Superpressure
 Balloon Flights from
 Christchurch, New Zealand August 1967 - June 1968

VINCENT E. LALLY
NEIL CARLSON
ROBERT W. FRYKMAN
ERNEST W. LICHFIELD
A. BREWSTER RICKEL
MARCEL VERSTRAETE

February, 1969

FOREWORD

This report presents a compilation of flight summaries and an analysis of flight results for the Phase II GHOST balloon flights from Christchurch, New Zealand, from August 1967 to June 1968. During this period 61 flights were made under the auspices of the New Zealand Meteorological Service, the Environmental Science Services Administration, and the National Science Foundation. The flight program was conducted by the National Center for Atmospheric Research.

The results of the first series of flights between March 1966 and March 1967 are described in NCAR-TN-28, Superpressure Balloons for Horizontal Soundings of the Atmosphere, June 1967. In addition to flight summaries, TN-28 provides a status report on superpressure balloon technology. COSPAR Document j-17, "The Use of the Superpressure (GHOST) Balloon for the GARP Experiments," a more recent report on superpressure balloon technology, was presented in May 1968 at the XIth Assembly of COSPAR. Both documents may be obtained by writing to the National Center for Atmospheric Research, Boulder, Colorado, 80302.

We gratefully acknowledge the continuing assistance of the volunteer tracking stations in the southern hemisphere during the second year of GHOST flights; without their assistance our flight program would not have been possible. We also thank the meteorological services, government agencies and volunteer trackers who operated the stations at Luanda, Angola; McMurdo Station, Antarctica; Buenos Aires, Argentina; Melbourne, Australia; Rio de Janeiro Brazil; San Rafael, California; Plaisance, Mauritius; Huancayo, Peru; Pretoria, South Africa; and Broken Hill, Zambia.

The analysis of trajectory data for these and previous GHOST flights is being performed by Samuel B. Solot and Aubrey Schumann at the National Center for Atmospheric Research.
Foreword iii
ANALYSIS OF FLIGHT RESULTS 1

1. F1ights at $30 \mathrm{~km}(10 \mathrm{mb})$ 1
2. Flights at $24 \mathrm{~km}(30 \mathrm{mb})$ 1
3. Flights at 16 km (100 mb) 1
4. Flights at 12 km (200 mb) 2
5. F1ights at $9 \mathrm{~km}(300 \mathrm{mb})$ 3
6. Flights at 5.5 km (500 mb) 3
7. Flights at 3 km (700 mb) 3
8. Flights at $1 \mathrm{~km}(900 \mathrm{mb})$ 4
GHOST Balloon Flight Summary - Notes 5
GHOST BALLOON FLIGHT SUMMARIES 7

ANALYSIS OF FLIGHT RESULTS

1. FLIGHTS AT $30 \mathrm{~km}(10 \mathrm{mb})$

Two flights were made at 24 km using polyethylene balloons. Both balloons failed. A third failure during the third phase of flights in October 1968 has caused a temporary halt in testing of large polyethylene spheres. A successful flight with a Mylar sphere from Cardington, England, demonstrates that modest payloads can be carried without difficulty at this altitude. We have no satisfactory explanation at this time for the failure of polyethylene spheres in the superpressure application.

2. FLIGHTS AT $24 \mathrm{~km} \mathrm{(30} \mathrm{mb)}$

No flights were made at this altitude from Christchurch during the Phase II operation. However, four carry-over flights from Phase I are included in the summary. Flight durations were $30,41,49$, and 116 days. The 30 and 49 day flights moved into the Antarctic night and were not heard again. These 1.0 mil balloons were probably damaged during ascent.

Six flights were made during this period from Ascension Island using 1.5 mil balloons which should have been less vulnerable to damage. Longest duration in this group of flights was ten days. Clear evidence was obtained that the balloons were damaged during ascent. It is not known whether damage was due to high ascent rate (up to $9 \mathrm{~m} / \mathrm{sec}$) or to the cold tropopause temperatures $\left(-80^{\circ} \mathrm{C}\right)$.

Techniques have been developed to reduce ascent rate and new materials are being tested to overcome temperature problems.
3. FLIGHTS AT $16 \mathrm{~km}(100 \mathrm{mb})$

Fifteen flights were made at 100 mb . One balloon was damaged at launch and flew for one day. Five balloons were equipped with a new type of inflation fitting which later tests showed to be defective. These balloons averaged 23 days duration. Of the remaining nine balloons, three are still flying -- one for over one year. Average flight duration for these nine balloons exceeds 160 days. In spite of this
excellent performance, it is now clear that these balloons of 1.5 mil thickness are subject to pinholes in packing, shipping and handling. Only four of the fifteen were free of defects when tested at Christchurch. A total of 37 pinholes were detected and repaired. Improved materials are needed to eliminate preflight testing. If we are to account for the variability in balloon life for balloons which are launched without defect, we must assume that additional pinhole formation occurs in the majority of balloons during ascent. Of the nine sound balloons, four flew for less than three months and four flew for more than six months.

In order to achieve average life in excess of one year at this altitude, a laminate must be used which is less susceptible to pinhole formation than 1.5 mil bilaminated Mylar.
4. FLIGHTS AT 12 km (200 mb)

Four flights were made at 200 mb with clear 2.0 mil bilaminated Mylar balloons. Average life was 90 days. This is equivalent to the average life of tested balloons flown at this altitude during the Phase I program. On one flight equipped with strain gauge, clear evidence was provided that the balloon accumulated ice and was forced down.

Ten flights were made with metallized cap balloons; five are still flying after four months. It appears that the metal cap, which prevents frost formation under clear skies, improves flight duration at 200 mb although it does not eliminate the weather problem. Average life in mid-latitudes with metallized cap balloons is now estimated at five to six months. Expected duration will be less for balloons launched in tropical latitudes.

There appears to be no problem in handling and packing 2.0 mil balloons for 200 mb flight. Only one of the 14 balloons tested had a detectable leak during preflight check.

No further development appears necessary for balloons at this altitude. Present manufacturing techniques are adequate for production of reliable pinhole free materials. The weather problem is not com-
pletely solved with the metallized cap; but, since economic life has been achieved, more complex systems are not needed.

5. FLIGHTS AT $9 \mathrm{~km}(300 \mathrm{mb})$

Six flights were made at 300 mb with metallized cap balloons. Average flight duration was 38 days, with the longest flight lasting 89 days. This is a significant improvement over the average duration of 12 days for uncapped balloons. Since the metallized cap is only effective in preventing frost formation with clear sky above, the evidence from these flights indicates that frost formation rather than accumulation of supercooled water in clouds is the principal mechanism of failure.

Two of the six balloons had pinhole leaks in spite of careful packing. It was not expected that 3.0 mil balloons would pose any problem in shipping and handling. Further testing is required to determine whether thick-walled balloons can be flown without preflight tests.

6. FLIGHTS AT $5.5 \mathrm{~km}(500 \mathrm{mb})$

Four flights were made at 500 mb with waxed balloons equipped with a metallized cap. Flight durations were $1,14,16$, and 21 days. The 14 day flight moved into the Antarctic night; the 21 day flight reached the Andes and failed to cross. This average of 13 days for four flights is a substantial improvement over the 7 day average for 23 previous flights with uncapped balloons. Although the sample is too small for firm conclusions to be drawn, the results appear significant.

In accordance with GARP objectives, major effort during Phase III will be the flight of metallized cap balloons at 7 km (400 mb).

7. FLIGHTS AT $3 \mathrm{~km}(700 \mathrm{mb})$

Three flights were made at 700 mb with waxed ellipsoid balloons. Flight durations were 9, 14, and 21 days. These results were most encouraging. It appears that 700 mb is a more friendly altitude for balloons than 500 mb .
8. FLIGHTS AT 1 km (900 mb)

Nine flights were made at this level with cylinder balloons. The balloons were not waxed. The longest flight was five days. Fully instrumented flights will be made during Phase III with waxed balloons to determine the mechanism of failure and to bring the average life up to our design goal of one week.

Balloon 非 nnn pp f M (Note A)	Surface winds_o m/sec
Frequency_ $\mathrm{MHz}^{\text {a }}$	Cloud cover
	Flight duration_days
Method of leak test__ (Note B)	Number of orbits
Test results	Position last heard
	Probable cause of failure:
Mfr. balloon \#\#__ Note A	
Balloon mass__ gm	pressure altitude in tens
Balloon volume _ m m m min	of millibars; $f=$ frequency $=$ 15.02 f MHz ; $M=$ balloon code
Balloon diameter_m m m min	letters.
Film thickness_ (Note C) mil	
Electronics mass \qquad gm	Note B: $\frac{\text { Freon test }}{\text { of balloon using G.E. halogen }}$
Ballast \qquad gm	detector; balloon overpressurized with air and Freon.
Gross weight less helium__ gm	Tent test - balloon pressur-
Free lift__gm gm min	ized with air and Freon and left under canopy for 24 hr .
Launch site__S S	detector for escaped gas.
Launch time___ UT	Water test - balloon pressur-
Ascent rate $0-5,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$	ized with air and placed in wading pool filled with water; leak detected from bubbles.
$5,000-10,000 \mathrm{~m}$ m/sec	Note C: $1 \mathrm{mil}=0.001 \mathrm{in} .=25 \mu$.
Float altitude___ (Note D) m_	
Radar (Note E)	Note D: Balloon floats at a constant density surface, expressed in
Computed (Note F)	$\mathrm{kg} / \mathrm{m}^{3}$, the number would not be meaningful. "Density altitude"
Telemetry	is altitude in U.S. Standard
	Atmosphere, 1962, corresponding
Code Sensor	to the computed or measured density level at float altitude.
	Note E: Altitude is measured float altitude from radar, corrected to "density altitude."
	Note F: "Density altitude" in meters, computed from balloon volume and gross mass.

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Telemetry
Code Sensor

C Sun angle

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 90027 O 90026 A	Surface winds_o calm m/sec
Frequency $15.027 \quad 15.026 \quad \mathrm{MHz}$	Cloud cover
water test	Flight duration_30__ days
Method of leak test at factory	Number of orbits_1
Test results no leaks detected	Position last heard 56220 (23/04/67)
	Probable cause of failure: Gas leakage
Mfr. balloon \#\# Raven 106	
Balloon mass 5886	
Balloon volume $\quad 216 \mathrm{~m}^{3}$	
Balloon diameter 7.4 m	Remarks: This balloon was launched
Film thickness__ $\quad 1.0 \quad \mathrm{mil}$	with 600 gm of methyl alchol, used as
Electronics mass_350 gm	a dribble ballast to reduce ascent
Ballast__ 264 gm	rate.
Gross weight less helium 6500 gm	The balloon had a slow leak as
Free lift_ 1200 gm	indicated by decreasing strain during
Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	flight. Lifetime was estimated to be 2-3 months. It moved into the Antarc-
Launch time 25/03/67 1950 UT	tic night on 23/04/67 and was not
Ascent rate	heard again.
$0-10,000 \mathrm{~m} \quad 2.0 \mathrm{~m} / \mathrm{sec}$	
10,000-25,000 m 2. $5 \mathrm{~m} / \mathrm{sec}$	
Float altitude_ 25, 800 m	
Radar	
Computed x	

Te lemetry

Code	Sensor
0	Sun angle

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 92206 X	Surface winds__o calm m/sec
Frequency 15.026_ MHz	Cloud cover
	Flight duration_ 120 days
Method of leak test tent test	Number of orbits_ 9
Test results no leaks detected	Position last heard 53381 (13/12/67)
	Probable cause of failure: \qquad Gas leakage
Mfr. balloon 非 Schjeldah1 7	
Balloon mass_ 1504 gm	
Balloon volume $\quad 6.06 \mathrm{~m}^{3}$	
Balloon diameter_ 2.26 m	Remarks: This balloon was coated with
Film thickness_ 2.0 mil	Uvinol to protect the balloon film from
Electronics mass__ 147 gm	ultraviolet radiation.
Ballast_ 29 gm	The balloon was recovered in
Gross weight less helium 1680 gm	Argentina several months after it
Free 1ift 300 gm \qquad	came down. This is the only balloon recovered after a long flight during
Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	the GHOST program.
Launch time_16/08/67 2023 UT	
Ascent rate	
$0-5,000 \mathrm{~m} \quad 1.6 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m}$ 2.0 m/sec	
Float altitude_ 11, 784 m	
Radar	
Computed__x	
Telemetry	
Code Sensor	
$X \quad$ Sun ang 1e	
- _ _	

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 94101 G	Surface winds $030^{\circ} \quad 4.6 \mathrm{~m} / \mathrm{sec}$
Frequency $15.021 \quad \mathrm{MHz}$	Cloud cover $1 / 8 \mathrm{Sc}$ at 900 m
	Flight duration 1 days
Method of leak test Freon test	Number of orbits
Test results no leaks detected	Position last heard
	Probable cause of failure:
	Balloon damaged during launch.
Mfr. balloon 非_ Raven 10	
Balloon mass_ 2045 gm	
Balloon volume__ $14.82 \mathrm{~m}^{3}$	
Balloon diameter 3.05 m	Remarks:
Film thickness_1.5 mil	
Electronics mass 146 gm	
Ballast_ 19 gm	
Gross weight less helium_2210 gm	
Free lift_ 400 gm	
Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time_27/08/67 2037 UT	
Ascent rate	
$0-5,000 \mathrm{~m} \quad 2.5 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$	
Float altitude_15,700 m	
Radar	
Computed_x	

Te 1emetry

Code
Sensor
G Sun angle
\qquad
\qquad
\qquad
\qquad

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 95108 F	Surface winds o calm m/sec
Frequency 15.029 MHz	Cloud cover $1 / 8 \mathrm{Sc}$ at 1200 m ; $1 / 2 \mathrm{Ci}$
	Flight duration 81 days at 9000 m
Method of leak test_ Freon test	Number of orbits 7
Test results leak at inflation	Position last heard 43310 (05/12/67)
fitting detected and repaired	
	Probable cause of failure:
	Gas leakage
Mfr. balloon 非_Raven 9	
Balloon mass 2004 gm	
Balloon volume $\quad 14.82 \mathrm{~m}^{3}$	
Balloon diameter_3.05 m	Remarks:
Film thickness_ 1.5 mil	
Electronics mass__ 149 gm	
Ballast_ 20 gm	
Gross weight less helium 2173 gm	
Free lift_ 400 gm	
Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 16/09/67 2103 UT	
Ascent rate	
0. - $5,000 \mathrm{~m}$ [$2.5 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m}$ m/sec	
Float altitude_15,900 m	
Radar x	
Computed	

Te lemetry
Code
Sensor
\qquad
\qquad
\qquad
\qquad
\qquad

Balloon 非 96104 W	Surface winds $060^{\circ} \quad 1.5 \mathrm{~m} / \mathrm{sec}$
Frequency $15.024 \ldots \mathrm{MHz}$	Cloud cover $1 / 4 \mathrm{Ac}$ at 3800 m
	Flight duration 52 days
Method of leak test Freon test	Number of orbits＿2
Test results one pinhole and	Position 1ast heard＿76813（04／11／67）
multiple fine cracks repaired with	
3M tape	Probable cause of failure：
	Gas leakage
Mfr．balloon $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ R Raven 6	
Balloon mass 2064 gm	
Balloon volume $\quad 14.82 \mathrm{~m}^{3}$	
Balloon diameter 3.05 m	Remarks：
Film thickness＿＿ 1.5 mil	
Electronics mass＿161 gm	
Ballast＿ 19 gm	
Gross weight less helium 2244 gm	
Free lift＿400 gm	
Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time＿18／09／67 1950 UT	
Ascent rate	
$0-5,000 \mathrm{~m} \quad 2.3 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m}$＿m／sec	
Float altitude＿15，630 m	
Radar	
Computed＿ x	
Telemetry	
Code Sensor	
W Sun angle	

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 98104 Q
Frequency $15.024 \ldots$
Method of leak test Freon test
Test results_leak at inflation
fitting detected and repaired

Mfr. balloon 非_Raven 3
Balloon mass $\quad 1996 \quad \mathrm{gm}$
Balloon volume $\quad 14.82 \mathrm{~m}^{3}$
Balloon diameter $\quad 3.05 \mathrm{~m}$
Film thickness $\quad 1.5$ mil
Electronics mass_ 160 gm
Ballast_ 20 gm
Gross weight less helium_2176_gm
Free $1 \mathrm{ift} \quad 400$ gm
Launch site_ $172^{\circ} 32$ ' $\mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time_29/09/67 2118 UT
Ascent rate
$0-5,000 \mathrm{~m} \quad 2.3 \mathrm{~m} / \mathrm{sec}$
$5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$
Float altitude_15, 800 m
Radar
\qquad
Computed \qquad
Te lemetry
Code Sensor
Sun ang1

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 100104 N
Frequency $15.024 \ldots \mathrm{MHz}$
Method of leak test Freon test
Test results leak at inflation fitting and one pinhole repaired

Mfr. balloon 非 Raven 4	
Balloon mass	2042 gm
Balloon volume	$14.82 \mathrm{~m}^{3}$
Balloon diameter	3.05 m
Film thickness	1.5 mil
Electronics mass	152 gm
Ballast	20 gm
Gross weight less helium	2214 gm
Free 1ift	400 gm

Launch time 28/09/67 2220 UT

Ascent rate

$$
0-5,000 \mathrm{~m} \quad 2.3 \mathrm{~m} / \mathrm{sec}
$$

$$
5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}
$$

Float altitude \qquad m
Radar \qquad
Computed_ x

Te lemetry
Code
Sensor
N \quad Sun angle

GHOST BALLOON FLIGHT SUMMARY

Mfr. balloon 非_Schjeldah1 10	
Balloon mass	2106 gm
Balloon volume	$14.82 \mathrm{~m}^{3}$
Balloon diameter	3.05 m
Film thickness	1.5 mil
Electronics mass	148 gm
Ballast	68 gm
Gross weight less helium 2322 gm	
Free 1ift	400 gm

Launch site $\quad 172^{\circ} 32^{\prime} \mathrm{E}$,	$172^{\circ} 32^{\prime} \mathrm{E}, 4^{\circ}{ }^{\circ} 29^{\prime} \mathrm{S}$
Launch time_ 24/10/67	2031 UT
Ascent rate	
$0-5,000 \mathrm{~m}$ _ 2.0	$\mathrm{m} / \mathrm{sec}$
5,000-10,000 m_2.2	$\mathrm{m} / \mathrm{sec}$

Float altitude \qquad 15,400
m
Radar \qquad
Computed \qquad

Telemetry
Code
Sensor
A Sun angle
B Strain gauge
\qquad
\qquad

Surface winds $030^{\circ} \quad 3.1 \mathrm{~m} / \mathrm{sec}$ Cloud cover $3 / 4 \mathrm{Ci}$ at $10,000 \mathrm{~m}$ Flight duration_23 days
Number of orbits
Position last heard 55974 (15/11/67)

Probable cause of failure:

Electronic failure

Balloon lost 0.5% gas per day
during its flight.

Remarks: Radar tracked this balloon for 20 min at altitude; float altitude was indicated to be $15,300 \mathrm{~m}$ (geometric).

Electronics operated intermittently.
Maximum strain: 0.60\%
Maximum daytime variation: 0.1\%

GHOST BALLOON FLIGHT SUMMARY

Balloon 非_103106 AC	Surface winds_o calm $\mathrm{m} / \mathrm{sec}$
Frequency $15.026 \ldots \mathrm{MHz}$	Cloud cover clear
	Flight duration 21 days
Method of leak test_ Freon test	Number of orbits__ 1
Test results three leaks repaired; cracks on transition section	Position last heard 83984 (16/11/67)
of inflation tube repaired	Probable cause of failure: \qquad Electronic failure
Mfr. balloon 非_Schieldah1 8	
Balloon mass 2135 gm	
Balloon volume $\quad 14.82 \mathrm{~m}^{3}$	
Balloon diameter $\quad 3.05 \mathrm{~m}$	Remarks: This balloon coded erratically
Film thickness_ 1.5 mil	during its third flight week.
Electronics mass 176 gm	Maximum strain: 0.63\%
Ballast_32 gm	Minimum strain: 0.24\%
Gross weight less helium_2343 gm	Maximum daytime variation: 0.12%
Free lift_ 400 gm	
Launch site $\quad 172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time_27/10/67 1803 UT	
Ascent rate	
$0-5,000 \mathrm{~m} \quad 2.0 \mathrm{~m} / \mathrm{sec}$	
5,000 - $10,000 \mathrm{~m}$ 2.2 m/sec	
Float altitude 15, ${ }^{\text {a }}$ (${ }^{\text {m }}$	
Radar	
Computed _ x	
Telemetry	
Code Sensor	
A Sun angle	
C Strain gauge	

Balloon 非 104103 PR
Frequency 15.023
Method of leak test Freon test
Test results three leaks repaired

Launch site	$172^{\circ} 32^{\prime}$ E,	$43^{\circ} 29^{\prime} \mathrm{S}$
Launch time	$06 / 11 / 67$	1729 UT

Launch time $06 / 11 / 67 \quad 1729$ UT
Ascent rate
$0-5,000 \mathrm{~m}$
$\mathrm{m} \quad 1.9 \mathrm{~m} / \mathrm{sec}$
$5,000-10,000 \mathrm{~m}-2.5 \mathrm{~m} / \mathrm{sec}$
Float altitude
\qquad 15,550 m

Radar \qquad
Computed \qquad

Te lemetry
Code
Sensor
P \quad Sun angle
\square
\qquad
$0-5,000 \mathrm{~m}$
$1.9 \mathrm{~m} / \mathrm{sec}$
t altitude -

Surface winds $130^{\circ} \quad 1.5 \mathrm{~m} / \mathrm{sec}$ Cloud cover $1 / 8 \mathrm{Cu}$ Flight duration
40 days

Number of orbits 21
Position last heard 86213 (15/12/67)

Probable cause of failure:
Unknown: either catastrophic electronics failure or catastrophic failure on inflation fitting.

Remarks: This balloon held pressure during the entire flight and transmitted reliably.

Maximum strain: 0.71\%
Minimum strain: 0.24\%
Maximum daytime variation: 0.20\%

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 107307 JN
Frequency_15.027
Method of leak test_ Freon test
Test results one pinhole detected
and repaired

Mfr. balloon \#\# Schjeldah1 4		
Balloon mass	2250	gm
Balloon volume	6.06	m^{3}
Balloon diameter	2.26	m
Film thickness	3.0	mil
Electronics mass	163	gm
Ballast	14	gm
Gross weight les	2427	gm
Free 1ift	340	gm

Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time_19/11/67 1734 UT
Ascent rate

$$
\begin{aligned}
& \mathrm{Q}-5,000 \mathrm{~m} \quad 2.1 \mathrm{~m} / \mathrm{sec} \\
& 5,000-10,000 \mathrm{~m} \quad 2.0 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Float altitude \qquad m

Radar \qquad
Computed_ x

Te lemetry
Code Sensor
\qquad

Surface winds	- calm	$\mathrm{m} / \mathrm{sec}$
Cloud cover		
Flight duratio	89	days

Number of orbits 4
Position last heard 82311 (15/02/68)

Probable cause of failure:
Gas leakage or icing \qquad

Remarks: This balloon was equipped with an aluminized cap on top, covering one third of its total surface area.

The strain gauge open-circuited at launch; no strain data were obtained.

GHOST BALLOON FLIGHT SUMMARY

Surface winds	calm	$\mathrm{m} / \mathrm{sec}$
Cloud cover $1 / 8 \mathrm{Cu}$ at $750 \mathrm{~m} ; 3 / 8 \mathrm{As}$		
Flight duration 53 days		
Number of orbits_4		
Position last heard_76896 (10/01/68)		
Probable cause of failure:		
Icing		

\qquad —_

Remarks: The top third of this balloon was covered with an aluminized cap. The balloon held overpressure during entire flight.

Maximum strain: 0.90\%
Minimum strain: 0.53\%
Maximum daytime variation: 0.23%

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 110306 VL
Frequency_15.026
Method of leak test_ Freon test
Test results no leaks detected

Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time $21 / 11 / 67 \quad 2233$ UT
Ascent rate

$$
\begin{aligned}
& 0-5,000 \mathrm{~m} \quad 2.1 \mathrm{~m} / \mathrm{sec} \\
& 5,000-10,000 \mathrm{~m} \quad 2.3 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Float altitude \qquad m

Radar \qquad
Computed X
\qquad

Te lemetry
Code
Sensor

$\mathrm{V} \quad$ Sun angle

\qquad
\qquad

Surface winds $270^{\circ} \quad 3.1 \mathrm{~m} / \mathrm{sec}$ Cloud cover $1 / 8 \mathrm{Cu}$ at 600 m ; trace Flight duration 45 days Ac and Number of orbits \qquad 3 Position last heard $74646(04 / 01 / 68)$

Probable cause of failure:
Gas leakage

Remarks: The top third of this balloon was covered with an aluminized cap.

The balloon lost 0.4% overpressure per day during flight.

Maximum strain: 0.87%
Minimum strain: 0
Maximum daytime variation: 0.28%

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 111306 DK
Frequency $15.026 \quad \mathrm{MHz}$
Method of leak test_ Freon test
Test results no leaks detected

Launch site $172^{\circ} 32$ ' $\mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$ Launch time_ 06/12/67 1746 UT

Ascent rate

$$
\begin{aligned}
& 0-5,000 \mathrm{~m} \quad 2.1 \mathrm{~m} / \mathrm{sec} \\
& 5,000-10,000 \mathrm{~m} \quad 2.0 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Float altitude \qquad 9000 m

Radar \qquad
Computed X

Telemetry

Code	Sensor
D	Sun angle
	Strain gauge

Surface winds $\quad{ }^{\circ} \mathrm{calm} \mathrm{m} / \mathrm{sec}$
 Flight duration 22 days
Number of orbits
Position last heard \qquad

Probable cause of failure:
Icing
\qquad
\qquad

Remarks: The top third of this balloon was covered with an aluminized cap.

This balloon transmitted for four days and appeared to be tight. More than two weeks later, on $27 / 12 / 67$, it was heard faintly by a California listener. It is believed that this balloon moved into the tropics and was in clouds from the 5th to the 22nd day.

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 112203 LB
Frequency_15.023
Method of leak test_ Freon test
Test results no leaks detected

Launch site_ $172^{\circ} 32$	$43^{\circ} 29^{\prime} \mathrm{S}$
Launch time 14/12/67	1721 UT
Ascent rate	
$0-5,000 \mathrm{~m}$	$1.9 \mathrm{~m} / \mathrm{sec}$
5,000-10,000 m	$2.0 \mathrm{~m} / \mathrm{sec}$

Float altitude \qquad m

Radar \qquad
Computed \qquad x

Te lemetry
Code
Sensor
L
B
\qquad
\qquad

GHOST BALLOON FLIGHT SUMMARY

Balloon 非113202 Y Frequency $\quad 15.022$
Method of leak test_ Freon test
Test results_no leaks detected

Probable cause of failure:
Gas leakage or icing

Remarks: This balloon had a Uvinol coating on the film for ultraviolet resistance.

The Clevite cadmium sulfide panel operated well during entire flight.

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 114100 NU
Frequency_ $15.018 \quad \mathrm{MHz}$
Method of leak test not tested
Test results balloon prestressed
at factory

Surface winds $040^{\circ} \quad 2.1 \mathrm{~m} / \mathrm{sec}$
Cloud cover clear
Flight duration_ $\quad 7 \quad$ Number of orbits \qquad Position last heard 64114 (25/12/67)
Probable cause of failure:
Balloon damaged during ascent

Launch site | $172^{\circ} 32^{\prime} \mathrm{E}$, | $43^{\circ} 29^{\prime} \mathrm{S}$ |
| :--- | :--- |
| Launch time $19 / 12 / 67$ | 1149 UT |

Ascent rate *
$0-5,000 \mathrm{~m} \quad 2.8 \mathrm{~m} / \mathrm{sec}$
$5,000-10,000 \mathrm{~m} \quad 2.7 \mathrm{~m} / \mathrm{sec}$
Float altitude 16,500 m
Radar \qquad
Computed_ x
Te lemetry

Code	Sensor
N	Sun angle
U	Cosmic radiation -

[^0]
GHOST BALLOON FLIGHT SUMMARY

Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time_22/12/67 0815 UT
Ascent rate*
$0 \rightarrow 5,000 \mathrm{~m}$ \qquad $2.8 \mathrm{~m} / \mathrm{sec}$
$5,000-10,000 \mathrm{~m} \quad 3.0 \mathrm{~m} / \mathrm{sec}$
Float altitude \qquad m
Radar \qquad
Computed \qquad x

Te lemetry
Code Sensor
P Sun ang le
M Cosmic radiation
\qquad

Surface winds_ $090^{\circ} \quad 7 \mathrm{~m} / \mathrm{sec}$
Cloud cover
Flight duration $\quad 2 \quad$ days Number of orbits Position last heard 74571 (23/12/67)

Probable cause of failure:

Balloon damaged during ascent

Remarks: EOLE flight.

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 116100 KN	Surface winds $200^{\circ} \quad 3.6 \mathrm{~m} / \mathrm{sec}$
Frequency_15.020 MHz	Cloud cover $3 / 8 \mathrm{Cu}$ at $550 \mathrm{~m} ; 3 / 4 \mathrm{Sc}$
	Flight duration 6 days at 900 m
Method of.leak test none	Number of orbits
Test results balloon prestressed	Position last heard
at factory	
	Probable cause of failure:
	Balloon damaged during ascent
Mfr. balloon \#\# Delacoste 156	
Balloon mass 3869 gm	
Balloon volume $\quad 33.95 \mathrm{~m}^{3}$	
Balloon diameter_4.0 m	Remarks: EOLE flight.
Film thickness_ 2.0 mil	
Electronics mass_ 280 gm	
Ballast_ 338 gm	
Gross weight less helium 4487 gm	
Free lift_ 810 gm	
Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time_25/12/67 0925 UT	
Ascent rate*	
$0-5,000 \mathrm{~m} \quad 3.0 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m}$ - $2.8 \mathrm{~m} / \mathrm{sec}$	
Float altitude 16,500 m	
Radar	
Computed x	
Te lemetry	
Code Sensor	
K Sun angle	
$\mathrm{N} \quad$ Cosmic radiation	
	* Ascent rate increased to $4.3 \mathrm{~m} /$
	at $14,000 \mathrm{~m}$.

GHOST BALLOON FLIGHT SUMMARY

Balloon 非	117103 CM	
Frequency	15.023	MHz
Method of leak test not tested		
Test resul at factory	ballo	

—

Mfr. balloon \# Delacoste 158
Balloon mass_ 3879 gm
Balloon volume $\quad 33.95 \mathrm{~m}^{3}$

Balloon diameter	$4.0 \quad \mathrm{~m}$
Film thickness	2.0 mil

Electronics mass_300 gm

Ballast 406 gm

Gross weight less helium 4575 gm
Free Iift_ 822 gm

Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time 26/12/67 0806 UT
Ascent rate
$0-5,000 \mathrm{~m} \quad 2.5 \mathrm{~m} / \mathrm{sec}$
$5,000-10,000 \mathrm{~m} \quad 2.8 \mathrm{~m} / \mathrm{sec}$
Float altitude \qquad m

Radar \qquad
Computed x

Telemetry
Code
Sensor

C
\quad Sun angle
\square

Surface winds $\quad 070^{\circ} \quad 4.1 \mathrm{~m} / \mathrm{sec}$
Cloud cover $3 / 8 \mathrm{Cu}$ at 600 m Flight duration \qquad Number of orbits \qquad Position last heard \qquad

Probable cause of failure:
Balloon damaged during ascent
\qquad
\qquad

Remarks: EOLE flight.

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 119103 SX
Frequency_15.023
Method of leak test Freon test
Test results six leaks detected
and repaired

Launch site $\frac{172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}}{22 / 01 / 68}$

Ascent rate

$$
0-5,000 \mathrm{~m} \quad 2.1 \mathrm{~m} / \mathrm{sec}
$$

$$
5,000-10,000 \mathrm{~m} \quad 2.1 \mathrm{~m} / \mathrm{sec}
$$

Float altitude \qquad $\mathrm{m} \quad 2$
15,400 m
Radar \qquad Computed \qquad x

Telemetry
Code Sensor

S
$\mathrm{X} \quad$ Sun angle

Launch site $\quad 172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time_ $22 / 01 / 68 \quad 1744 \mathrm{UT}$
\qquad

\qquad x
un angle
Strain gauge

Surface winds_o calm $\quad \mathrm{m} / \mathrm{sec}$
Cloud cover $1 / 4 \mathrm{St}$
Flight duration 25 days
Number of orbits 1
Position last heard 63623(15/02/68)

Probable cause of failure:
Catastrophic failure of inflation
tube or electronics failure

Remarks: This balloon showed no measurable gas loss during the entire flight.

Maximum strain: 0.68%
Minimum strain: 0.24%
Maximum daytime variation: 0.20%

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 120707 GL	Surface winds $240^{\circ} \quad 2.6 \mathrm{~m} / \mathrm{sec}$
Frequency 15.027 MHz	Cloud cover $1 / 8 \mathrm{Sc}$ at $1200 \mathrm{~m} ; 3 / 4 \mathrm{Ac}$
	Flight duration 9 days at 3000 m
Method of leak test Freon test	Number of orbits
Test results small leaks around	Position last heard 66022 (07/02/68)
inflation fitting.	
	Probable cause of failure:
	Icing or rain storm
Mfr. balloon 非_Raven 101	
Balloon mass___ 1183 gm	
Balloon volume \qquad	
Balloon diameter_I m	Remarks: This balloon was an ellipsoid
Film thickness_ $1 \times 1 \times 1 \mathrm{mil}$	$1 \times 3 \mathrm{~m}$. It was waxed and reinforced
Electronics mass_151 gm	with glass tape in the equatorial area.
Ballast_37 gm	The balloon flew at a density
Gross weight less helium 1371 gm	altitude equivalent to 797 mb .
Free lift_ 274 gm	
Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 30/01/68 1821 UT	
Ascent rate	

$$
0-1,600 \mathrm{~m} \quad 2.6 \mathrm{~m} / \mathrm{sec}
$$

Float altitude_m 1900 m
Radar \qquad
Computed 1979

Telemetry
Code Sensor

G	Sun angle

GHOST BALLOON FLIGHT SUMMARY

Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time_30/01/68 2049 UT
Ascent rate

$$
0-5,000 \mathrm{~m} \quad 1.6 \mathrm{~m} / \mathrm{sec}
$$

Float altitude \qquad
\qquad m

Radar \qquad
Computed \qquad -

Telemetry
Code Sensor

F
$\mathrm{G} \quad$ Sun angle

\qquad
\qquad

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 122506 BY	Surface winds $030^{\circ} \quad 2.3 \mathrm{~m} / \mathrm{sec}$
Frequency_15.026 MHz	Cloud cover $1 / 8 \mathrm{Cu}$ at $1400 \mathrm{~m} ; 3 / 8 \mathrm{Ac}$
	Flight duration 2 days at 4600 m
Method of leak test_ Freon test	Number of orbits
Test results twenty leaks detected	Position last heard
and repaired	
	Probable cause of failure:
	Gas leakage through holes pro-
Mfr. balloon 非_ Raven 102	duced by glass filament winding
Balloon mass_3042 gm	
Balloon volume $\quad 7.82 \mathrm{~m}^{3}$	
Balloon diameter 1.97×3.94 m	Remarks: This balloon was a filament-
Film thickness_ $\quad 1.5 \mathrm{mil}$	wound "hyperpressure" ellipsoid. The
Electronics mass_147 gm	filament-windings produced many holes
Ballast_1461 gm	during testing.
Gross weight less helium 4650 gm	This method of producing a balloon
Free lift_ 930 gm	to withstand large overpressures was a
Launch site $172^{\circ} 32 \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	complete failure.
Launch time_08/02/68 1747 UT	
Ascent rate	
$0-5,000 \mathrm{~m} \quad 3.6 \mathrm{~m} / \mathrm{sec}$	

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 $123302 \mathrm{AB} \quad 123306 \mathrm{FJ}$
Frequency_15.022 $\quad 15.026 \mathrm{MHz}$
Method of leak test Freon test
Test results two leaks detected
and repaired

Mfr. balloon 非_Schjeldah1 12

Balloon mass	1728 gm
Balloon volume	$6.06 \mathrm{~m}^{3}$

Balloon diameter \qquad
Film thickness \qquad
Electronics mass \qquad 408 gm

Ballast \qquad
Gross weight less helium 2238 gm
Free lift \qquad

Launch site $\quad 172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$ Launch time_ 09/02/68 1734-38 UT Ascent rate
$0-5,000 \mathrm{~m}$
\qquad
\qquad $1.6 \mathrm{~m} / \mathrm{sec}$ $5,000-10,000 \mathrm{~m} \quad 1.8 \mathrm{~m} / \mathrm{sec}$ Float altitude \qquad
Radar \qquad
Computed \qquad x

Telemetry
Code
Sensor

A	Wind shear speed
	Wind shear direction
J	Sun angle

Surface winds_o calm $\mathrm{m} / \mathrm{sec}$ Cloud cover_none Flight duration 9 days

Number of orbits
Position last heard \qquad

Probable cause of failure:
Icing
\qquad
\qquad

Remarks: This complex flight attempted to measure wind shear at float altitude by two techniques:

1) A package was suspended 610 m below the balloon with an anemometer. The anemometer determined the switching rate for code A. The ratio of time on for A and B provided the direction of the wind shear with respect to the sun. 2) The balloon itself acted as a separate wind shear sensor, since it was equipped with "ears" which caused it to spin at a rate determined by shear over the 610 m line. Light shears and recording difficulties made it impossible to analyze the shear data.

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 125505 RV		
Frequency	15.025	MHz

Balloon failed as it crossed the Andes \qquad
Mfr. balloon 非_Schjeldah1 8
Balloon mass 952 gm
Balloon volume_ $1.853 \mathrm{~m}^{3}$
Balloon diameter $\quad 1.524 \mathrm{~m}$
Film thickness_ 2.5 mil
Electronics mass_ $\quad 148$ gm

Ballast 68 gm
Gross weight less helium_1168 gm
Free lift

Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$ Launch time_21/02/68 1757 UT Ascent rate
$0-5,000 \mathrm{~m} \quad 1.5 \mathrm{~m} / \mathrm{sec}$
$5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$
Float altitude \qquad m

Radar_4850
Computed_X
Telemetry
Code
Sensor
R
_Sun ang1e
V Air temperature
Remarks: Top third of this balloon was covered with an aluminized cap.

The balloon was waxed to improve water shedding.

Air temperature varied from -2 to $-4^{\circ} \mathrm{C}$ during the first week. No data on air temperature were transmitted during second two weeks.

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 126505 HN
Frequency_15.025_ MHz
Method of leak test_ Freon test
Test results three leaks detected
and repaired

Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time $25 / 02 / 68$
Ascent rate

$$
0-5,000 \mathrm{~m} \quad 1.8 \mathrm{~m} / \mathrm{sec}
$$

$$
5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}
$$

Float altitude \qquad 5420 m

Radar \qquad
Computed x x

Te lemetry
Code Sensor

$\mathrm{H} \quad$ Sun angle
\quad Air temperature

Surface winds $060^{\circ} \quad 3 \mathrm{~m} / \mathrm{sec}$
Cloud cover 1/8 Ac at 5500m Flight duration 14 days Number of orbits Position last heard 55167 (09/03/68) Probable cause of failure:

Icing
\qquad Remarks: The top third of this balloon was covered with an aluminized cap.

The balloon was waxed to improve water shedding.

Air temperature decreased from $-4^{\circ} \mathrm{C}$ on the first day to $-10^{\circ} \mathrm{C}$ on the sixth day and to $-14^{\circ} \mathrm{C}$ on the 10 th day as balloon moved to the south. The balloon moved into the Antarctic on the 14 th day and was not heard again.

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 127703 NKNC	Surface winds_ o calm m/sec
Frequency 15.023 MHz	Cloud cover $1 / 4 \mathrm{Ac}$ at 5500 m
	Flight duration 21 days
Method of leak test_ Freon test	Number of orbits
Test results small leaks around	Position last heard 71767 (20/03/68)
inflation fitting repaired	
	Probable cause of failure:
	Balloon damaged in tropical
Mfr. balloon 非_ Raven 102	storm on third day
Balloon mass $\quad 1073 \mathrm{gm}$	
Balloon volume $\quad 1.58 \mathrm{~m}^{3}$	
Balloon diameter $1 \times 3 \mathrm{~m}$	Remarks: This was an ellipsoidal bal
Film thickness_ $1 \times 1 \times 1 \mathrm{mil}$	loon, waxed to improve water shedding
Electronics mass_ 160 gm	
Ballast_ 37 gm	
Gross weight less helium 1270 gm	
Free lift_ 178 gm	
Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 29/02/68_2144 UT	
Ascent rate	
0* - altitude $\quad 2.4 \mathrm{~m} / \mathrm{sec}$	
Float altitude_ 2750 m	
Radar	
Computed__X	
Telemetry	
Code Sensor	
$\mathrm{N} \quad$ Sun angle	
K Electronics temperature	
C Air temperature	
-	

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 129905 A	Surface winds $190^{\circ} \quad 4.6 \mathrm{~m} / \mathrm{sec}$
Frequency_15.025 MHz	Cloud cover $1 / 8 \mathrm{St}$ [$3 / 8 \mathrm{As}$
	Flight duration_ 1 days
Method of leak test Freon test	Number of orbits
Test results small leaks around	Position last heard
inflation fitting	
	Probable cause of failure:
	Balloon came back over land on
Mfr. balloon 非_Raven 103	afternoon of launch day and was
Balloon mass 1181 gm	destroyed when it hit ground
Balloon volume $\quad 1.58 \mathrm{~m}^{3}$	
Balloon diameter_ $1 \times 3 \mathrm{~m}$	Remarks: This was an ellipsoid balloon.
Film thickness__ $1 \times 1 \times 1 \mathrm{mil}$	
Electronics mass_ 311 gm	
Ballast_36 gm	
Gross weight less helium 1528 gm	
Free lift_215 gm	
Launch site_ $172^{\circ} 44^{\prime}$ E, $43^{\circ} 32 \mathrm{~S}$	
Launch time_17/04/68 0900 UT	
Ascent rate	
$0-\mathrm{altitude} \quad 1.7 \mathrm{~m} / \mathrm{sec}$	
Float altitude_915 m	
Radar	
Computed_x	
Telemetry	
Code Sensor	
A Sun angle	

GHOST BALLOON FLIGHT SUMMARY

Mfr. balloon 非 Schjeldah1 3
Balloon mass
\qquad
Balloon volume_ $\quad 14.74 \mathrm{~m}^{3}$
Balloon diameter 3.04 m

Film thickness	1.5	mil
Electronics mass	148	gm
Ballast	35	gm
Gross weight less helium	2289	gm
Free lift	456	gm

| Launch site $\quad 172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$ | |
| :--- | :--- | ---: |
| Launch time $21 / 04 / 68$ | 1930 UT |

Ascent rate

$$
0-5,000 \mathrm{~m} \quad 2.1 \mathrm{~m} / \mathrm{sec}
$$

$$
5,000-10,000 \mathrm{~m}-2.1 \mathrm{~m} / \mathrm{sec}
$$

$$
\text { Float altitude } \quad 13,900^{*} \quad \mathrm{~m}
$$

Radar \qquad
Computed \qquad

Telemetry

Code	Sensor
$\frac{X}{Z}$	Sun angle
Strain gauge	

Surface winds o calm m/sec
Cloud cover_1/4 Sc: $1 / 2 \mathrm{Ac}$ Flight duration days

Number of orbits
Position last heard \qquad

Probable cause of failure:

Remarks: This balloon has lost twothirds of its overpressure during the first five months of flight.

Maximum strain: 0.46%
Minimum strain: 0.08\%
Maximum daytime variation: 0.20%

This balloon was still flying 12/12/68.
$\%$ Design altitude was $15,500 \mathrm{~m}$. After inflation, the defective inflation tube was cut out and replaced by a patch. Apparently $0.3 \mathrm{~m}^{3}$ of air was sucked into the balloon during the repair operation. This provided a 300 gm increase in effective ballast.

GHOST BALLOON FLIGHT SUMMARY

Surface winds $080^{\circ} \quad 5 \mathrm{~m} / \mathrm{sec}$

| Cloud cover $3 / 8 \mathrm{Ac}$ | | |
| :--- | :--- | :--- | :--- |
| Flight duration | 3 | days | Number of orbits \qquad

Probable cause of failure:
Unknown
\qquad
\qquad

Remarks: This was a 3 mil cylinder balloon, with 2 mil sleeve and hemisphere end caps.

The balloon was launched from the beach.

Air temperature:
First day: $+13^{\circ} \mathrm{C}$
Second day: $+11^{\circ} \mathrm{C}$

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 132502 MV
Frequency_ $15.022 \ldots$
Method of leak test Freon test
Test results two leaks detected
and repaired

ace winds	calm	$\mathrm{m} / \mathrm{sec}$
Cloud cover		
Flight duratio	16	day

Number of orbits
Position last heard \qquad

Probable cause of failure:
Icing
Mfr. balloon 非 Schjeldah1 10

Balloon mass	1158 gm
Balloon volume	$1.853 \mathrm{~m}^{3}$

Balloon diameter 1.524 m
Film thickness $\quad 2.5 \mathrm{mil}$
E1ectronics mass $\quad 153 \mathrm{gm}$

Ballast_ 10 gm
Gross weight less helium 1323 gm
Free lift 331 gm

Launch site $\quad 172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time_29/04/68 2037 UT
Ascent rate

$$
\begin{aligned}
& 0-5,000 \mathrm{~m} \quad 1.8 \mathrm{~m} / \mathrm{sec} \\
& 5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Float altitude \qquad m
Radar \qquad
Computed x

Telemetry

Code	Sensor
M	Sun angle
V	

Remarks: The top third of this balloon was covered with an aluminized cap.

The balloon was reinforced with glass filament tape, and waxed to improve water shedding.

Air temperature varied from $-8^{\circ} \mathrm{C}$ on first day to $-5^{\circ} \mathrm{C}$ on seventh day. Temperatures were very uniform during the entire flight.

Balloon 非 133307 PU
Frequency $15.027 \quad \mathrm{MHz}$
Method of leak test_Freon test
Test results ten leaks detected
and repaired

Mfr. balloon 非_Schjeldah1 3
Balloon mass
Balloon volume
Balloon diameter
Film thickness
Electronics mass
Ballast

Free lift \qquad

Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time_ 04/05/68 1518 UT
Ascent rate

$$
\begin{aligned}
& 0-5,000 \mathrm{~m} \quad 2.2 \mathrm{~m} / \mathrm{sec} \\
& 5,000-\text { altitude } \quad 2.4 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Float altitude \qquad
\qquad
Radar \qquad
Computed \qquad

Te lemetry
Code
Sensor
$\frac{P}{U} \quad$ Sun angle
\square
Surface winds_o calm m/sec

Cloud cover \qquad clear
Flight duration \qquad
Number of orbits \qquad
Position last heard \qquad

Probable cause of failure:
Icing
\square

Remarks: This balloon was equipped with a battery charged by solar cell panel to permit measurement of nighttime strain.

Average nighttime strain: 0.41%
Average daytime strain: 0.60%
Maximum daytime strain: 0.77\%
Minimum nighttime strain: 0.30\%

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Balloon 非_135907 H
Frequency_15.027_ MHz
Method of leak test_not tested
Test results____

Launch site $172^{\circ} 43^{\prime} \mathrm{E}, 43^{\circ} 17^{\prime} \mathrm{S}$
Launch time 13/05/68 2243 UT
Ascent rate
0. $-5,000 \mathrm{~m}$ $\mathrm{m} / \mathrm{sec}$
5,000-10,000 m $\mathrm{m} / \mathrm{sec}$
Float altitude
\qquad m

Radar \qquad
Computed \qquad x

Telemetry
Code Sensor
\qquad

- \quad Air temperature
$\square \quad \square$
\square
\qquad

Surface winds_or_ light $\quad \mathrm{m} / \mathrm{sec}$
Cloud cover $1 / 8 \mathrm{Cu} ; 6 / 8 \mathrm{Ac}$

Flight duration $\quad 3$

Number of orbits Position last heard \qquad

Probable cause of failure:
Unknown
\qquad
\qquad

Remarks: This was a cylinder balloon. Air temperature:

First day: $+12.5^{\circ} \mathrm{C}$
Second day: $+4.0^{\circ} \mathrm{C}$

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 137905 W	Surface winds o calm m／sec
Frequency 15．025 MHz	Cloud cover
	Flight duration 5 days
Method of leak test＿not tested	Number of orbits
Test results	Position last heard
	Probable cause of failure： \qquad
Mfr．balloon \＃⿰三丨⿰丨三一2 Raven 110	mass and possibly iced up in sub－
Balloon mass 4856 gm	freezing temperatures
Balloon volume $\quad 5.79 \mathrm{~m}^{3}$	
Balloon diameter $1 \times 6.7 \mathrm{~m}$	Remarks：This was a cylinder balloon
Film thickness＿ 5 mil	Air temperature：
Electronics mass＿330 gm	First day：$+4.0^{\circ} \mathrm{C}$
Ballast＿ 354 gm	Second day：$+4.0^{\circ} \mathrm{C}$
Gross weight less helium 5540 gm	Third day：$+3.0^{\circ} \mathrm{C}$
Free lift＿ 701 gm	Fourth day：$-5.0{ }^{\circ} \mathrm{C}$
Launch site $172^{\circ} 44^{\prime} \mathrm{E}, 43^{\circ} 32^{\prime} \mathrm{S}$	
Launch time 22／05／68 2210 UT	
Ascent rate	
$0-5,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$	
Float altitude＿ 970 m	
Radar	
Computed＿ x	
Telemetry	
Code Sensor	
W Air temperature	
＿	

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 140206 L	Surface winds ${ }^{\circ} \mathrm{calm} \mathrm{m} / \mathrm{sec}$
Frequency 15.026 M $\quad 1$M	Cloud cover_clear
	Flight duration 34 days
Method of leak test Freon test	Number of orbits_ 2
Test results no leaks detected	Position last heard 83575 (12/07/68)
	Probable cause of failure: \qquad
Mfr. balloon 非 Raven 109	
Balloon mass_ 1737 gm	
Balloon volume $\quad 7.037 \mathrm{~m}^{3}$	
Balloon diameter_2.38 m	Remarks: The top third of this balloon
Film thickness__ 2 mil	was covered with an aluminized cap.
Electronics mass 149 gm	
Ballast_64 gm	
Gross weight less helium 1950 gm	
Free lift_ 195 gm	
Launch site $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time 09/06/68 2059 UT	
Ascent rate	
$0-5,000 \mathrm{~m} \quad 1.7 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m}$ 2.0 m/sec	
Float altitude_11, 784 m	
Radar	
Computed x	

Te lemetry
Code Sensor
\qquad
\qquad

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 144206 D	Surface winds ${ }^{\circ} \mathrm{calm} \mathrm{m} / \mathrm{sec}$
Frequency 15.026 MHz	Cloud cover 3/8 Ac
	Flight duration 97 days
Method of leak test__ Freon test	Number of orbits_ 6
Test results one leak detected	Position last heard 55634 (17/09/68)
and repaired	
	Probable cause of failure:
	Icing
Mfr. balloon \#1 Raven 103	
Balloon mass_ 1732 gm	
Balloon volume $\quad 7.037 \mathrm{~m}^{3}$	
Balloon diameter 2.38 m	Remarks: The top third of this balloon
Film thickness_ 2 mil	was covered with an aluminized cap.
Electronics mass_137 gm	
Ballast_ 81 gm	
Gross weight less helium 1950 gm	
Free lift_ 195 gm	
Launch site_ $172^{\circ} 32 \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$	
Launch time_13/06/68 2118 UT	
Ascent rate	
$0-5,000 \mathrm{~m} \quad 1.6 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m}$ - $2.1 \mathrm{~m} / \mathrm{sec}$	
Float altitude 11,784 m	
Radar	
Computed_x	
Te 1emetry	
Code Sensor	
D Sun angle	
-	

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 147207 Y
Frequency $15.027 \quad \mathrm{MHz}$
Method of leak test_ Freon test
Test results no leaks detected

Mfr. balloon 非_ Raven 104	
Balloon mass	1739 gm
Balloon volume	$7.037 \mathrm{~m}^{3}$
Balloon diameter	2.38 m
Film thickness	2 mil
Electronics mass	123 gm
Ballast	98 gm
Gross weight less helium	1950 gm
Free lift	195 gm

Surface winds gusty ${ }^{\circ} \quad 4 \mathrm{~m} / \mathrm{sec}$
Cloud cover_1/4 Sc
Flight duration 41 days

Number of orbits_ $\quad 1$
Position last heard 82609 (28/07/68)

Probable cause of failure:
Electronics failure
Electronics failure

Remarks: The top third of this balloon was covered with an aluminized cap.

This balloon was equipped with Cosmos electronics which operated erratically during the entire flight.

Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time_18/06/68 2058 UT
Ascent rate
$0-5,000 \mathrm{~m} \quad 1.5 \mathrm{~m} / \mathrm{sec}$
$5,000-10,000 \mathrm{~m} \quad 1.8 \mathrm{~m} / \mathrm{sec}$

Float altitude \qquad m

Radar \qquad
Computed $\quad \mathrm{x}$
Te lemetry
Code
Sensor
\underline{Y} Sun angle
\qquad
\qquad
\qquad
\qquad

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 148203 G
Frequency $15.023 \quad \mathrm{MHz}$
Method of leak test Freon test
Test results no leaks detected

Mfr. balloon 非_Raven 105
Balloon mass $\quad 1732 \mathrm{gm}$
Balloon volume_ $\quad 7.037 \mathrm{~m}^{3}$
Balloon diameter 2.38 n
Film thickness $\quad 2 \quad \mathrm{mil}$
Electronics mass_ 135 gm

Ballast \qquad
Gross weight less helium. 1950 gm
Free lift \qquad

Launch site_ $172^{\circ} 32^{\prime} \mathrm{E}, 43^{\circ} 29^{\prime} \mathrm{S}$
Launch time_ $18 / 06 / 68$ UT
Ascent rate
$0-5,000 \mathrm{~m} \quad 1.5 \mathrm{~m} / \mathrm{sec}$
$5,000-10,000 \mathrm{~m} \quad 1.8 \mathrm{~m} / \mathrm{sec}$
Float altitude \qquad 11,784 m

Radar \qquad
Computed \qquad X

Telemetry
Code Sensor
\qquad Sun angle

Surface winds gusty ${ }^{\circ} \quad 4 \quad \mathrm{~m} / \mathrm{sec}$
\qquad
Flight duration days

Number of orbits \qquad
Position last heard \qquad

Probable cause of failure:

Remarks: The top third of this balloon was covered with an aluminized cap.

This balloon was still flying on 16/12/68.

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 149204 Z	Surface winds gusty ${ }^{\circ}$ (4 m/sec
Frequency 15.024 MHz	Cloud cover $1 / 4 \mathrm{Sc}$
	Flight duration_days
Method of leak test_ Freon test	Number of orbits
Test results no leaks detected	Position last heard
	Probable cause of failure:
Mfr. balloon 非__Raven 110	
Balloon mass_ 1716 gm	
Balloon volume $\quad 7.037 \mathrm{~m}^{3}$	
Balloon diameter_ 2.38 m	Remarks: The top third of this balloon
Film thickness__ 2 mil	was covered with an aluminized cap.
Electronics mass_ 138 gm	This balloon was still flying on
Ballast__ 77 gm	16/12/68.
Gross weight less helium_1950 gm	
Free lift_ 195 gm	
Launch site $172^{\circ}{ }^{\prime}{ }^{\prime} \mathrm{E}, 4^{4} 3^{\circ} 29^{\prime} \mathrm{S}$	
Launch time_18/06/68 2102 UT	
Ascent rate	
$0-5,000 \mathrm{~m} \quad 1.5 \mathrm{~m} / \mathrm{sec}$	
$5,000-10,000 \mathrm{~m}$ - $1.8 \mathrm{~m} / \mathrm{sec}$	
Float altitude_ 11,784 m	
Radar	
Computed__x	

Telemetry
Code Sensor
\qquad
\qquad
\qquad
\qquad

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 150208 Q 150205 C
Frequency $15.028 \quad 15.025 \quad \mathrm{MHz}$
Method of leak test_ Freon test
Test results_no leaks detected

Launch site $172^{\circ}{ }^{3}{ }^{1}$	$172^{\circ} 32^{\prime} \mathrm{E}, 4^{\circ}{ }^{\circ} 29^{\prime} \mathrm{S}$
Launch time_ 19/06/68	2048 UT
Ascent rate	
- 5,000 m	$1.5 \mathrm{~m} / \mathrm{sec}$
5,000-10,000 m	$1.9 \mathrm{~m} / \mathrm{sec}$

Float altitude \qquad 11,530 m

Radar \qquad
Computed \qquad x

Telemetry
Code Sensor

Q	Sun angle
C	Strain gauge

Icing
\longrightarrow

Remarks: The top third of this balloon was covered with an aluminized cap.

The balloon showed no measurable gas loss during its life.

Q coder: Cosmos electronics
C coder: Conventional electronics

Maximum strain: 0.79\%
Minimum strain: 0.53\%
Maximum daytime variation: 0.16%

GHOST BALLOON FLIGHT SUMMARY

Balloon 非 151100 RD
Frequency $15.020 \quad \mathrm{MHz}$
Method of leak test_ Freon test
Test results two leaks detected
and repaired

Mfr. balloon 非 Schjeldahl 5
Balloon mass 2106 gm
Balloon volume $\quad 14.74 \mathrm{~m}^{3}$
Balloon diameter $\quad 3.04 \mathrm{~m}$
Film thickness $\quad 1.5$ mil
Electronics mass_ 174 gm
Ballast__ 34 gm

Gross weight less helium_2314 gm
Free lift
463 gm

Launch site $\quad 172^{\circ} 32$	$172^{\circ} 32{ }^{\prime} \mathrm{E}, 43^{\circ}{ }^{\prime} 9^{\prime} \mathrm{S}$
Launch time_ 27/06/68	2041 UT
Ascent rate	
$0^{\prime}-5,000 \mathrm{~m}$	$2.2 \mathrm{~m} / \mathrm{sec}$
5,000 - 10,000 m	$2.3 \mathrm{~m} / \mathrm{sec}$

Float altitude \qquad
Radar
Computed__X_

Te lemetry
Code
Sensor
$\frac{R}{D} \frac{\text { Sun angle }}{\text { Strain gauge }}$
__
\qquad

Surface winds $060^{\circ} \quad 2.5 \mathrm{~m} / \mathrm{sec}$
Cloud cover \qquad
Flight duration
123 days

Number of orbits_12
Position last heard $52250 \quad(27 / 10 / 68)$

Probable cause of failure:
Icing
\qquad

Remarks: This balloon shows no gas loss in the first 3 months of flight.

Maximum strain: 0.59\%
Minimum strain: 0.23\%
Maximum daytime variation: 0.27\%
*
This balloon was repaired prior launch in the same manner as 130101 XZ . Since radar data on 130101 XZ indicated air had been introduced into the balloon during repair, it is likely that this balloon also has air mixed with helium, and may be flying as low as $14,000 \mathrm{~m}$.

Balloon 非 152906 R	Surface winds ${ }^{\circ} \mathrm{m} / \mathrm{sec}$
Frequency $15.026 \ldots \mathrm{MHz}$	Cloud cover
	Flight duration_ days
Method of leak test not tested	Number of orbits
Test results	Position last heard
	Probable cause of failure:
	Unknown
Mfr. balloon 非 Raven 103	
$\mathrm{Balloon} \mathrm{mass} \quad 4851 \mathrm{gm}$	
Balloon volume $\quad 5.79 \mathrm{~m}^{3}$	
Balloon diameter_m $\quad 1$	Remarks: This was a cylinder balloon.
Film thickness_ mil	The thermistor broke at launch.
Electronics mass 332 gm	
Ballast_357 gm	
Gross weight less helium 5540 gm	
Free lift_ 665 gm	
Launch site_ $172^{\circ} 43^{\prime} \mathrm{E}, 43^{\circ} 17^{\prime} \mathrm{S}$	
Launch time 27/06/68 2325 UT	
Ascent rate	
$0-5,000 \mathrm{~m}$ m/sec	
$5,000-10,000 \mathrm{~m} \quad \mathrm{~m} / \mathrm{sec}$	
Float altitude_ 970 m	
Radar	
Computed_ x	
Telemetry	
Code Sensor	
R Air temperature	
-	

[^0]: * Ascent rate increased to $4.5 \mathrm{~m} / \mathrm{sec}$ at $14,000 \mathrm{~m}$.

