

‘93,
9.,
95,

96.

9T,
948,
99,
100.
.101.

102.
103.
1Cs,
1085,
166.
107.

108.
109,
119.

111,
112.
113,

114,
115,
116.
117,
118,
119.

12¢.
121.

122,
123,
124,

c

OO0 (2]

O0O00 OO

(s N2 N3]

OO0

AP

A7

AK = (MM*pK)*ZINY
NUM = AK ¢ §,B/NUN
DEN = AK ¢ 3.0/70EN
60 Y0 20

WRITE(6,8001) KT, XX, IOR, AKy NUK,DEN, TT, FF

8001 FORMAT(///% CONTINUED FRACTION FOR A=SU3<NT FAILED TO CONVERGE®/

Te

180

120

140

160

280

. ® NU=®lb/® xu®E2).8/°% REFR INCEX®®2E20,8/% AK=92E20,8/
. ® NUMS®LE20.8/° DEN=*2€20.8/7°¢ TT=02E20.8/% FFuo2E20,.8)
SToP 1002

BIGA(NT) = FF ;
DOMNAARD RECURRENCE FOR BIGCA-N

00 78 N = NT,2,-%
BICA(IN-1) = (N*2INV) - L40/7CINSZINY)eBICA(N))
60 To 200

UPNARD RECURRENCE FOR BIGA-N
IF(NOIMAG) €0 YO 140 -
BENERAL CASE

FF = CTAN(IOR®XX)

SIGA(L1) = <2INV ¢ FF/(ZINVOFF=1.0)

00 120 N = 2,XT :

BIGA(N) a “(N®ZINV)¢2.8/7 ((NSZINV) ~BIGA(N=1))
€0 10 240

MO-ABSORPTION CASE

REZ = REIOR*XX
REZINV = 1.0/REZ

TEW = TAN(REZ)

EQGIGA(L) « ~REZINV ¢ TEN/(REZINVOTEM-1,q)

00 160 N = 2,NT

TAEIEAIN) = = (NSREZINV) o 1,0/((NSREZINY) ~EQSISA(N-1))

CONTINUE
IORINV = t,0/10R
RIORIV = 1.8/REIOR
INITIALIZE QUANTITIES USED FOR EFFICIENY CALCULATION OF
WUMERICAL COEFFICIENTS IN NIE SERIES
FN = 4.0
RN » 1.8
uN s 3
INITIALIZE RICATTI-BESSEL FUNCTION ZETA FOR UPWARD RECURRENCE
PSIN & SIN(XX)
CHIN = COS(xX)
PSINPL & XINVOPSIN-CMIN
CHINPL s XINVOCHINGPSIN
IETN = CHPLX(PSIN,CHIN)
TETNPL » CHPLX(PSINPYL, CHINPL) _
INITIALIZE PREVIOUS COEFFICIENTS (A-SUB=N-1, B+SUB-N-1)
FOR USE IN ASYMMETRY FACTOR SERIES
Akt = (0.0,0.0)
BNML = (0.8,0.0)
INITIALIZE SUNS FOR EFFICIENCIES ANO ASYMMETKY FACTOR
QEXT = g,0 ..
QSCA = g, )
CFAC = 0,0 . ) ..
INITIACIZE ANGULAR FCH PIN AND SUNS FOR Se,5- AT ALl ANGLES
*#ees YECTORIZABLE LGP ssses



A8

125, 00 250 J = 1,rN
126. SP(JJ = (0.:]'.0,
127. SHLJ) = (043,0.0)
128, . SPS(J) = (Cedy04d)
.129. SHS(J) = (0.0,6.0)
130. PINMLLJ) = (.0
131, 250 PIN(J) = 3,0
c
132. 00 S00 N = X,NY
c COMPUTE THE VARIJUS NUMERICAL COEFFIUIENTS NEEDED
133, FNPL = FiNei,l
L4134, TWONPL = FNeFNPY
135. RNPL = §,0/FNPY
136, : COEFF = RNeRNPY
137. . NPLION & 31,0¢RN
c :
c CALCULATE THE MIE SERIES COEFFICIENTS LITTLE=A ANO LITTLEG-B
c &
138. [FI(NOINAG) GO TO 320
c GENERAL CASE
139. . AN = ((JORINVOBIGA(N) ¢(FN*XINV)I¥PSINPL-PSINI/
. ((IORINVOBIGA(N) ¢ (FR*XINV))®2ETNPL=-ZETN)
148, BN = (¢ IOR®BIGA(N) ¢ (FN®XINV))®PSINPL-PSIN) /7
. o IOR®BIGA(N) ¢ (FN®XINV))C*ZETNPL=-2ETN)
C INCREMENT SERIES FOR SCATTERING EFFICIENCY
161, asca = QSCA ¢ THONPL® ((REAL(AN))®®2¢ (AIMAGIAN})®*2
. S(REAL(BNIDI®S2,(AINAG(BN))®22)
142, 50 TU 350
c
143, 380 CONTINUE
c MO-ABSORPTION CASE
b Y % AN = ((RIORIVOEQ3ITIGA(M)*(Fr’KINVII®PSINPL=PSIN)/
4 ((RIORIVOEQSIGA(N} ¢ ({FN*XINV))®ZETNPL-ZETN)
165, BN = (( REIODR*EQIIGA(M) ¢(FNSLINV))®*PSINPL=PSIN)/
. . (( REIORCEQIICA(N) ¢(FN*XINV))S2ET:PL=ZETN)
166, 350 CONTINUE
c INCREMENT SER{ES FOR ASYN‘EYRV FACTOR AMD EXTINCYION EFFICIENCY
167, GFAC ® GFAC ¢(FN-RN)*REAL(ANMI®CONJG(AN) BNML®TONJG(BN))
d + COEFFOREAL(AN®COMNJIG(BN))
168, QEXT ® QEXT ¢ TWONPL*REAL (AN®BN)
149, IF(MOANGS) GO TO 453
c
c PUT WIE SERIES COEFFICIENTS IN FORM NEEDED FOR COMPUTING S¢, S-
c
150 ANP = COEFFS(ANeBN)
151, BNP = COEFFe(AN=3N)
152. AMPMH = MN®ANP
153. 8NPM = MM®BNP
c
¢ ®888s VECTORIZABLE LOOP sesss
154, 00 408 J = 1y NH
c. ADD WP SUMS HHILE UPWARD RECURSING ANZULAR FUNCTIONS LITTLE PI
c AND LITTLE TAU
155, TRP(J) = (XMUCJI®PIN(J)) -~ PINMICD)
156. TALN(S = FROTHP(J) =~ PINNLI(J)
157. SP(J) a SP(J) ¢ ANPR(PIN(J)¢TAUN(J))
_158., SHS(J) = SHS(J) o BNPN®(PIN(J) ¢TRUN(J))
159. SHLJ) = SK(J) o ’NP‘(PXN(J)"‘UN(J’)
160. SPS(J) = SPS(J) & ANPH®(PIN(J) =TAUN(J))
161, PIMML(S) = PINC(Y)
162. PIN(J) a8 (XMUCJI®PIN(I)) ¢ NPLONSTHP(S)
163, 480 CONTINUE
c
c UPDATE RELEVANT QUANTITIES FOR MEXT PASS THROUGH LOOP

164, MM = « Npo
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165, 450 FN = FNPY

£66. RN = RNPL
167, ANKL = AN
168, BHNL = BN N
c CALCULATE RICATTI-BESSEL FUNCTJOMS BY UPNARD RECURRENCE
169. ZET & (TWONPLOXINV)9ZETMPL=ZETN .
170, IETN = ZETNPY
171, TETNPL = ZET7
172, PSIN s PSINPY
173, PSINPL = REAL(ZETNP1)
1764, 500 CONTINUE
c
c
c MULTIPLY SUNS BY APPROPRIATE FACTORS TO GET QEXT, QSCA, GFAC
c
175, QEXT = 2,%IXINv®*2)%QEXT
176. QSCA = 2.°(XINV®®2)*QsSCA
177, TF(MOIMAG) QSCA « QEXT
178, GFAC = &4.%(XINV®*2)¢GFAC/QSCA
179. IF(NOANGS) RETURN
: c
c _
c RECOVER Si AND S2 FROW Se¢) S-
c S
C ®sess VECTORIZABLE LAKOP seses
188. ‘00 806 J = 14NN
184, S1(J) = 0.5°(SP(J)eSN(J))
182, 800 S2(J) = B.5°(SP(J) =SH(J))
¢
A C ®*sss YECTORIZABLE LOOP ®vess
183, D0 900 J ® 3,NN
184, S1INN2=J) ® 2.S®(SPS(J)+SNS(J))
165, 988 S2(NN2-J) = 3.5°(SPS(J)=SNS(J))
c ,
.. 186, RETURN
.. 187, END ) }
MIEVO VECTOR BLOCK BEGINS AT SEQ, NO. 37, P= 1$21213C
MIEVO VECTOR BLOCK BEGINS AT SEQ. NO. 82, Ps 1217548
MIEVO VECTOR BLOCK BEGINS AT SEQ. NO. 105, P= 121610
MIEVO VECTOR BLOCK BEGINS AT SEQ. NO. 166, Pu 1221504
MIEVO VECTOR 8LOCK BEGINS AT SEQ. NO, 188, P= 122312C

MIEVQ ¥ECTOR BLOCK BCGINS AT SEQ. NO. 183, P= 122335C
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CRAY FORTRAN COMPILER VERSION 1.85 05/08/79

—_CCnPILATION CATE aND TImE —. QrsC9s79 - _ 33837439
1. COMPLEX FUNCTION CTAN(Z)
- L .. COMPLEX TAMGENT OF 2
2. comPLEX 2
— £ —
3. THOX = 2,°REAL(2Z)
—_— % _k2Y & EXPUQ,CAINMAG(2))
5. EoY = E2Y2e?
6, CEN 38 L1470 (2.,%E2Y) ®CCSUTROK) oE4T0L,)
7. CTAN # CMPLX( (2.%E2Y)*SINITMOX)I®CEN , (EwY=1.)*JEN)
8. ~ RFTURN

9. ENC



All

APPENDIX I1: MIEVI FLOW CHART AND CODE' LISTING

Calculate
numerical p— yes—First time through§1
i
coefficients no ,
(Eq. 52) ’ Small-x Timit
L Im{x < 0.1— (Eqs. 40, 42)
[m[x > 0.1 lRETURNl
Calculate N (Eq. 50)
Calculate Co""’ CN by
up-recurrence (Egqs. 17, 19)
Eq. (48)TRUEAE<],(48) FALSE
{ Im(m)|<N2CUT {Im(m)|>N2CuT Calculate Ay (mx) by
‘ ' | . Lentz method
Calculate A]""’AN Calculate A]""’AN (Egs. 23-35)
. by up-recurrence by up-recurrence Calculate AN-]""’Al by
assuming Im(m)=0 for general m down-recurrence
(Egs. 20, 21) (Egs. 20, 21) (Eq. 22)
Calculate a],...,aN,b],...,bN Calculate a],...,aN,b],...,bN
assuming Im(m)=0 for general m (Eq. 16)
(Eq. 16) Calculate series terms
g for Qsca (Eq.7)

N
ang

Sum for Qsca (TOTAL)

==

Calculate series terms for Qext (Eq. 6)

Calculate series terms for g (Eq. 8)

Sum for Qext (TOTAL)

Sum for g (TOTAL)

N




Al2

\
2n+1

Calculate D) (anibn)’ n=1t% N
Initialize no(u), n](u) (Eq. 39)
Zero variables used to accumulate

sums for St(u), Si(-u)

(LooP: n=1ton )
l

Calculate ﬂ%l

Calculate (-1)"! ﬁ%gg%7-(an¢pn) (Eq. 12)

l

(:;LOOP: i=1 to (Nopg*1)72 )

l

Calculate T, (Eg. 38b)
Increment sums for Si(uj), Si(-uj) (Egs. 10, 12)
Advance T, recurrence (Eq. 37c)

I
(_Enp j-Loop )
(C_END n-Loop )
' .

Calculate S], S, from s* (Eq. 11)

l
RETURN
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CRAY FORTRAN COMPILER VERSION 1.06 t2727/78
COMPILATION DATE AND TINME 02709/79 - 22116131

1.
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c
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c
c
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c
c
c
c
¢
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
1
c
c
c
C
1~
c
c
c
C
C
C
c
c
c

" ==NOTE--THE PHASE FUNCTION, OR ANGULAR GAIN, FOR A PARTICULAR

 SUBROUTINE MIEVL

COMPUTES MIE SCATTERING AND EXTINCTION EFFICIENCIES, ASYMMETRY
FACTOR, AND ANGULAR SCATTERING FUNCTIGNS .

VERSION 1-°.STRUCTURED TO MAKIMALLY VECTORIZE LDOPS OVER THE
NUMBER OF MIE SERIES TERMS AND OVER SCATTERING ANG LE
(LARGER MEMORY REQUIREMENTS THAN VERSION V0)

THIS CODE IS DOCUMENTED IN-=- #MIE SCATVERING CALCULATIONS=~
IMPROVEMENTS IN TECHNIQUE AND FAST, VECTOR-SPEED COMPUTER COESt,
BY WARREN J. NISCOMBE, NCAR TECH NOTE (1979)

INPUT VARIABLES

XX - MIE SIZE PARAMETER (2*PI®RADIUS/WAVELENGTH)
IOR COMPLEX REFRACTIVE INDEX (IMAG PART MUST BE NEGATIVE)
N2CUT THE MAGNITUDE OF THE IMAGINARY REFRACTIVE INDEX, BELONW

WHICH IT IS REGARDED AS ZERO (THE _COMPUTATION PROCEEDS
FASTER FOR ZERO IMAGINARY INDEX)

NUMANG NUNBER OF ANGLES AT WHICH SCATTERING FUNCTIONS

ARE TO BE EVALUATED. NUMANG=S SIGNALS THAT ONLY QEXT,

QSCAy AND GFAC (SEE OUTPUT QUANTITIES BELOW) ARE TO BE

EVALUATED. ALL POSITIVE INTEGRAL VALUES OF NUMANG ARE

PERMITTED, BUT IF IY IS 00D, 90 DEGREES MUST BE ONE OF
o THE ANGLES (IF NUMANGz1, 90 DEGREES MUST BE ONLY ANGLE)

XMUCM) g N=1 TO NUMANS COSINES OF ANGLES AT WHICH SCATTERING

FUNCTIONS ARE TO BE EVALUATED--THE ANGLES MUST BE

MONOTONE INCREASING AND MUST BE MIRROR

- ~.. SYMMETRIC ABOUT PI/2, SO THAT IF PI/72-A IS AN ANGLE

- THEN SO IS PI/2+4A), WHERE A LIES BETWEEN ZERO AND PI/2

UTPUT VARIABLES

QEXT  EXTINCTION EFFICIENCY FACTOR, DEFINED AS
(2/7XX®%2)®SUN( (2N+1) *RE(A(N) #B(N)) )
QSCA SCATTERING EFFICIENCY FACTOR, DEFINED AS

, A2/7XX®S2)SSUNML (2N¢1)® (CAIS(AIN)I®®2¢CABS(B(N)) **2) )
WRHERE A(N) AND BUN) ARE THE USUAL MIE COEFFICIENTS
LITTLE-A=-SUB=N AND LITTLE=-B-SUB=-N

GFAC ASYNMETRY FACTOR, DEFINED A4S

(e/XX%82) ®SUNM( (N=1/M)SRE(A(N-1) *CONJG(AIN) ) ¢B(M=-1) *CONJG (B(N)) )

$(ZN+1)/(NIN®1) ) *RECAINI®CONJIG(BI(NI)) ) / QSCA
_S1(N),S2(N)yNx1 TO NUMANG AT EACH ANGLE SPECIFIED BY XMU ARRAY,
THESE ARE THE USUAL MIE ANGULAR SCATTERING FUNCTIONS
BIG~S-SU3-ONE AND BIG-S-SUB-TWO, DEFINED AS
SLeSUNC (2ZNe1)/7(N(NeL))C(AINISPI(N) ¢B(N) *TAUIN)) )
S2ESUM( (2Ne1) 7 (N(NeL)) ®CACN) ®TAUIN) ¢B(N) *PI(N)) )
AND WHERE PI(N) AND TAU(N) ARE THE USUAL MIE QUANTITIES
. LITTLE=PI=-SUB-N AND LITTLE-TAU-SUB=N

MIE SIZE PARAMETER IS OBTAINED BY MULTIPLYING .

[1412 = CABS(S1)%®24CABS(S2)%%2 )
8Y 2/xx®®2, HOMEVER, IT IS I1¢I2, NOT THIS PHASE FCN,
WHICH MUST BE INTEGRATED OVER SIZES WHEN A SIZE DISTRIBU-
TION IS INVOLVED. THIS INTEGRAL MUST THEN B8E NORMALIZEOD
TO GIVE THE CORRECT PHASE FUNCTION. SIMILARLY, IT IS THE
CROSS~-SECTIONS, PROPORTIONAL TO (XX®*2/2) TIMES QEXT AND
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QSCA,” WAICH SHOULD 3E  INTEGRATED OVER SIZES, NOT QEXT AND
QSCA THEMSELVES.

INTERNAL VARIABLES

NTL _ PARAMETER. MAX. POSSIBLE NO. OF TERMS IN MIE SERIES.

NT12 PARAMETER = 2°NT1Q

NANGLZ '~ PARAMETER. MAX. POSSIBLE NO. OF ANGLES FROM 0 TO
... ... 90 DEGREES.

NN2 NUMANG+{

NN NN2/2-=NO. OF ANGLES FROM 0 TO 90 DEGREES

NOANGS TRUE, SKIP CALCULATION OF Si,S2

NOIMAG TRUE, ASSUME IMAGINARY REFRACTIVE INDEX IS ZERO AND

TAKE COMPUTATIONALLY FASTER BRANCHES IN COOE

AINIOR .. MAGNITUDE OF IMAGINARY REFRACTIVE INDEX

REIOR , REAL PART OF REFRACTIVE INDEX

AL1,A2,81 . MIE COEFFICIENTS LITTLE-A-SUB=1,LITTLE-A-SUB-2,

LITTLE-B-SUB=-1, WITH NUMERATOR AND OENOMINATOR
EXPANDED IN PONERS OF XX, AND A FACTOR OF XX**3 DIVI-
_ DED OUT (USED IN SMALL=-XX LINIT)
IORSQ,RAT,TEM  TEMPORARY VARIA3LES USED IN SMALL=XX LINIT
NT NO. OF TERMS IN MIE SERIES

NTHL CNTe e

NTPL e NTeq e e e

XINV R V2 ¢ S . L

ZINY . 17 (IOR®XX) )

F ——. ARITHMETIC STATEMENTY FUNCTION USED IN DETERMINING
... WHETHER TO USE UP- DR DOWN-RECURRENCE FOR BIGA

FF . ... CONTAINS INTERMZIDIATE AND FINAL VALUES OF LENTZ

CONTINUED FRACTION FOR BIGACNTY). ALSO USZ0 AS FEHPO'
RARY VARIABLE IN INITIALIZING UP-RECURRENCE FOR BIGA,
AKyKKy DENyDTD, TEMPORARY VARIA3LES USED IN COMPUTING FF
NUMy KTN, TT

NN #1 AND -1 ALTERNATELY. USED IN COMPUTING FF, SFS,SMS

KOUNT ITERATION COUNTER FOR FF COMPUTATION

HAXIT - MAXIMUM ALLOWED NO. OF ITERATIONS IN FF COMPUTATION

EPS1 ILL-CONDITIONINS CRITERION FOR LENTZ CONTINUED FRACN.

EPS2 CONVERGENCE CRITERION FOR LENTZ CONTINUED FRACTION

BIGA(N) =N/Z ¢ J=SUB=(N-1) OF Z/J-SUB~N OF 2, WHERE Z=IOR®XX |
AND J-SU3=M IS THE NTH-ORDER SPHERICAL BESSEL FUNCTN.

CTAN EXTERNAL FUNCTION FOR COMPLEX VANGENT (USED TO INI-
TIALIZE UP-RECURKENCE FOR BIGA)

REZ REAL (IOR) *XX

REZI NV A/REZ

EQBIGA REAL ARRAY EQUIVALENCED YO BIGA., USED TO CONTAIN
BIGA WAEN NOIMAS=TRUE, WHEN BIGA IS PURELY REAL.

TORINV 1/7I0R (USED IN AN CALCULATION)

RIORIV L/REAL(IOR) (USED IN AN CALCN. WHEN NOIMAGSTRUE)

FN(N) N (FLOATED) . e

THONPLIN)  2N#1 (FLOATED) o S

COEFF(N) (2Ne1)/7(N(NeL)) T

GCOEF(N) . N(Ne2)7(N*1)

NPLDN , (Ne1) /7N

PSI(N) _ RICATTI-BESSEL FUNETION PSI=SUB-(N-1) OF XX

ANCN) MIE COEFFICIENT LITFLE~-A-SUB=N, LATER USED TO STORE
(2Ne1) 7 (N(N®1)) ® (ANSBN)

BN(N) FIRST USED FOR RICCATI-BESSEL FUNCTION .ZETA-SUB=(N-1)

OF XX, TMEN FOR MIE COEFFICIENY LITTLE=-B~-SUB=N,
o ... FINALLY FOR (2N+1)/7(N(Ne1))® (AN-BN) :
ANPNH (=1)**(Ne1) ® ANIN), WHERE AN(N) IS IN FINAL FORM
BNPM (=1)S%(N#+L) ® BNIN)y WHERE ON(N) IS IN FINAL FORM
PINCJY s TAUN(J) ANGULAR FUNCTIONS LITTLE=PI-SUB=-N AND LITTLE-TAU-SUB-
N AT JTH ANGLE ’

PINMILD) LITTLE-PI-SUB=-(N-1) AT JTH ANGLE
THP(J) TENPORARY ARRAY USED IN COMPUTING PIN, TAUN
SP(J) S¢ = S1+52 FOR JTH ANGLE
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18.
19.
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22.
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26,
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26.
27.
28
.29,

30.
31
.32,
-.33.
. 3k
. 35

36.

37.
38,
39.
0.

bi.

“2.

€ SH{

C SPS(J)
C SHS(J)

c

- ———— -

AlS

ST RS TR EOR T TTH ANGLE T T e e
S¢ = 51¢52 FOR (NN2-J) TH ANGLE
S- 8 $51-5S2 FOR (NN2-J) TH ANGLE

CUSE CoONID

c

CEND

(e N g X 2]
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»
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[ ]
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L g

L

ANGULAR DIMENSIONS

PARAMETER (NANGL=®=255)

CONMPLEX IOR, S1, S2

REAL N2CUuT

COMMON/INOUT/ XXy IOR) N2CUTy NUMANG,y XMUCMANGL) 4 QEXT, QSCA,GFAC,
S1(NANGL) y S2(NANGL) .

PARANETER (NANGL2= (NANGL#1)/2) _
PARAMETER (NT125100) -
PARAMETER (NT1232%NT1)
CONNON/HJ“V/FN(NYi).YHONPi(ﬂll),bOEFF(Nfi),GCOEF(NT&)
REAL NPLON )
LOGICAL NOIMAG _ .
COMPLEX CTAN ' !
COMPLEX A1,A2,51,I0RSQ,RAT f
COHPLEX SPySMySPSySMSy ANPM,BNPM, AN, BN,BIGA,ZETA,
IORINV)AKyNUM,DEN,FF, ZINV,NTN,DTD, TT

I S L ST . [N 1

' BIMENSION SPUNANGL2) y SH{NANGL2) g SPS(NANGL2) y SHS(NANGL2) ,
PIN(NANGL2) y PINML(NANGL2) » TAUNCNANGL2) » THP (NANGL2)  AN(NTL),

BN(NT1) y5IGA(NTL) ,EQBIGA(NTL2) y PSI(NTY)

EQUIVALENCE (BIGA,EQBIGA)

EQUIVALENCE (S1(1),PIN(1)),(S1(NANGL2),PINKL(L)),
(S2(1) yTAUN(L) ), (S2(NANGL2) y THP(1))

FIREM) = =15.84h ¢ REM®(8.42+16.35%REN)

DATA EPS1/4.E-2/, EPS2/1.E-8/

DATA MAXIT/10808/

DATA JPASS/C/

IFC(IPASS.NE.8) GO TO 2
IPASS ® 1

CALCULATE NECESSARY NUMERICAL COEFFICIENTS FOR MIE SERIES

DO 1 N = L,NTY

FN(N) = N

THONPL(N) = Ne(MNel)

COEFF(N) = TWONPL(N) 7 (N®(N¢1))
SCOEF(M) = (N#1)~1,0/(Ney)
CONTINUE

IF(NUMANG.GT.NANGL +OR« NUMANG .LT,0) STOP 1800
NN2Z = NUMANG+L

NN = NN2/2

AIMIOR = ABS(AIMAG(IDR})

REIOR = REAL(IOR)

NOIMAG = AIMIOR.LE.N2CUT

IF(CABSC(IOR) *XX.5T.0.1) GO TO 7
SHALL-PARTICLE LIMIT
I0RSQ = TOR®#2

RAT = (0.90.66666666666667)°(IORSQ=1.0)
AL = RAT*(1.0-0.1%XX®82¢(4.%I0RSQA¢5,)/71600.%(XX*%%))

/{IORSQ#2.04(1.0-0.72I0SQI*(XX*%2)=(B8,*I0RSQ**2-385,%I0RSQ

#3500) 710600.%(XX®%4) ¢ (XK*®3) S RAT* (1 ,0-0.12XX®*2))

Bl = (XX®%2/30.)RAT®*(1.0¢(2.%JORSQ=5.)7/T70.%(XX**2))
/{1 ,0-(2.%I0RSA-5.)/30.%(XX**2)}

A2 = (B.1%XX¥®2)SRAT*(1,0-XX*"2/14.)
/(2.%10RSQ¢3,=(2.%I0RSA-7.)/14.*(XX®®2))

TEM = CABS(AL)**2+CABS(B1)%%2¢(5./3.)%CABS(A2)*"2
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CTQASCA T bt (XX®tY) PYEN -

. GFAC = REAL(AL®CONJG(A2+31) ) /TEN

QEXT = QSCA

IF(AINIOR.GT.1.E-12) QEXT = Be®XX*REAL(AL14B1+(5./3,)%A2)

TEN & 1,5%XXx**3
A2 = (5./3,)%A2
#383s VECTORIZA3LE LOQOP ®ssss
DO 5 J = 1,NN
S1(J) = TEM*(AL1e(B16A2)SXNULJ))
5 S2(J) = TEN'(810A1'1H0§J)0!2'(2.'XHU(J)'?2°1.))
®se%s VECTORIZABLE LOOP ®ssss
BO 6 J = 1,NN
S1({NN2=J) = TEM®(A1-(B14A2)*XNU{J))
6 S2(NN2=J) = TEH'(Bl-Al'XNU(JDOA2'(2.‘XHU(J)“2‘1-))
RETURN

CALCULATE NUMBER DF TERMS IN MIE SERIES (A LEAST UPPER BOUND)
USING EMPIRICAL FORMULAS WHICH WERE FITTED FOR SIZE PARAMETERS
UP T0 20,080

7 IF‘XX.LE.&-G) NT = XXOQ.'XX"(X-IS-)Olo
IF(XXeGT 8.0 AND. XXelToeb20D0.) NT = XX¢ho05%XX*%(1,/3,)¢2.
IF‘XX.GE-“ZDU.) NT = XXO#.’XK"(i-IS.)tZ.
NTPL = NT+4
NTML = NT=-%
MAKE SURE ARRAYS AN,BN,ETC. WILL BE LARGE ENOUGH
IF(NTPL.LE.NTL) GO TD 10
MRITE(6,800C) NT, XX

3000 FORMAT(///® ESTIMATED LENGTH OF MIE SERIES NT=%T1¢,

® * FOR SIZE PARAM=®F12,2/% EXCEEDS ARRAY OIMENSIONS®)
STopP 1001

CALCULATE RICATTI-BESSEL FUNCTIONS BY UPWARD RECURRENCE

10 XINV = 1./XX

SX = SIN(XX)

C! = COS(XX)

BN(L1) = CMPLX(SX,CX)

BN(2) = CMPLX(XINV®SX=CX,XINV*CX4+SX)

00 15 N = §,NTH1
15 BN(N¢2) = (TKONPLIN) ®XINV) *BN(N®1) = BNIN)

*S280n VECYORIZ‘SLE LOOP .,"‘....

00 16 N = 4,NTPY
16 PSI(N) = REAL(BN(N))

COMPUTE BIGA

ZINV = XINV/IOR
DECIDE WHETMER BISA<N CAN BE CALCULATED BY UP-RECURRENCE
IF(AIMIOR .LT. F(REIOR)/XX) 0 T0 100

PREPARE FOR DOWN-RECURRENCEwe~ ~~ - -~ - - o
COMPUTE INITIAL HIGH-ORDER BIGAN USING LENTZ METHOOD

FF = NTP1°ZINV

LLEE IS

KK = 2°NT+3

AK = IMH®KK)*ZINV
DEN = AK

NUM = DEN ¢+ 1,0/FF
KOUNT = 4

20 XOUNT = KOUNTe1
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aO00 (9]

o000 aoOo

30

&0
8001

50

To

108

. 120

OO0

OO0

140

1689
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TF(KOUNT.GT. MAXIT) 350 YO &0~ 7~ . .
IF(CABS(NUM/AK) «GTLEPSL +AND. CABS(DEN/AK) .GT.EPS1) GO TO 30
ILL~-CONDOITIONED CASE--STRIDE TWO TERMS INSTEAD OF ONE

MM = <nM

KK = KK+2

AK = (MM®KK)} ®ZINV
NTN = AK®NUM ¢ 1,0
DTD = AK*DEN ¢ 1.0
FF = (NTN/DTO) * FF
MM = <MM

KK = KK¢2

AK = (MM®KK) ®ZINV
NUM = AK ¢ NUM/NTN
DEN = AK ¢ DEN/OTO
KOUNT = KOUNT#1

G0 10 20

TY = WUM/DEN
FF = TT®FF

CHECK FOR CONVERSENCE
IF(ABS(REAL(TT) =100 L T.EPSZ +AND. ABS(AIMAG(TT)) .LTLEPS2) GOTO 50
MM = =MM
KK = KK¢2
AK = (MM*KK) ®*ZINV
NUM = AK + 1,0/NUN
DEN = AK ¢ 1.0/DEN
60 TO 29

MRITE(6,8001) NT, XX, IOR, AKgNUM, DEN, TT,FF

FORMAT(///*% CONTINUED FRACTION FOR A=SU3~-NT FAILED TO CONVERGE®/
. * NT=¢16/% X=®E20.8/°% REFR INDEX=%2E20.8/°% AK=®2E20.8/

. ® NUMZ®2Ez0.8/° DEN=®2E2).8/% TT=%2E£20.8/°% FF=®2E20.8)

STOP 1002

BIGA(NT) = FF
DONNWARD RECURRENCE FOR BIGA=N

DO 70 N = NT,2,-1
BIGA(N-1) = (FN(NI*LINV) = 2.0/ C(FN(N)®ZINV)¢BIGAIN))
60 TO 180

UPHARD RECURRENCE FOR BIGA=N
IF(NQOIMAG) GO TO 148
GENERAL CASE

FF = CTAN(IOR®XX)

BIGA(L) = =ZINV ¢ FF/(ZINV®FF=1.0)

BO 120 N = 2,NT

BIGAIN) = =(N®ZINV)+1.8/((N*ZINV)-BIGA(N-1))
60 YO 1840

NO-ABSORPTION CASE

REZ = REIOR®XX
REZINV = 1.0/REZ

TEX = TAN(REZ)

EQBIGA(L) = -REZINV ¢ TEM/(RZZINVOTEM-1.0)

00 160 N = 2,NT

EQBIGA(N) = - (FN(N)®REZINV) ¢ 1.0/CCFN(M)SREZINV)-EQBIGA(N-1))

CALCULATE THE MIE SERIES COEFFICIENTS LITTLE-A AND LITVLE-B
FOR THE NO-ABSORPTION CASE
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RIORIV = 1.C/REIOR
#eves YECTORIZABLE LOOP *sees
DO 170 N = 1,NT

. ANU(N)=((RIORIV®*EQBIGA(N) «(XINV¥FN(N)))®*PSI (N+1) - PSI(N))

. /({RIORIV*EQBIGA(N) +{XINV*FNIN)))® BN(N¢1) = BN(N))

BN(N) =({ REIOR®EQBIGACN) #(XINV*FN(N)))*PSI(N+L) - PSI(N))

. /4(( REIORPEQBIGA(N) ¢(XINV®FN(N)))® BNINt1) - BNI(N))
170 CONTINWE
60 TOo 200

CALCULATE THE MIE SERIES COEFFICIENTS LITTLE-A AND LITTLE-B
FOR THE GENERAL CASE

180 CONTINUE
IORINV = 1,.0/I0R
$88%s VECTORIZASLE LOOP ®3ass
DO 190 N = §,NT
AN(N)=((IORINV'BISA(N)O(XINV'FN(N)))'PSI(Nﬁi)-PSI(N))

A /CCIORINVEBIGA(N) ¢ {XINVEFN(N)))® BN(NeL) - 3N(N)}
IN(N)=(( IOR®BIGA(N) ¢ (XINVPFN(N)))®PSI(N+1) «PSI(N))
. /(< IOR®BIGA(N) ¢ (XINVEFNIN)))* BN(Ne®1)= BN(N))

190 CONTINUE
. CALCULATE TERNS OF SERIES FOR SCATTERING EFFICIENCY AND SUM

sssvs VECTORIZABLE LOOP *eess
DO 195 N = 1,NT

195 EQSIGA(N) = tuour:(n»'(REAL(Au(u)»"zoutnnctAu(N))OOz
. *REAL(BN(N) )®®24AINAG(BN(N) ) +82)

QSCA = 2,.% (XINV**2)*TOTAL(NT,EQHIGA)

CALCULATE TERMS OF SERIES FOR EXTINCTION EFFICIENCY AND SUM

200 CONTINUE
#e823 VECTFORIZABLE LOOP ®osss
D0 360 N = 1,NT
300 EQBIGAINL = TNONPi(l)‘REAL(AN(NL}BN(N 3

QEXT = 2.'(XINV“Z)’YOYAL(NT.EQBIGA)
IF(MOINAG) QSCA = QEXT

CALCULATE TERNS OF SERIES FOR ASYNMETRY FACTOR AND SUM THEM

(SEY FOLLOWINS COEFFICIENTS TO ZEID BECAUSE THEY OCCUR IN
LAST TERM OF SERIES FOR ASYMMETRY FACTOR)

ANINTPL) = (0.0,0.0)

IN(NTPY) = (0000000)

#8885 VECTORIZABLE LOOP #ss3ss
D0 400 N = 1,NTY
400 EOBIGA(N) = COEFF(N)®REALCANCN)®CONJG(BN(N))) )

* GGDEF(N)‘REAL(AN(Nl'CQNJS(‘N‘NOi))OantﬂlchNJG(BN(NOI)))

GFAC = b.'(XINV“Z)‘TOTAL(NT’EQCIGI)/QSCA
IF(NRUNANG.EQ.D) RETURN

CONPUTE S+,S- OVER ANGULAR MESH

PUT MIE COEFFICIENTS IN FORM NEEDED
sssss YECYORIZASLE LOOP ®sess
DO 450 N = 1,NT
BIGA(N) = AN(N)
ANCN) = COEFF(N)®(AN(N) ¢BN(N))
450 BN(N) = COEFF(N)®(BIGA(N) ~BN(N))
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C .
c INITIALIZE SUMS (S+¢+yS-) AND ANGULAR FUNCTIONS (LITTLE PI)
C **s%e YECTORIZABLE LOOP ®ssss

157. DO 500 J = 1,NN

158. SPUJ) = {040y0.0)

159, . SM(J) = (0.Cy0.0}

160, SPS(J) = (0.0,0.0)

161. SMS(J) = (0.09G6.0)

162, PINML(J) = (.0

163, S00 PINCJ) = 1.0
c
c ADD UP SUMS WHILE UPWARD RECURSING ANSULAR FUNCTIONS LITTLE PI
c AND LITTLE TAU

_.164, » H" = 1
165, DO Y08 N = {,NT
166, NPLON = (N+#1)/FLOAT(N)

167, ANPN = NN®AN(N)
168. BNPM = MM®*BN(N) '
169, MM = = MM -

C  ®*ess VECTORIZABLE LOOP ®®sss

.170. ~ DO 600 J = 1,NN o

_ATL. . THP(J) = (XMULJ *PINI(J)) = PINML(J)

472, TAUN(J) = FNI(NI*THP(J) = PINN1(J)

173, SP(J) = SP(J) ¢ ANIN)®{PIN(J)+TAUN(J))

. 1Th. SMS(J) = SNS(J) + BNPM*(PIN(J) ¢+TAUN(J))
175. SM(J) = SM(J) ¢ BNIN)®(PIN(J)=TAUN(J))
176. SPS(J) = SPS(J) ¢ ANPMS(PIN(J)-TAUN(J))
177. PINN1(J) = PIN(J) . _

178. PIN(J) = (XMU(JI*PIN(JS)) + NPLION*THP(J) -

179. 600 CONTINUE
.1840. 700 CONTINUE

c .
¢
c RECOVER S1 AND S2 FROM S+, S~
c
c ®838% VECTORIZABLE LOOP essss
is81. 00 800 J = 1, NN
182. S1(J) = 0.5%(SP{J) eSN(Y))
183. 800 S2(J) = 0.5%(SP(J)-SH(J))
c
c ®8s8s YECTORIZABLE LOOP %ssss
.84, 00 900 4 = 1,NN
185. S1(HN2-J) = B.5%(SPS(J)¢SHS(N)
186, 300 S2(NN2-J) = 0,5%*(SPS(J)~-SHS(I))
c
.187. RETURN
...188, ~ END
MIEVL VECTOR HLOCK BEGINS AT SEQ. NO. &7, P= 1102360
MIEVY VECTOR BLOCK BEGINS AT SEQ. NO. 52, P=  110277C
NIEVL VECTOR BLOCK BEGINS AT SEQ. NO. 72, Px 311068274
MIEVY VECTOR BLOCK BEGINS AT SEQ. NO. 127, P= 1110478
MIEVL VECTOR BLOCK BEGINS AT SEQ. NO. 133, P= 1131178
MIEVL VECTOR 6LOCK BEGINS AT SEQ. NO. 139, P= 1112030
MIEVY VECTOR BLOCK BEGINS AT SEQ. NO. 162, P= 1112324
MIEVY VECTOR BLOCK BEGINS AT SEQ. NO. = 447, P= 1112568
MIEVY VECTOR 6LOCK BEGINS AT SEQ. NO. 153, P= 1113250
MIEVL VECTOR BLOCK BGEGINS AT SEQ. NO. 157, Ps  111351C
MIEVL VECTOR B8LOCK BEGINS AT SZQ. NO. 165, P= - 1114070
MIEVY VECTOR BLOCK BEGINS AT SEQ. NO. 181, P=  $£114750

MIEVL VECTOR BLOCK BEGINS AT SEQ. NO. 18, P= 1115200
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CRAY FORTRAN COMPILER VERSION L.04 12r271/78

COMPILATION DATE AND TIME garc9s79 - 22114132
. 1. FUNCTJION TOTAL (LENGTH ARRAY)
c
c PARTIALLY-VECTORIZED SUM ROUTINE
c
c INPUT
c ARRAY ~ VECTOR OF TERMS TO BE SUMMED ,
c LENGTH HUM3ER DF TERMS IN ®ARRAY®* TO BE SUMMED
c OVUTPUT
c TOTAL = SUM(ARRAY(I)), I = 4 TO LENGTH )
c
. c NOYE"RELIES ON fHE ZERO TRIP COUNT FEATURE, WHEREBY IF A
c 00-LOOP IS ALREADY SATISFIED A8 INITIO, IT IS SKIPPED
c RATHER THAN BEING EXECUTED ONCE
2. "DIMENSION ARRAY(1), HELPER(6&)
c
3. IF(LENGTH.GT.b64) 50 TO 5
c
be TOTAL = ARRAY(1)
S5e 00 £ N = 2,LENGTH
6. 1 TOTAL = TOTAL ¢ ARRAY(N)
Te RETURN
c
8. 5 CONTINUE
c 89833 VECTORIZABLE LOOP e»ens
9. DO 10 N = 1,bbh
10. 10 HELPER(N) = ARRAY(N)
c
11, KOUNT = (LENGTH-64)764
12. JS = 63
c *353% VYECTORIZABLE LOOP %vess
_ike DO 20 N = 1,64
15. 20 HELPERIN) = HELPER(N) ¢ ARRAY(N+JS+1)
16. 30 JS = JS¢64
c
i7. LAST = (LENGTH-64) ~564°KOUNT
c #8935 VECTORIZABLE LOOP e»ssse
18. DO 40 N = 1,LAST )
19. 40 HELPER(N) = HELPER(N) ¢ ARRAY(LENGTH+1i=N)
c
20. TOTAL = MELPER(1)
21. DO 50 N = 2,64
22, 50 TOTAL = VOTAL ¢ HELPER(N)
c
23. RETURN
.. 24, END
DTAL VECTOR BLOCK BEGINS AT SEQ. NO. 8, P= 143C
DTAL VECTOR BLOCK BEGINS AT SEQ. NO. 13, P= 166A
OTAL VECTOR BLOCK BEGINS AT SEQ. NO. 17y Ps 207D
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APPENDIX III: - SAMPLE CODE RESULTS

1. PROGRAM MAIN
c RUN TEST CASES
CUSE COMIO o
c ANGULAR OIMENSIONS
2. PARAMETER (NANGL=255)
3. COMPLEX IOR, Si, S2
‘. REAL N2CUT
Se COMMON/INOUT/ XX, IOR,N2CUTy NUMANGy XMU(NANGL ) yQEXT,QSCAy6FAC,
. SL(NANGL) y S2(NANaL)
CEND
6. REAL I4,I2,INTEN
c
Te N2CUT = 1.E-7
8. PI = 2.*ASIN(1.0}
9. MUMANG = 37
10. D0 1 I = 1,NURANG
11. 1 XMUCI) = COS((I-1)*PI/36.)
c
12. DO 100 NIOR = 1,2
13. IF(NIOR.EQ.1) IOR = (L5040}
16, IF(NIOR.EQ.2) IOR = (1.5y=0.1)
15. D0 100 NXX = 1,4
16. IF(NXX.EQ.1) XX = 10,
17. . ’IF(NXXOEQQZ) Xx = 100.
18. L. IF(NXX.EQ.3) XX = 1000.
19. IF(NXX.EQsb) XX = 5000.
20. _T1 = SECOND(DUM)
21. " CALL MIEVL <
22. T2 = SECOND(DUM)
23. DT = T2-T4
24, QAES = QEXT-QSCA
25. MRITE(6,100C) XXy IOR
26, DO 10 I = 1,NUMANG
27. ANGLE = 3180./7PI®ACOS(XNU(I))
28. I1 = (REAL(SL(I)))*®2+(AINAG(S1(I))) "2
29. 12 = (REAL(S2(I)))**2¢(AIMAG(S2(I)))""2
3g. INTEN = 8.5%(I1¢12)
3. DEGPOL = (I2-I1)7(I2+411)
32. 10 WRITE(6,1001) AN3LE,S1(I),S2(1),INTEN,DEGPOL
33. WRITE(6,1002) QEXT,QASCA,QABS,GFAC,OT
3b. 180 CONTINUE
c
35, CALL EXIT ha

36. 1000 FORMAT(iHi, SX,®MIE SIZE PARAMETER =%F8.2, 15X, *REFRACTIVE INDEX =*
. F7.3,E12.3//% ANGLE®)11K,*S=-SUB=1%,21X,®5-5U8-2%,15X,
. SINTENSITY®,2X,*0DEC OF POLIN®)
37, 1001 FORMAT(F7.2,5E14.64F10.4)
38. 1002 FORMAT( /29X,®*EXTINCTION SCATTERING ABSORPYION®/
. TX,*EFFICIENCY FACTORS®,3F14.6/ TX,*ASYNMETRY FACTOR =*F 9.6/
. 7X,*TIME FOR THIS CASE IN SECONDS =®EL2,3)
39. END



ANGLE
0.00
5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

73.00

75.00

80.00

85.00

90.00

95.00

100.080
105.00
110.00
115.00
120.00
-125.00

130,00
135,00
180,00 0

145.00
150.00
155.00
160.008
165.00
170.88
175.00
180.00

NIE SIZE PARAMETER = 10,00 REFRACTIVE INDEX =
S-SuB-1 S-SU8-2 INTENSITY
0.720500E402 0.416662E+01 0.720500E402 0.416662E+01 0.520856E+04
0.660087E402 0.515673E401 0.6645LOE402 0.496811E+01 0.428132E¢04
0.502027E402 0.704128E4)1 0.455220E¢02 0.633977E¢01 02347755404
0.305569E402 0,739457E401 0.246826E+402 0.622358E401 (0.818121E+03
0.131962€402 0.431603€401 0.985638E401 0.303822E401 0.149547E+03
0.1986041E401 ~0.185793E¢01 0.360781E+01 -0.272489E401 0.139195E6p2
“0.277991 €401 -0.830916E401 0.247116E+401 ~Q.8641057E401 0.768071E+02
~0.336987E401 -0.113351E402 0.117432E401 -0.107502E402 0.128393E¢03
“0.253896E401 ~0.886339E¢01 ~0.262818E+01 ~0.812307E+01 0.789487Ee02
~0.189492€401 ~0.211735E¢01 -0.686088E401 ~0,189570E+401 0.293697E402
“0.158387E401 0.492734E401 ~0,765188E¢01 0.428609E¢01 0.518546E402
=0.109008E401 0.B810836E+01 ~0.345083E¢01 0.689490E¢01 0.631908E+02
=0.206048E400 0.588826E401 Q.309342E¢01 8.490206E+01 0.341567E402
06540 93E400 0.3220064E¢00 0.711954E+01 0.351235E400 0.256714E+02
0.899374E*00 ~0.456377E4J1 0.561094E¢01 -0.3303626404 0.320167E40 2
0.40128LE400 ~0,572290€401 -0,426L07E~01 ~0.377749E+01 (.235919E+02
“0.319419E400 ~0,309491E¢01 ~0.520331E¢01 -0.144173E401 0.194168E402
=0.526668E400 0.788416E¢00 -0.585633E¢01 0.134236E401 0.184988E402
8.785066E-01 0.306855E401 ~0.187329E401 0.232789E+01 0.917521E¢04
0.106503E401 0.272211E401 0.307975E401 0.110941E¢01 0.363035E401
- 80159302E401 0.923048E400  0.482125E¢01 -0.873492¢¢10 0.136986E+02
0.107665E401 ~0.416668E¢00 0.223259E+01 =0.184390E401  0.485853E401
-0.333227E+00 -0.413821E+00 ~0,194258E¢G1 -0, 1266156401  0.2004L0E0p4
=0.182747E¢01  0.291170E400 ~0.369331E401 ~0.5537736202 " 0.853248E401
~0.269B862E401 0.543603E¢00 -0.138829E+01 0.583572E404 0.439826E¢01
“0.19466CE+01 ~0.505382E-02 0.275557E¢01 @.176699E+00 0.570995F+04
~8.536968E400 ~0.631817E+80 P.468768E+p1 =0.338446E400 0.113872E¢02
8.89269CE+Q0 -n.szagsssodp_ 0.223152E401 0.152656E¢00 0.306162E+01
«158304EeQy No772066E-N1 -0,277081E401 0Q.182343E401 0.675713€¢01
0.131008E401 =0, 482398E-01"~0,586876E601 0,349851E401 0D.242055E+02
0.488377E400 ~0D.186810E40L ~0.381684E401 0.369067E401 0.159589E+02
“0.166476E¢+00 ~0.477123E¢01 8.246683E+01 O0.18S331E+01 0.161562E¢02
~0.539898E-01 ~8.665788E¢01 0.841562E401 ~8.413156E¢01 0.582167E402
0.950050E400 -0.558337E401 0.948579E401 -0.370982E401 0.679231E+02
0.286609E+01 ~0.160106E¢01 0.895289E¢01 ~0.491906E+01 0.286866E¢02
0.379589E+01 0.290427E+01 -0.140003E401 -0.500206E+04 0.2069122E402
0.432164E+01  0.486827E+01 ~0.432164E401 -0,086827E+01 D0.423766E¢02

EXTINCYION SCATFERIRG ~_ ABSORPTION

EFFICIENCY FACTORS 2.881999 2.881999 0.000000

ASYMMETRY FACTOR = 0,.7%2913

1.500 - 0.000E¢00

DEG OF POLZIN
-0.0000
-0.0239
=0.0963
-0.2080
~0.2887

0.4685
0.0005
-0 +0892
-8.0767
0.7251
0.L830
-0.0592
-0.0163
0.9793
0.3242
-0.3951
0.5014
0.9514%
-0.0269
0.1127
0.7525
0.7257
0.8993
0.5987
-0 okl
0.3364
0.9396
0.6460
0.6282
0.9286
0.7664
-0.4108
0.2385
0.5276
0.6986
0.0830
0.0000

(444



MIE SIZE PARAMETER =

ANGLE
0.00
5.00

..13.00

~45.00 _

20.00
25.00
30.00
35.00
«0.00
45.00
..50.00
55.00
60.00
65.00
70.00
75.00

. 85.00
..90.00
-95.08%

100.00

105.00
110.00
115.00
120.00
125.00
130.00
135.00
160.00
185,00
150.080
155.00
160.00
165.00
4170.00
.175.00
180.00

100.00

S-SuUB-1

‘0;235475005
0.307726E+03
-0.239264E+03
0.156687E+03
-0, 1055695003
-0.550827E402
0.969291E+02
0.622037€+02
0.250573E+02
0.139075€E+02
~0.406514E402
~0.437978E¢02
0.291750€E¢02
8.137713E+02

“0.6053012E408

9.3642630E¢02

~0.656632ZE+01

“0.106215E+02

0.2268945E+02 |
“0.1560492E+04

0.699708E+01
0.164632E402
0.100415E401
-0.710367E¢01
-0.392786E%G1
0.885820E401
-0.782015E401
0.520687E¢04

_=0.632058E+01

0.,1276481E402
~0.894133E+0]
~0.,267976E+01
~0.619356E¢02
~0.218L31E402
0.157629E408
0.173343E¢02
0.407669E+02

EFFICIENCY FACTORS =
ASYMHETRY FACTOR = J.0818246
TIME FOR THIS CASE IN SECONDS =

-8.367980E+03
~0.113495E¢03
0.294757€+02
~0.114137€¢02,

0.979283E+32
~0.132865E+03
-0.860123E+02
~0.208937E+02
~0.851053€+02
~0.768894E+02

0.356781E+31

0.516446E+02
-0.613059E+01
~0.476328E402
0.152766E+02
0.750377E+04

D.465091E4L
0.153408E¢)2
0.396468E400

§.268082E4)

0.125308E¢02

~0.+525655E43)
~0.9030612E40}
-0.499755E+01
0.772L5BE+D1

~0.192910E¢01

~0.433699E+81
0.105927E+02
-0 .111092E+02
Q.769973E+01

eg.298597€401{

~0.474332E402
~0.694978E+02
0.209698E+02
0.195988E+32
=0.2596438E4+01
0.517546E+02

EXTINCTTON
" 2.094388

REFRACTIVE INDEX =

S-SuB-2

0.523597E+04

0.290021E+Q3 ~0.145571E+03
0.512771E+02

=0.2379..2+03
0.166159E+03
=0.147159€E403
~0.6457T175E02
0.8319208€E+02
0.7261G2E¢02
0.4bBWHOELD2
-0.385530E+01
=0.601957E+02
“0.30574LESO2
0.493840E02
=0.967560E+00
«0.35570L1E¢02
0.346p17E402

‘=0.166931E¢02

~0.515120E+01
0.162341E402
~0.174102E402
0.858326E+01
-0.110127€+02
-0.251551E¢01
0.717697E+01
0.1646C3E+01
-8.651380E401
§.528040E+01
-0.321579E+01
Do3u36L5E001
“0.741B4BECOL
0.142708E¢02
0.727649E+01
0.206157E402
~0.548409E+02
0.686334E402
0.168315E+02
~0.407669E402

SCATTERING
2.094388

0.185€-02

-0.36796850Q3

-0.825525E+01¢

Q.773710Ee32

~0.125611€+03
~0.302830E+02
~0.348750E0D2
~0.863264E¢02
“D.684LT6ESD2
=0.285773E+02

0.685491E402

0.350906E4018
=0.399266E+82

0.200557E+02

0.3759806E¢01

=0.211137E+02
0.127T718E+D2

“0.155283E402

~0.8603085E+00
=0.373196E+01
=0.504378E+01

0.133751€402°

«0.374958E401
0.154967E+01
“0.874028E481
0.150923E+02

«0.177739E+02

0.176605E+02
~0.139270E¢02
0.892487E+01

0.112091E+02 "

“0.763537E+01
0.295673E+02

-0.188336E¢02
-0.256006E+02

=0.517546E¢02

1.5¢0 |

INTENSITY
_3.275508E*03

«106440E+06
0.586911E+05
Pe258367EHDS
0.202131E¢05
0.192755E406
0.159327E¢05
D.538269E+04
D.866710E+0 4
C.5L0267E+04
0.305275E+04
0.510959E+0 4
0.167021E+Q0s
0.202680E¢0 4
0.960828E¢03
C.122361E+04
0.3964465E+03
0.254063E+03
0.505356E+03
0.507283E+03
0.131614EWD3

0e222694E03

De3339226403

0.705029E¢02

0.401061E402
0.100503E+03
0.167811E403
0.232785E403
0.263533E+03
0.235398E+03

" 0.166086E+03

0.3121783E+04
0.353283E¢06

. 0e239888E404
D.R72592E«04L

§.622951E403

‘Deu3004BELDG

ABSORPTION
8.000008

§.000E¢00

DEG OF POLZN
-0.0000
-0.,0107

0.0098
g.0712
~0.,0248
-0.0730
-0.05k0
0.2001
0.0919
-0.,1301
Qeb545
0.1026
0.4679
-0.,2130
0.7357
-~0.0054
8.8365
=0.2535
-0.0016
~0.421h
-0.5659_
“0,3612
0.3830
-0.0700
’005726,
g.1822
0.5235
0.4015
0.3292
0.0578
0.522%
“0.8534
~U.066k
0.6181
D.8582
0.5069
-0.0000

1A



MIE SIZE PARAMETER = 1000.00 REFRACTIVE INOEX = 1.500 0.000Ee00
ANGLE S-SuB-1 _S-sus-2 INTENSITY ODEG OF POLZN
0.00 0.503486E406 -0.836182E¢0% O.503v86E¢l6 ~0.8356182E40t% 0.253568E+412 =-0.0000
5,00 -0.1460U61E+04 ~0.157255E4d06 <0o156369E404 -0,149165E404 0,482785E407 =0,0455
10.3C 04825976E+03 0.562371E+03 0.843623E¢03 0.238977E+03 0.883654E+06  -0.1300
£5450 -0.115561 E%04 ~0.59078CE+)3 ~0,135209E¢w ~0.597893E403 0.163897E407 =0.0275
20400 =0,650822E402 =0.111071E40% =0,15613LE¢G3 <0.120901E404 0ol 36169E407 0.0909
25,00 -0.936293E403 0.u52570E403 -0,907281E¢03 0.6039656403 0.1134702407 0.0469
30,00 0.762978E403 =0.619575E403 0,71026LE+03 -0.779209E403 0.103882E407 0.0701
35.30 ~0.286335E403 0.699976E+03 ~0.13651EE¢03 0.97L024E403 0.929666E4C06 0.0406
43,60 ~0.309237FE401 =0.938773€403 Q0.178768Z¢03 -0.9024715403 0.863859E406 -0.0202
65.00 ~0.767837E403 =0.079382E403 =0.6954B1E¢03 ~0.478920E433 0.766220E406 =-0.0694
50.00 Q.W7L775E+02 ~0,360256E+403 0.105831E4C3 -0.624752E403 0.266763E+06 0.5051
55,00 -0.517710E¢03 ~0.116119E+03 -0.599773E+403 0.849132E402 0.324223E406 0.1317
60.00 0.167631€403 ~0.505082E403 =0,2637"9E+02 -0.531009E4+0 0.282935E¢06 ~0.0040
65.00 ~0.122084E403 ~0.496715E403 ~0.205678E¢03 -0, 013478E¢03 0.2376449E¢06 <0.1018
70,00 -0.232624E+03 0.338938E+03 -0.269648E¢03 0.281929E403 0.160593E¢06 =0.0523
75.00 -0.369643E+02 -0.181683E403 @,188469E¢03 ~0.387421E403 0.525112E¢05  0.3456
80.00 =0.730761E¢02 0.276177E+03 0.135332E¢03 0.242898E403 0.789951FE¢05 =0.0192
85.00 0.132453E403 -0.158605E+403 ~0.483195E402 §.127806E403 0.306843E405 =0.3916
90.00 0.825817E+401 ~0.156550E403 =0.157646E003 -0.474914E¢02 0.248427E405 0.0127
95.00 ~0.195876E403 0.208590E¢02 O0.147814E¢02 -0.623308E+02 0.214530E405 -0.8087
100,00 ~0.119704E+03 -0.735988E402 0.360609E402 O0.181665E402 0.106283E+05 -0.8588
105.00 =0.323489E402 0.154797E¢03 8.859902E¢00 ~0.739538E402 0.152392E405 ~0.6611
110,00 ~0.157275E+403 -0.899481E402 0.786996E¢02 ~0.216997E+402 0.197453E4¢05 =~0.6625
115.00 0.539420E¢02 0.1064371E403 0.12608L2E¢02 ~0.654336E+02 0.912219E40&% =0.5131
120400 ~0.506571E¢02 0.060275E402 0.957%05E402 =0,215432E002 0.714740ES0N 0.3474
125.00 0.979823E+402 0.462180E¢02 ~0.556628E402 =0.317100E+402 0.791914E+0% ~0.4821%
130.00 ~0.545537E400 0.110604E+J3 -0.21449BE¢01 -0.824758E402 0.952024E+04 =0.2850
135.00 0.571101E+¢02 ~0.104578E+03 -0.512866E¢02 0.718836E402 O0.109979E405 =0.2910
160,00 0.872216E+02 =0.451077E+402 =0.798499E+02 0.519025E402 0.666722E¢0% 0.3604
165.00 =0.874613E¢02 0.120082E433 0.112581E402 ~0.107353E+403 0.168603E405 <=0.3089
150,00 ~0.410781E402 0.170411E¢03 ~0,520350E¢02 ~0.943775E402 0.214737E405 «0.4512
155.00 =0.56370S5E402 0.701338E401 0.862957E¢02 0.226274E+02 0.559288E+04 0.4230
160.00 0.435050E403 0.182903E4)3 0.928021E402 ~0.431617E¢03 0.208814E¢06 =0.0666
165.00 ~0.,648550E402 0.505608E¢13 0.518586E+G3 0.802089E402 0.267605E¢06 0.0290
170,00 Q.483158E403 ~0.696745E+403 0,1937656+403 0.1711706+03 0.392870E406 ~0.8299
175.00 0.3140B4E403 0.363000E¢)3 -0,1907G9E¢03 0.426675E¢03 0.224420E+06 =0.0267
180.00 0.565233E+03 0.150209E434 ~0.565233E¢03 ~0.150209E+404 0.257577E+07 ~0.0000
EXTINCTION SCATTERING A3SORPTION
EFFICIENCY FACTORS 2.113945 2.013945 0.000000
ASYMMETRY FACTOR = 0.627882
TIME FOR THIS CASE IN SECONDS =  §,153E-01

aA



ANGLE
.00
5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00
105.00
110.00
115.00
120.400
125.00
130.00
135.00
10.00
165.00
150.00
155.00
160.00
165.00
i70.00
175.08
180.00

MIE SIZE PARAMETER = 5000.00 REFRACTIVE INDEX = 1.500

S-suB-1 S-Sug-2 INTENSITY
0,125561E408 -0 .672294E+05 0.1255L1E¢08 ~0.672294E+05 0.157609E+15
~0.686963¢E*04 0.427656E¢0% ~0.LOE6L3I2LEXQL 0.412631E404 0.394653E+¢08
0,633384E+00 -0,122502E¢06 0.503e67€E+04 0.596146E¢03 0,229931E¢08
0.2Lb0022E+0% Q.4B87Q61E*0% 0.334939E+04 0.518764E¢04 0.339037c¢08
-0.435354E%064 0.256336E¢00% -0.485714E+04 O0.184372E¢0% 0.262577E+08
0.392553E¢06 ~0.234029E¢06 0.397800E*04 -0.325349E+0% 0.236482E+08
0.836964E+03 0.329160E+08 0O0.1ub6476E¢04% O0.018116E¢04 0.155814E+08
“0.196665€E¢06% 0,555056E+04% ~0.163820E+04 0.523246E¢04 0.323654LE¢08
D.0BT725E4008 0.212343E¢03 0.78311E+04 ~0.277019E¢03 0.,234225E+08
D.399477E+06 =-0.166766E+d8 0.400900E+04 -0.917758E403 0.178268E+08
0150721 E+06 ~0.833769E+03 0.263199E+04 -0.189052E404 0.673414E*D7
~0.169726E¢04 Q.BLG180E*03 -0.147459E+06 0.264346E¢048 0.586469E¢07
~0.150513E+06 ~0,217288E¢04% -~0.8064638E¢03 ~0.255927E+404 Q0.709207E¢07
“0.664496E403 0.766870E¢)2 -0.202667E+06 0.829233E+03 0.262123E¢07
0.309361E¢03 -0.170167E+06 O0.131150E+04 ~0.122475E¢06 0.310573E+07
~0.121856E406 0.9287708E+02 -0.486298E+03 0.120033E+08 0.158540E¢07
0.109954E+04 <-0.118332E406 0.133103E+04 9.323008E¢02 0.219096E+07
0.116811E¢04 -0.210688E+403 0.730589E+03 O0.314751E+403 0.101618E+07
0.762792€¢03 Q.4566846E+03 0.384561E¢03 -0.633204E+03 0.567675E+06
0.38787GE#03 0.6645984E+03 ~0.253019E+403 -0.1641539E¢03 0.323205E¢06
0.597623F+03 ~-0.265265E403 -0,232019£+03 0.387359E402 0.241273E¢0¢
“0.,49898,E*03 0,399672E¢03 0.262569E¢03 ~0.1428482403 0.24903LE¢06
~0.3093067E+02 -0.100399E+03 0.,501029E403 -0.156863E¢03 0.14302LE¢D6
0.868553E403 (0.4B81G20E#02 ~0.232051E¢C3 -0.153804E+03 0.417106E+06
0.526004E4¢03 0.898112E+02 -0.422_.3E¢03 -0.210007E¢02 0.253470E¢06
~0,432066E¢03 0.621078E¢02 0.65)352E+03 ~0.710078€E+02 O0.199198E¢06
0.350757E¢03 0.506302E403 -0.203070E+03 -0.357363E¢03 0.273150E¢06
0.25861CE+03 Q.46TO86BE+D3 ~-0.,2L6671E+03 ~0.4010813E403 0.254000E¢06
~0.553203E402 0.460815E+403 0.,205843E+03 ~0.336589E¢03 0.185353E+06
“0.405549E403 -0,646823E403 0.301&53E¢03 O0.1372256¢03 0.363299E¢06
0.640398E403 0.234848E403 -0.2793647E+U3 -0.308924E402 0,272294E+06
~0.8463005E403 -0.254697E¢03 0.431963E¢03 O0.218637E+03 0.256060E+06
~0.238426E¢06 0,L25326E¢04 -0.683389E¢03 -0.137187E+04 0.130619E+08
~0.1915647E¢0% ~0.842329E+03 0,220151E+03 ~0.173667E400 0.372204E407
0.29781UE+03 0.177086E#08 ~0.227679E¢064 0.808356E¢03 0.453092E¢07
~0.570395E¢03 0.535172E¢03 -0.159828E+04 -0.966428E¢03 0.205242E¢07
“0.145625E+405 -0.507155E+06 Q.145625E+05 0.507155E+04 0.237786E¢09

EXTINCTYION SCATTERING ABSORPTION

EFFICIENCY FACTORS 2.008650 2.008650 0.000000

ASYMMETRY FACTOR = 0.829592
TIME FOR THIS CASE IN SECONDS =

J.74L1E-01

0.000E+7%0

DEG OF POLZN
Gg.0000
~0.0223
d.1179
0.1247
0.0279
0.1168
0.2597
-0.0712
~0.0175
-0.0512
0.5594
0.3873
0.0148
0.8293
0.0368
0.0580
-0.1909
~0.3772
-0.4089
~0.7399
-0.7719
-0.6412
0.9228
~0.0142
“0.123%
0.0435
-0.,3815
~0.1249
-0 «1602
-0.6980
-0.7087
-0.0846
-0.08202
-0 1764
0.2883
0.6997
-0.0000

GV



MIE SIZE PARAMETER = 10.00 REFRACTIVE INOEX = 1,500
ANGLE S-Sue-t S-SuB-2 INTENSITY
0,00 O0.614948E¢02 ~0.317799E4D1 0.6L149%BE+02 =0.317799€E+401 0.379171E+04
5¢00 0.5648052E402 ~0,196587E+01 0.545686LE+D2 ~0.289914E¢01 0.300320E¢04
10.00 0.377490E¢02 0.936678E+00 Q. 374475E402 “0.207314E4010 0.141624E+D%
15.00 0.176021E402 0.35¢839E401 Q.174032E+02 -0.856896E+00 0.313014E+03
20,00 0.181377E+01 O0.¢10068E+01 0.215939E+01 0.28038LE400 0.124235E402
25,00 ~0.571781E+01 0.211751E¢01 =0.465013E+01 0.709651E¢00 0.296988E402
30.00 -0.579008E+018 ~0,121935E+01 ~0.442757EeQL 0.132455E¢03 0.,273164E402
35.00 ~0.220285E+01 -0.382223E+01 ~0.137w4GE401 “0.103514E+01 0.112113€+402
$0.00 0.115604E¢01 <0 407492E¢01 0,74)364E+00 “0.186489E+01 0.109517E+D2
45,00 08.236137E+01 -0,190307Ee01 0,722782E+00 ~0.156099E¢01 Q.607843E+01
50.00 0.166733E401 0.121208E+04 ~0,.309306E400 ~0.269918E+400 0.220902E+01
55.00 0.320851E400 0.328101E¢01 =0,.733757E+00 8.111136E401 0.632075E+01
60,00 ~0,693755E400 0.316952E¢01 -0.281778E-01 0.159291E401 0.646946E+01
65.00 -0.112325E401 0.117708E#+DL 0.1006C0E+01 0.921251E+400 0.225394E+01
70.00 =0.113609E+01 ~0.117949E401 0.125557E+01 ~0.261202E400 0.215826E+01
75.00 -0.859872E400 -0.267330E+0L 0.406622E400 “0.313799E+00 0.392848E¢01
80.00 ~0.273185E¢008 -0.219728E+31 -0.830355E400 -0.629697E¢00 0.,299433E+01
85.00 D0.568725E¢00 ~0.908841E+00 =0 ,144283E¢01 0.220249E+30 0.163623E+01
90.00 0.135105E40% @,.4172S0E+00 -0.102255E+01 0.791253E400 0.183556E¢01
95.00 0.162959E401 0 .111577E+01 -0.424428E-01 0.537189E400 0,209544E¢01
100.00 0.117126E+01 0.118164E+0L O0.656108E+00 ~0.351474E¢00 0.166228E+01
105.00 0.172604E+00 0.988C18€E+00 0.638281F+00 ~0.115970E+401 0.137914E+01
110.00 ~0.857020E+00 0.821659E+400 0.178123E¢00 -0.127272€+01 0.153058E+401
115.00 ~0.164661E+01 0.658103E¢00 -0,732856E-01 ~0.646108E400 Q.1L7431E+01
120.00 -0.145257E+02 0.316204E+00 0.255067E+00 0.235L20E+00 0.116521E+D1
125.00 ~0.207357E+01 ~0,246242E+00 0.914165E+00 0.810620E+00 0,135300E+401
130.00 -0.630302E+00 -0.,826923E+400 0,128067E+01 0.877085E¢00 0.17%359E¢01
135.00 ~0.326057€400 -0,114622E¢01 0.937182E+00 0.662859E+00 0.136826E+¢01
1640.00 ~0.156033E400 -0.112897E¢01 §.566968E-01 0.562568E400 0.798C73E+00
145.00 ~0.903610E-02 ~0.956978E+400 ~0.740810E+00 0.695546E400 0.974236E+¢80
150.00 0.205857E400 ~0.889334E+00 ~0.919354LE+00 0.994698E+00 D0.133396E¢01
155.00 0,897121E400 -0.999164E+00 -0,476533E400 0.116778E+401 D.141816E401
160.00 0.812356F+00 -0.110065E+01 0.7098312-014 0.104108E+401 0,148012E+0°
165.00 0.109483E401 ~0,960082E+00 O0.144218E+00 0.653092E+00 0.126487E+G1
170,00 0.131138E401 ~0.469165E+00 ~0.399742E+00 0.187150E+400 0.106733E+01
175,00 O0.16LT06E+01 0.,629393E-01 ~0.114891E+01 “0.167099E400 0.172292€E+01
180,00 0.149343E+01 0.296366E+400 ~0.149. .3E+01 “0.296366E¢0C 0.231818E+01
EXTINCTION SCATTERING ABSORPTION
EFFICIENCY FACTORS 2.859791 1.2351%0 1.224646
ASYMMETRY FACTOR = 0.922350
TIME FOR THIS CASE IN SECONDS = 0.600E-03

=d.100E¢0Q

DEG OF POLZN
0.0000
~0.0014
-0.0068
«0.,0301
-0.6183
=0.2518
-0.2817
~0.7359
“0.6378
-0.5132
-0.9235
~0.7194%
-0.6077
“0.1744
-0 2426
~0.,74504
~0.6373
0.3019
-0.0893
-0.861s .
-0.6653
0.2706
80.0790
~0.7132
~0.8966
0.1033
0.3819
-0.0370
-0.6271
0.0599
0.3753
0.1218
~0.2643
-006663
-0.8175
~0.2177
-0.0000

9Cv



MIE SIZE PARAMETER =

ANGLE
0.00
5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00
105.00
110.00
115.00
120,00
125,00
130.00
135.00
1u0.00
15.00
150.400
155.00
160,00

165.00"

170.00
175.00
180.00

100.00

S-Sub-1

0.522L55E+04
0.305086E+03
-0.116007E+03
0.847723E4+02
0.228785E¢01
-0.310537E+02
0.33679LE+02
~0.909879E+01
-0.213287€4¢02
0.220539E¢02
0.101882€E+¢02
-0.206372€¢02
-0.12907E+02
0.101149€+02
0.189202E¢02
0.139393E+02
0.615211E+01
0.153726€E¢01
0.119224E01
0.876301E+01
0.107868E402
0.138863E402
0.u247908E401
-8.112976E¢02
-0.,33609uE*0L
0.115602€¢02
-0.1028%52E+02
0.768030E¢0L
~0.715616E+01
0.936308E+01
-8.105069E+02
0.340806E+01
0.931348E+01
-0.221822€E+018
-0.961598E¢01
~-0.100624E¢02
-0.954952E+01

EFFICIENCY FACTORS

~0.261694E+03
J.181883E+02
0.238768E402
~0.438139E402
0.42396LED2
~0.211364E¢02
-0.105491€E¢02
0.3)6759E¢02
~0.189676E¢02
~0.140293E¢)2
0.222762E¢)2
0.987364E+QL
~0.170185E+02
~0.473895E¢02
~0.136859E¢01
0.112806E¢)2
0.158596E¢+])2
0.160982E¢02
0.153732€E+02
0.139u82E¢02
0.920299E+01
~0.1568765E¢01
-0.123693E+02
~0.565576E¢01
0.117717€¢02
~Jo.c83158€E+018
~0.529585E+01
0.8L5910E¢01
-0.,862059E+01
0.546682E401
0.182926E¢01
-0.99469387E 01
0.662014LE401
0.100651€E¢32
0.802882E¢01
~0.168766E401
-0.355581E¢01

EXTINCTION
2.089822

ASYMMETRY FACTOR = (.950392

TIME FOR THIS CASE IN SECONDS =

REFRACTIVE INOEX =

S-Su3-2

0.522455€¢04
0.298131E+¢03
~0.107378E+03
0.392926E402
~0.130945E¢01
~0.173387E+C2
0.177529E+02
~0.5105'82E¢01
~0.713673E¢01
0.681J56E+01
0.196302E+01
~0.392682E¢01
~0.61276CE+00
0.874630E+00
-0.669262E+00
~0.1877T69E+01
“0.161371E¢01
-0.893979E+00
-0.85085LE400
-0.217232E+01
“0.489L59Ee01
~0.661969E¢01
~0.2068L3E401
0.699496E¢01
0.206077E+01
~0.818386E¢01
0.788321E+01
-0.610605E¢01
0.61119CE+01
-0.827119€E¢01
0.955376E¢01
-0.315356E+04
-0.895099E¢01
0.2158bULEDL
0.931863E¢C1
0.100372E+02
0.,954952€+01

0.200€E-02

SCATTERING
1.132130

“0.261694E403
0.491190E+01
0.195641E402

-0.292025€E+02
0.251409E+02

~0.100L328E+92

~0.6528408E401
0.144508E02
~0.812180E+01¢
~0.350405E¢01
0.555878E+01
0.967198E+00

-0.207280E+01

~0.208839E+00
0.789534E+00

=0.736574E400
~0.253497E+01
~0.382596E+01
~0.466332E¢01
~0.502600E¢01
~0.3683998E+01
0.1105L2E+01
0.593202E+01
0.321258E+818
~0.785876E¢01
0.219927E+01
0.388961E+01
~0.671763E+01
0.7068053E+01
~0.b74255E4¢82
~0.172014E+01
0.934199E+01
~0.661695E01¢
=0.984025E+01

-8.399378E+01
0.168188E¢01
0.355581E+01

1.500

INTENSITY
B.273645E4¢08
0.914574E¢05
0.130172E+05
0.31L304E¢0%
0.121824E+04
0.911319E+03
0.801673E¢03
0.629347E+03
D.465786E¢03
0.370932E+03
0.317391€E+03
0.269848E¢03
0.,230451E+03
0.202758€E+¢03
0.1804L01E+03
0.162813€E+03
0.169203E+03
0.138475E+03
0.130113E+03
0.,123599E+03
0.118559£+03
0.114659E¢03
0.111687E+03
0.109437E+03
0.10774LQE+03
0.106503E+03
0.1C5600E¢03
0.104961E¢03
D0.10521E+03
0D.104229E+013
010804 GESD]
D0.103935E+03
0.103877E+03
0.103850€E¢03
0.103840E¢03
0.103837E+03
0.103837€+03

ABSORPTION
0.957688

-0.100E+00

DEG CF POLZN
-0.0000
~0.0247
~0.0848
-0.2375
~0.4798
~0.5u84
~0.5537
~0.6268
~0.7490
-0.8u418
~0.8905
-0.9395
-0.9797
~0.9960
~0.99 44
-0 09,50
~0.9335
-0.8885
-0.8273
~0.7576
-0.6831
-0.6072
-0.5316
~0.4586
-0.3897
~0.3257
~0.2673
~0.2148
~0.1684
~0.4278
-0.0932
-0.0643
-0.0409
-0.,0229
-0.0101
-0.0025
-0.0000



MIE SIZE PARAMETER = 1000.00 REFRACTIVE INDEX = 1,500
ANGLE S-SuB-t S-suB-2 INTENSITY
0.00 0.508926E406 ~0.721499E+06 0,.504926E+06 -0.721499E+04 0,255002E¢12
5.00 -0.102968E+04 ~0.212757E+)3 ~0.967028E+03 ~0.170704E+03 0.103489E+07
10.00 ~0.532535E403 0.179789E+03 -0.450678E+03 0.16870884E¢03 0.270449E+06
15.00 ~0.653330E¢02 0,426746E+03 ~0,613507E+02 0.316835E403 0.145265E+06
20,00 0.376523E+403 0.162180E+02 0,247725E+03 0.225961E+02 (0.101955E+06
25,00 -0.235384E+03 -0.253108E+03 -0.129869E403 ~0.1563656¢03 0.803929E¢05
30.00 0.229901E+03 0.221920E+03 0.109775E+03 0.123213E¢03 0.646676E+0S
35.00 -0.285229E+¢03 0.822162E+02 -0,130083E+03 0.245997E402 0.528211E+405
€0.00 -0,217675E403 -0.170529E+03 -0,.738262E4C2 “0.736196E+02 0.436516E¢D5
45,00 <0.,246206E403 ~0,777271E402 ~0,71379CE+02 ~0.350413E402 0.364903E+0S
50,00 ~0.166982E¢02 0.,261139E¢03 -0,148239E+02 0.560879E+02 0.308618E4(5%
55.00 ~0.503654E+02 -0,220845E403 (0.216431E04 -0.391996E¢02 0.264252E¢05
60.00 O0.16339¢E+03 ~0.136432E+03 0,225084E+02 ~0.556820E+01 0.229245E¢05
65,00 0.1642056E+02 ~-0,199930E+03 0.983168E+01 ~0.,522104E401 0.201609E+05
73.00 -0.672031E402 0.176957E+03 ~0.553029E+014 -0.995057E+401 0.179799E+DS
75.00 -D.178982E¢03 ~0,758155E+401 @ .198174E+02 -0.715082E401 0.162601E+05
80.00 -0.8824B3E+02 0.145254E¢03 0.915704E+01 -0.290160E902 0.149061E¢05
85.00 0.279019E¢02 -0,159229E403 =0.271564E¢00 U.394049E+02 0.138426E+05
90.00 D0.558595E¢02 =0.143671€E403 ~0.116307E+02 0.860706E402 0.130097€+05
95,00 ~0.125619E403 0.773792E402 0.436895E+02 -0.330736E¢02 0.123601E+05
100.00 -0.128432E403 -0,588009E402 0.575057E+02 0.212T38E¢02 0.118559€¢05
105,80 ~0.897252E401 Go135447E+03 0.617SL7E+00 “0.671801E402 0.114671E¢0S
110.00 ~0.128778E+403 0.228L75E+402 0.70538CE+G2 -0.160555E¢02 0.111696E+05
115.00 0.485125€+402 0.116660E+03 -0,322957E+02 ~0.698729E402 0.109441E+05
120.00 ~D.950241E¢02 0.771016E402 0.613435E+02 ~0.530387€E402 0.107752€+05
125.00 0.107185E¢03 0.512959E¢02 <~0,773297E+02 ~0.346577E¢02 0.106505E+05
130.00 D.26551CE¢02 0.112600E¢33 ~0,218797E¢02 ~0.851931£¢02 0.105601E+05
135.00 0.39)056E402 «0.105972E403 -0.300337€+02 0.856658E¢02 Q.104961E4+05
160.00 0,588332E402 =0,935446E¢02 ~0,486957E402 0.795029E402 0.104520E+05
145,00 ~0.355876E¢02 0.102416E¢03 0.304363E¢02 ~0.983323E402 0.104227€4+05
150.00 0.397255E402 0.989745E+02 ~0.367520E+02 “0.899089E¢02 0.104042E+05
155.00 -0.10%967E¢03 0.658197E+01 0.983351FE+02 -8.659809E+01 0.103933E+05
160.00 0.325766E¢02 0,987468E402 ~-0,315295¢+02 ~0.947021E402 0.103874E+D5
165.00 -0.390503E¢02 0,953805E+02 Q.380266E+02 “0.932794E402 0.103846E+05
170,00 0.457488E¢02 -0.916294E+402 ~8.4522656402 0.907355E402 0.103836E405
175.00 -0.115368E402 <0,101373E¢03 0.115246E¢02 0.101115€¢03 0.103834E+05
180.00 0.994571E402 0.221736E¢02 -0,994571E+02 =0.221736E402 0.103834EeD5

EXTINCTION SCATTERING ABSORPTION
EFFICIENCY FACTORS 2.019703 1.106932 0.912770
ASYMMETRY FACTOR = 0,950880
TIHE FOR THIS CASE IN SECONDS = 0.179€-01

-

-0.100E+0¢0

DEG OF POLZN
-0.0000
-0.0682
-0.1681
~0.2830
-0.3931
“0.4861
-0.5789
~0.6682
*0.7517
~0.8267
-0.8309
-0.94147
~0.9765
-0.9939
-0.,9928
-0.9737
-0.9379
~0.8878
~0.8265
=0.7571
-0.6829
-0.6069
-0.5315
~0.4586
-0.3897
~0.3258
-0.2674
-0.2149
-0.1684
-0.1279
-0.0932
“0.0643
'0.0‘009
-0.0229
‘000101
-0.0025
-0.0000

BV



MIE SIZE PARAMETER =

ANGLE
0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
©0.00
45.00
50.00
55.00
60.00
65,00
70.00
75.00
80.00
85.00
30.00
95.00

100.00

105.00

110.00

115,00

120.00

125.00

130.00

135.00

140.00

165,00

150.00

155.00

160.00

165.00

170.00

175.00

180,00

5000.00

S-SuB-1

0.125423E+08
0.222714E4+04
~3.208372E+04
~0.198699E+0%
0.141605E+0n
0.3658L8E¢03
-0.818828€£+03
-0.695859E£+03
0.12079CE+0«
0.377639E+03
-0.737055€+03
~0.768225¢€+03
-0.106248E¢0w
0.698164E+03
~0.736341E+03
-0.708422€¢03
0.510198€+02
0.789722E+03
0.5u384CE 03
0.463068E+03
0.632089E+03
~8.521195€E+03
-0.620L03E*03
0.622942E+03
0.582781E+03
~0.563023E+03
0.309326E+403
0.396667E¢03
~0.147810E+03
~0.41004b6LE+OD]
0.51206(E+03
~0.5016L083E+03
0.629276E+03
-0.279973€E+03
0.101886E+03
0.307655E+02
-0.777833E+02

EFFICIENCY FACTORS
ASYMMETRY FACTOR =
TIME FOR THIS CASE IN SECONDS

~0.6664LT2E4+)5
0.190241E¢03%
0.738514E403
0.275570€E+03
0.118670E¢+du
8.167373E+0&
~0.1365L1E¢0%
0.130789E+2%
0.670896E+03
~0.123406E+0%
0.956727E+03
-0.832129€E+03
-0.625555€E+22
-0.719402€E4+403
“0.595638E+403
=0.553289E+03
“0.848290E+03
~0.172281E+03
0.5L6205E+03
0.575586E¢03
-0.315106E+13
0.434773E+03
0.206778E4+03
0.105012€+03
0.186360E+03
0.189764E¢03
0.4.88L08E+03
0.4010624E+03
0.532403E4+33
~0.3564151€+03
0.166039E4+33
~0.158270E+03

REFRACTIVE INDEX

S-SuB-2

0.125423E4¢08
0.200270E+0y
~0.172290E+00
~0.14759¢EE¢00
0.899033E+03
0.1531C3E+03
-0.365770€+03
~0.366383E+03
0.620519€+03
0.47189E¢03
~0.223330E+03
-0.871019€E+02
~0.101042E403
0.552LLULE+D2
0.56372E+¢02
0.10015CE+D3
0.279151E+02
-0.182738E+03
~N.187405E+03
~0.190918E+03
-0.26319€E+03
0.244271E+03
0.337167E403
-0.381748BE+03
-0.,389915E+03
0.3979€62E+03
~0.243028E¢03
~0.323875E+03
0.119311E+03
0.363589E+03
-0.467928E+03
0.L70863E+03

-0.6664725405
0.169246E+04
0.620806E4+03
0.152643E+03
0.83017C0E+03
0.396380E+03

-0.736552E403
0.5649989E+03
0.306897E+J3

~0.357729E+03
8.189279E+03

~0.176458E¢03

-0.581135E+02
0.1264093E¢02

~0.115428E+02
0.270281E¢02
8.149684E+03
0.738612E+02

-0.146093E+03

“0.196543E+03
0.157238¢E+¢03

~0.230296E¢03

-0.130982E+¢03

~0.490048E¢02

“0.111223E+03

~0.1454LL0E403

~0.366541E¢03
~8.317995E+03

-0.450626E403
0.308185E+¢03

-0.130004E+03
0.1L6344E403

= 1,500

INTENSITY
0.157315E¢+15
0.772728€+07
0.417917E+07
J.311291E+07
0.245545E407
0.197572E+07
0.160555£¢07
0.131668E+07
0.109011E+07
0.911909E¢06
0.771474E406
0.660667E+06
0.573177E¢06
0.504089E¢06
0.443555E¢06
0.436550E¢06
J.372691E+06
0.3460395E¢+06
0.325266E¢06
0.309020E¢06
0.296412€E+06
0.286689E+06
0.279268E+06
0.273608E+06
0.269384E+06
0.266266E£+06
0.264005E¢06
0.262403E+06
0.261300E+06
0.260568E¢06
0.260105E+06
0.259832€E+06

0.293303E¢)3 -0.41284CE+03 -0.280L06E¢03 0.259684E¢06
~0.432636E¢03 0.274284E+03 0.422422E¢03 0.259616E+¢06
G.541838€+03 -0.101195E+03 -0.496708E+03 0.259591€¢06
-0.509210E¢03 -0.306023E+02 0.507929€E+03 0.259585E¢+06
0.503522E6403 O0.,777333€E¢02 -0.503522E¢03 0,259585E+06

EXTINCTION SCATTERING ABSORPTION

2.006775 1.099193 0.937582

3.953650
= 0.806E-01

~0.100E¢00Q

DEG OF POLZN
-0.0C00
-0.1103
-0.1975
-0.2927
-0.3902
-0.4856
~-0.5788
~0.6680
~0.7513
~0.826%
-0.8906
=0.9414
~0.9763
~0.9336
-0.9926
~0.9735
-0.9378
-0.8878
~0.8264
~0.7570
-0.6829
-0.6069
-0.5315
~0.4586
-0.3897
-0.3258
-0.2674
-0.2143
~0.1684
-0.127%
-0.0932
~0.0663
-0.0409
-0.0229
-0.0101
-0.0025
-0.0000



	ABSTRACT
	PREFACE
	TABLE OF CONTENTS
	1. INTRODUCTION
	2. SPECIFIC GOALS OF ALGORITHMS
	3. MIE SCATTERING FORMULAE--GENERAL CASE
	Table 1. Percent error in lPN(x), as computed by two different methods, where N is the largest index required in the Mie series.
	Table 2. Number of Lentz method iterations (Eq. 29) necessary to converge to AN(mx) for a range of size parameters x and refractive indices m.

	4. MIE SCATTERING FORMULAE-SMALL PARTICLE LIMIT
	Table 3. Values of Q in the small-particle limit, as given by Mie ext theory and by Eq. (40) with two approximations for al, a 2 and b1 .

	5. A UP-RECURRENCE CRITERION n
	Table 4. The smallest value of the product xm. at each value of im mr, where ci is the value of mn above which up-recurrence on A fails (x < 10,000 for this study). n

	6. NUMBER OF TERMS IN MIE SERIES
	Table 5. The range [Nmin, Nx] of the number of terms in the Mie series, as a function of size parameter x.

	7. MIE SCATTERING SUBROUTINES
	7.1 VECTORIZATION
	7.2 MIEVO
	7.3 MIEV1
	7.4 TESTING
	Table 6. Timing comparisons between various summing methods: standard (Eq. 55), partially-vectorized FORTRAN (TOTAL), and assembly language.
	Table 7. Execution times for Dave (1969a) Mie code compared to vectorized MIEV1 time.
	Table 8. CRAY times in milliseconds to execute the unvectorized MIEVO code for various combinations of size parameter and number of angles.
	Table 9. CRAY times in milliseconds to execute the vectorized MIEVO code for various combinations of size parameter and number of angles.
	Table 10. CRAY times in milliseconds to execute the vectorized MIEV1 code (the fastest one) for various combinations of size parameter and number of angles. 

	8. SUMMARY
	REFERENCES
	APPENDIX I. MIEVO FLOW CHART AND LISTING
	APPENDIX II: MIEV1 FLOW CHART AND CODE LISTING
	APPENDIX III: SAMPLE CODE RESULTS

