Asynchronous
Communication in
Spectral Element
and
Discontinuous
Galerkin Methods
for Atmospheric
Dynamics

Benjamin F. Jamroz

Robert Klofkorn

National Center for
Atmospheric Research
P. O. Box 3000
Boulder, Colorado
80307-3000
www.ucar.edu

AVON
dVON

10] 1=9]ua)) |[eUONEN

x>
)
=
0
(¥
o
=
D
=
A
P
(]
D
W
0
0

4SN 3HL A9 A34OSNOd dVON

OSNOJS SI 4vd
SNE U0[jepuN04 UINS |eUdIEN

ity

FIsN

NCAR TECHNICAL NOTES

http://library.ucar.edu/research/publish-technote

The Technical Notes series provides an outlet for a variety of NCAR
Manuscripts that contribute in specialized ways to the body of scientific
knowledge but that are not yet at a point of a formal journal, monograph or
book publication. Reports in this series are issued by the NCAR scientific
divisions, serviced by OpenSky and operated through the NCAR Library.
Designation symbols for the series include:

EDD — Engineering, Design, or Development Reports
Equipment descriptions, test results, instrumentation,
and operating and maintenance manuals.

IA — Instructional Aids
Instruction manuals, bibliographies, film supplements,
and other research or instructional aids.

PPR — Program Progress Reports
Field program reports, interim and working reports,
survey reports, and plans for experiments.

PROC — Proceedings

Documentation or symposia, colloquia, conferences,
workshops, and lectures. (Distribution maybe limited to
attendees).

STR — Scientific and Technical Reports
Data compilations, theoretical and numerical
investigations, and experimental results.

The National Center for Atmospheric Research (NCAR) is operated by the
nonprofit University Corporation for Atmospheric Research (UCAR) under the
sponsorship of the National Science Foundation. Any opinions, findings,
conclusions, or recommendations expressed in this publication are those of
the author(s) and do not necessarily reflect the views of the National Science
Foundation.

National Center for Atmospheric Research
P. O. Box 3000
Boulder, Colorado 80307-3000

http://library.ucar.edu/research/publish-technote

NCAR/TN-516+STR
NCAR Technical Note

Date 2015-June

Asynchronous Communication in Spectral Element and
Discontinuous Galerkin Methods for Atmospheric
Dynamics

Benjamin F. Jamroz

Computational and Information Systems Lab (CISL),

National Center for Atmospheric Research, Boulder, CO

Robert Klo6fkorn

Energy Department,

International Research Institute of Stavanger, Stavanger, Norway

Computational and Information Systems Laboratory
Technology Development Division

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH
P. O. Box 3000

BOULDER, COLORADO 80307-3000

ISSN Print Edition 2153-2397

ISSN Electronic Edition 2153-2400

Asynchronous Communication in Spectral
Element and Discontinuous Galerkin Methods for
Atmospheric Dynamics

June 11, 2015

Abstract

The scalability of computational applications on current and next gen-
eration supercomputers is increasingly limited by the cost of inter-process
communication. We implement non-blocking asynchronous communica-
tion in the High-Order Methods Modeling Environment for the time-
integration of the hydrostatic fluid equations using both the Spectral
Element and Discontinuous Galerkin methods. This allows the overlap
of computation with communication effectively hiding some of the costs
of communication. A novel detail about our approach is that it provides
some data movement to be performed during the asynchronous communi-
cation even in the absence of other computations. This method produces
significant performance and scalability gains in large-scale simulations.

Contents

1 Introduction 4
2 Background 5
2.1 Non-blocking Communication 5
2.2 Current Communication Strategy 7
3 Overlapping Asynchronous Communication Strategy 9
3.1 Overlapping for the SE method 10
3.2 Overlapping for the DG method 11
4 Results 12
4.1 The Jablonowski-Williamson baroclinic wave instability test case 12
4.2 Scaling results for the SE method 12
4.3 Scaling results for the DG method 14
5 Discussion 16
5.1 Performance at Large-Scale 16
5.2 Bit-for-Bit Reproducibility 16
6 Conclusion 18

List of Figures

1

Results from the Sandia MPI MicroBenchmark using the IBM
MPT implementation with Eager protocol (top) for sending (a)
and receiving (b) an asynchronous non-blocking message and
Rendezvous protocol (bottom) for sending (c) and receiving (d).
Here, overhead corresponds to the amount of overhead time re-
quired to send or receive a non-blocking message, while work_t
corresponds to the amount of computation required to effectively
hide the costs of sending or receiving the message.
Connectivity in HOMME-SE (a) and HOMME-DG (b). The DG
version does not need to communicate vertex data and thus con-
nectivity to other processes is reduced.
Surface pressure at day 7 and 9 for the HOMME-SE (a,c) and
HOMME-DG (b,d) code for the Jablonowski-Williamson baro-
clinic wave instability test case. Both methods used 1 degree
resolution at the equator (nlev = 26, SE: np = 4, n. = 30, DG:
np=06,n.=18).
Vorticity at day 7 and 9 for the HOMME-SE (a,c) and HOMME-
DG (b,d) code for the Jablonowski-Williamson baroclinic wave
instability test case. Both methods used 1 degree resolution at
the equator (nlev = 26, SE: np = 4, n. = 30, DG: np = 6,
ne=18).
Strong scaling of the SE method in HOMME the Jablonowski-
Williamson test baroclinic wave instability test case for n, = 60

(a) and ne = 120 (b). For these runs we used np = 4 and nlev = 26. 14

Strong scaling of the HOMME-DG code for the Jablonowski-
Williamson baro-clinic wave instability test case. For the run
we used np = 6, nlev = 26, and (a) n. = 60 as well as (b)
ne = 120. For each run we compute 4500 timesteps.

List of Tables

1

Results for the strong scaling of the SE method for n. = 60 (a)
nd n. = 120 (b). We list the number processes P, the maximum
number of elements per process E/P, and the times for the syn-
chronous and asynchronous communication methods. The speed

up of using asynchronous communication is included in parentheses. 15

Time in seconds for the synchronous, the overlapping with ver-
tex connectivity, the asynchronous without vertex connectivity,
and the overlapping without vertex connectivity communication
methods for the DG strong scaling with £ = 21,600 elements
(ne = 60). P denotes the number of cores used in the simulation.

17

1 Introduction

The Community Earth System Model (CESM) is a global climate model with
full coupling between the atmosphere, ocaen, land, sea-ice, and land-ice com-
ponents [8]. The Community Atmosphere Model (CAM) is the atmospheric
component in CESM which advances the physical attributes of the atmosphere
as well as time-integrating the atmospheric dynamics through the use of a dy-
namical core [14]. Although there are several dynamical cores available in CAM,
the High-Order Methods Modeling Environment (HOMME) dynamical core [6]
is most widely used for large-scale simulations on supercomputers due to its
scalability.

HOMME has support for both the spectral element (SE) and discontinu-
ous Galerkin (DG) methods to advance the hydrostatic primitive equations.
Both methods have been chosen for their scalability on large distributed mem-
ory supercomputers. The high-order of accuracy of these methods is com-
plemented with a compact communication pattern between representative el-
ements. Specifically, in two-dimensions each element needs only to exchange
information with its edge neighbors (DG), or edge and vertex neighbors (SE).
Unlike a finite-volume method where higher-order stencils have larger spatial
extent, the SE and DG methods attain this property for arbitrary order. These
schemes limit the amount of inter-process communication, providing superior
scalability in many applications.

HOMME has demonstrated very good scaling for both the SE and DG meth-
ods. The SE method has shown good scaling up to 178k cores [6], while the
DG method has shown similar scaling beyond 2k cores [13]. Although HOMME
scales well, further increases in performance and scalability can increase the
amount of simulated years of climate per day (SYPD) of CESM on large paral-
lel resources. This reduces the time required for long simulations and increases
the amount of science obtained in a given amount of wall-clock time. Addi-
tionally, better scalability yields more efficient use of large-scale computational
resources. Even a small reduction of computational time can have a large im-
pact in reducing the operational costs of a large supercomputer. Finally, next-
generation hardware, which is typically characterized by lower clock frequencies
and less memory per core, will benefit from additional parallelism, concurrency,
and asynchronicity.

In this paper, we discuss the implementation of non-blocking asynchronous
communication in HOMME for both the SE and DG methods. We highlight
that our method provides some data movement to be performed, even in the ab-
sence of additional computation, during the communication step. Overlapping
communication with this data movement and additional computation shows
scalability and performance gains on large-scale simulations.

The outline of this paper is as follows. First, we present the existing data
structures and communication strategy in HOMME. Next, we summarize our
implementation of non-blocking asynchronous communication highlighting data
movement which can be performed during communication. We then present
scaling results and discuss advantages and limitations of the new method.

2 Background

We first give some background on non-blocking message passing using Message
Passing Interface (MPI) [7]. Next, in order to clearly explain the non-blocking
asynchronous communication method we first describe the data structures used
in HOMME and the existing synchronous communication method.

2.1 Non-blocking Communication

Many high-performance scientific applications use MPI to communicate between
processes in a distributed memory context. Point-to-point messaging is one of
the communication paradigms implemented by MPI, others include reductions,
broadcasts, scatters, and gathers. This communication method is often used
in the context of nearest neighbor communication in the solution of partial
differential equations using explicit in time integration methods where data
between neighboring grid elements (finite volume cells, Galerkin elements) must
be exchanged. Point-to-point messaging is characterized by one process (the
“sender”) sending data to another (the “receiver”).

Blocking communication is used when the MPI processes cannot advance in
between the sending and receiving of messages. That is, a process sending a
blocking message must wait until the message has been received. Likewise, in
a blocking receive the receiver must wait for the message to be sent and fully
received. Using MPI, blocking communication is typically implemented with
MPI_Send and MPI_Recv. Since blocking communication causes a synchroniza-
tion between processes involved in the communication, this method is not widely
used in high-performance parallel applications.

A non-blocking implementation allows sending messages without the restric-
tion that the sending process waits for the message to be received. On the
receiver side, the destination process posts a receive, but can continue running
without waiting for the message to be received. Thus, both the source and
destination processes can continue execution while the message is sent and re-
ceived. This allows the overlap of some computation during communications,
giving the potential to hide some of the cost of communication. In most appli-
cations, however, there is a point in the calculation at which the message needs
to be fully sent and received before any more progress can be made. At this
point, the receiver must wait for the message to be completely received and the
sending process must wait for the send to be fully completed. Most commonly,
non-blocking communication is implemented using MPI with the MPI_ISend,
MPI_IRecv, and MPI_Wait/MPI_Waitall calls.

The effectiveness of non-blocking communication depends on system spe-
cific characteristics which are not fully encapsulated in the MPI layer. A
measure of the effectiveness of non-blocking communication is provided by the
MPI overhead test as a part of the Sandia MPI Micro-Benchmark Suite [2].
Here, non-blocking communication between two processes is initialized using
MPI_Isend and MPI_Irecv. Then some computation is performed before a call
to MPI_Waitall. The amount of computation is increased in each iteration, and

each phase is timed to find the point at which the computation costs dominate
the non-blocking communication costs. The benchmark then reports a met-
ric for what percentage of the time can be used for computation for a given
message size. We used this benchmark to investigate the performance of two
different MPI implementations, IBM’s version of MPICH 1.5 and Intel MPI
version 4.0.3.008, and different runtime parameters (i.e. environment variables)
on the Yellowstone supercomputer [1].

3 3
1071 +— work_t 1071 — work_t .
=-« overhead =-a overhead ,
10° 10?
m o
2 2
g g
£1 £1
£ 10 £ 10
e TR
0 ” 0
10 e 10
.—""---.__.-—"'
ONTTOONTOVONYVYYVYVYYYYYVYYSSS ONSTOONSYTOVONVYYVYVYVYVYVYVYYVYYSSS
AMONINTHANTOONTOONHN T AMNONINEHANTOONSTOONANT
— NN s MmMmoaNn- — NN “MmMmonNLn-
— N0 — NN
Message size [B] Message size [B]
(a) Eager - sender (b) Eager - receiver
10° 10° |
— work_t — work_t .
=-= overhead =-= overhead
10° 10°
m o
2 2
g g
1 1
i:10 .':10
b
k] /
s-r m-a-g-na-u-%p) B
10° / ™y 10° '
/ P
e, a-w ,—‘--.--'
ONSTOONYTOVONYVYVYVYVYVYVYYVYYS S S ONTSOONTOONNYYVYVVYYVYVYYVYVYSSS
HMNONINAANTOONSOONHN AFMNONINTHANTOONTOONAN
NN MO N~ N0 —MONL
NN — NN
Message size [B] Message size [B]
(c) Rendezvous - sender (d) Rendezvous - receiver

Figure 1: Results from the Sandia MPI MicroBenchmark using the IBM MPI
implementation with Eager protocol (top) for sending (a) and receiving (b)
an asynchronous non-blocking message and Rendezvous protocol (bottom) for
sending (c) and receiving (d). Here, overhead corresponds to the amount of
overhead time required to send or receive a non-blocking message, while work_t
corresponds to the amount of computation required to effectively hide the costs
of sending or receiving the message.

Figure 1 shows the results of the micro-benchmark for various message sizes
sent between two nodes of the Yellowstone supercomputer [1] averaged over 100
iterations for both the Eager and Rendezvous protocols using the IBM MPI im-
plementation. Figure 1 (a) shows the overhead and work_t metrics for sending a
non-blocking message for this micro-benchmark using the Eager protocol. Here,

overhead signifies the time spent sending the non-blocking message, while work _t
denotes the amount of computational time estimated to fully hide the resulting
cost of waiting for the message being received. Similarly, Figure 1 (b) shows
the same data for the receiver’s side. Figures 1 (c-d) show similar results for
the Rendezvous protocol. In these plots, we can see that the overhead of asyn-
chronous non-blocking messaging increases with message size. Additionally the
amount of overlapped computation required to effectively hide the cost of com-
munication increases with message size. This shows that in order to effectively
hide communication costs using asynchronous non-blocking communication, one
must provide enough computation to be performed during the communication
step. Providing only a small amount of computation to be performed during
communication limits the benefit of non-blocking asynchronous communication.

2.2 Current Communication Strategy

The computational grid in HOMME is typically a semi-structured cubed-sphere
or fully unstructured static grid on the surface of a sphere. Due to the time-scale
separation of hydrostatic flows in the locally horizontal (along the surface of the
sphere) and locally vertical (radial) directions, only the surface of the sphere is
discretized using the SE or DG methods. The vertical direction uses centered
finite-difference methods [15]. This effectively creates a stack of elements, an
“element-column”, with one two-dimensional element for each vertical level.
Typically, for climate simulations, there are 26-50 vertical levels, although some
whole-atmosphere models consider up to 81 levels [11]. For parallel efficiency
all vertical levels, one element-column, exist on the same process.

In integrating the dynamics of the hydrostatic equations, the majority of
the computations are within each element at one level. Additionally, the con-
sistency conditions between elements (continuity for SE, flux-balance for DG)
only involves horizontally adjacent neighboring elements at the same vertical
level. Thus the layout of the element data in HOMME has the form

type element
real , dimension(np, np, nlev) :: element_data
end type element

where np represents the number of Gauss-Lobatto Lebesgue (GLL) points, and
equivalently np—1 denotes the order of polynomial, and nlev denotes the number
of vertical levels. Since the data within one element (at one vertical level) is
co-located with stride one access, intra-element computations, which represent
the bulk of the computation, can be done with maximal efficiency. However, at
certain points in the calculation, eg. when calculating the surface pressure, a
reduction across vertical levels must be performed. Although this data structure
is not ideal for this particular calculation, it is a small percentage of the overall
computation. Thus the above data structure is optimal for the majority of
calculations.

Consistency between neighboring elements is one place where communica-
tion between elements, and therefore processes, must occur. In HOMME, for

both the SE and the DG methods this amounts to exchanging data between
neighboring horizontal elements. For the SE method, since continuity must be
enforced, the horizontal neighbors with which information must be exchanged
include elements which share an edge and those which only share a vertex. For
the DG method, since only edge fluxes between elements is required, only the
neighboring elements which share an edge are included. Figure 2 illustrates the
connectivity of a reference element for the SE and DG methods.

e o e o e o
e o e o e o
e o o o e o e o
e o e o e o e o
e o e o e o e o ¢
o o e o ¢ e o e o ¢
(a) HOMME-SE connectivity. (b) HOMME-DG connectivity.

Figure 2: Connectivity in HOMME-SE (a) and HOMME-DG (b). The DG
version does not need to communicate vertex data and thus connectivity to
other processes is reduced.

The existing communication method for both the SE and DG methods has
the following form. First, the element data, which is represented above with a
three-dimensional index, is packed into a one-dimensional buffer consistent to
what is required by the calls to MPI_Irecv, MPI_Isend. The packing takes all of
the edge and vertex values and writes them into a buffer in a co-located manner.
Once all of the data for each element-column on a process has been packed into
the buffer, the appropriate MPI_Irecv and MPI_Isend calls are made. Imme-
diately after all of these calls have been made, a call to MPI_Waitall is called
on all of the receive and send requests. After this point, the data can be ad-
ditively unpacked from the buffer into the element data structures. Although
this communication pattern is technically asynchronous (because of the use of
MPI Irecv and MPI_Isend) the immediate use of MPI_Waitall creates a synchro-
nization across processes and we therefore denote this communication pattern
as synchronous. In runs on large numbers of processes, there is a significant
amount of time spent at this call where processes wait for neighboring processes
to both send and receive data.

3 Overlapping Asynchronous Communication Strat-
egy

In order to implement effective non-blocking asynchronous communication in
HOMME we have revised the communication pattern. In the existing imple-
mentation, element edges and vertices are packed (unpacked) into (out of) a
buffer sequentially, in order of element index, with no regard for whether the
data needs to be messaged. This is a key distinction from our method which
takes into account this information. Here, we have separated the packing and
unpacking of element edges and vertices into groups corresponding to individual
messages to be sent and received. This modification allows us to overlap the
packing and unpacking of edges with the communication. This approach also
provides the ability to perform some data movement even in the absence of any
other computation. We now describe this technique.

To implement the overlap of pack/unpack routines with the communication
itself we generated the following mapping. Denote by £, the set of all processes
with which a given process needs to communicate. Using this set we generate a
set of elements that contains all elements e € & that are linked to process ! € £,,
either the edge or the vertices (see also Figure 2). This latter set specifies the
data that needs to be packed before message [is sent. Specifically, after packing
all of the edges and vertices for message [one can immediately call MPI Isend,
and begin packing the data for the next message.

On the receive side, one can unpack data as soon as soon as a message is
received. Specifically, we use a call to MPI_Testany to determine if any of the
messages have been received. After a message has been received, we remove it
from the list of messages to be checked in MPI _Testany, and unpack the data
that was received. We repeat this process with a reduced list of messages in
the call to MPI_Testany until all of the messages have been received and the
corresponding data unpacked. Note that in general the connectivity for send
and receive could differ, i.e. we have a set £, for the send procedure and L, for
receive. However, the communication we consider in this paper is symmetric,
Le. L =Ly,

In Algorithm 1 we present the packAndSend routine and in Algorithm
2 the receiveAndUnpack routine. Both overlap the send/receive with the
corresponding pack/unpack.

Algorithm 1 packAndSend

1: MPI_Waitall(£,) { wait for previously posted MPI Isend calls }
2: for g€ £ do

3: foreeé&, do

4 packData(e, ¢) { pack data to MPI message buffer }
5: end for
6

7

MPI Isend(¢) { send data in message buffer to rank ¢ }
end for

Algorithm 2 receiveAndUnpack

1:n. <0

2: while n, <|[L}| do

3: { check if message is available, if yes then ¢ contains the corresponding
rank }

4: if MPI Testany(£}, ¢) then

5 forec &, do

6 unpackData(e, ¢) { unpack data from MPI message buffer }

7: end for

8 reset MPI_Request for ¢ to MPI_REQUEST _NULL

9 ny < n, + 1 { increase received counter }

10: end if

11: end while

Most notable about the implementation explained above is that even in the
absence of additional computation to be completed during communication, the
packing and unpacking of the buffers provides some data movement to be ac-
complished while waiting for messages to be received. This is extended in the
case where there are multiple elements per process. Here, these intra-process
edges and vertex contributions are packed and unpacked in between the send
and receive stages, providing even further data movement before querying for
completed messages. More internal edges and vertices provide more data move-
ment and therefore better communication hiding.

Finally, since our communication restructuring now clearly supports separate
send and receive routines, one can now place computation between these calls to
potentially hide even more of the communication costs. In many cases, however,
this requires some algorithmic restructuring which is not always easy or possible.
For that reason our implementation provides at least the more simple overlap of
pack/unpack with communication calls. We now describe the computation and
data movement that can be performed while waiting for messages to be received
in the SE and DG methods.

3.1 Overlapping for the SE method

In the SE method, communication is required mainly as part of an operator
which projects data for each element (which is redundant a the edges of the ele-
ment) onto the space of continuous piecewise polynomials [17]. Specifically, data
on element edges is not continuous until after a pack, communication, unpack
cycle has been completed. This adds a difficulty in overlapping computation
with communication for the SE method since any computation depending upon
the data being messaged would have to take into account the discontinuity of
the data.

While we haven’t been able to take advantage of any significant computation
to be performed while communication occurs, there is still the data movement
performed by the packing and unpacking of interior data and the packing and

10

unpacking of messages as they arrive. Since this data movement is required in
the original synchronous communication method as well, overlapping this data
movement provides a small amount of work to be done to hide some of the
communication costs.

3.2 Overlapping for the DG method

In the DG method, communication is required to obtain data needed to perform
flux calculations carried out at each edge of an element [13]. This allows the
computation of internal edge and element integrals during the asynchronous
communication. We have allowed the computation of a auxiliary diagnostic
variables between the call of send and receive. Further code revision could
include the computation of the right hand side and internal flux computations
as described in [4]. In Algorithm 3 we describe how we overlap the computation
of auxiliary variables and the computation of the gradient of the solution for
the diffusion operator with the communication of the fluxes. Details on the
implementation of the diffusion operator can be found in [12].

Algorithm 3 dg3d_uv_step

1: dg3d_packAndSend(userdata) {send data for flux and gradient compu-

tation}

gradient_p3d(userdata) {compute local auxiliary variables }

dg3d_recvAndUnpack(userdata) {receive data}

if updateDiffusion then
dg3d_diff_grads_uv(userdata) {compute local gradients}
dg3d_gradientPackAndSend(userdata)

end if

rhs + dg3d_uvform rhs {compute fluxes and right hand side}

if updateDiffusion then
dg3d_gradientRecvAndUnpack(userdata) {receive the gradients}
diff rhs < dg3d_diff_flux(userdata) {compute gradients fluxes}

. end if

13: if diffusion then

14: rhs = rhs + diff rhs

15: end if

— e
M 22

In addition, in comparison to the DG implementation used in [13] which uses
the same communication structure as the SE method (which means unnecessary
communication of vertex values) the new DG implementation only communi-
cates edge values (see Figure 2b). This is easily achieved by simply altering
the sets £ and £ This reduces the inter process connectivity considerably.
The result is faster execution times and better scaling as presented in the next
section.

11

4 Results

We test our implementation of non-blocking asynchronous communication using
the well known Jablonowski-Williamson baroclinic wave instability test case [9]
using the Yellowstone supercomputer [1]. We first show that the new commu-
nication strategy produces accurate dynamics and then show results for strong
scalings on representative climate simulation resolutions. For all of the following
runs we have used a cubed-sphere grid with n. elements along each edge of the
cube for a total of E = 6n? total elements.

4.1 The Jablonowski-Williamson baroclinic wave instabil-
ity test case

The Jablonowski-Williamson baroclinic wave instability test case examines the
evolution of an idealized baroclinic wave in the northern hemisphere. This test
is designed to evaluate dynamical cores at resolutions applicable to climate sim-
ulations. Thus, it is a good case to get a measure of performance and scalability
in a climate realistic test problem. Although an analytic solution is not available
for this test case, reference solutions exist for the Eulerian dynamical core [14].

In Figure 3 and 4 we present the results for the surface pressure and the
vorticity, respectively, for the Jablonowski-Williamson test case [3, 9] using non-
blocking asynchronous communication. We run both methods, the SE and the
DG, for this test case using a resolution of roughly 1 degree at the equator. For
the SE method this means n, = 30, since we are using the standard configuration
of np = 4. For the DG method, we use np = 6 and n. = 18. Both models use
nlev = 26. As Figure 3 and 4 show, both methods we are able to reproduce
the results presented in the literature [3, 9]. For the DG method we are able
to achieve bit for bit reproducibility of the results achieved with the old and
new communication methods. For the SE method this is not possible due to
the varying summation order of the communicated vertex values.

In the following, we present a series of scaling results to show the effectiveness
and performance of our non-blocking asynchronous communication strategy. For
both scaling series we use a cubed-sphere mesh with a resolution of n, = 60 and
ne = 120 elements along each edge of the cubed-sphere for £ = 21,600 and
FE = 86,400 total elements respectively.

4.2 Scaling results for the SE method

For the SE method, we perform a strong scaling for half-degree n. = 60 and
quarter-degree n. = 120 resolutions with np = 4. In order to limit the total
amount of computational time, we performed nine days of simulated time for
the n, = 60 runs but only one day of simulated time for the n, = 120 runs.
Figure 5 shows the plots of the strong scaling of total time-stepping time for
both resolutions. Additionally, Table 1 lists the timing results as well as speed
up numbers from the n, = 60 and n. = 120 scaling runs as well.

12

HOMME/SE3D JW_Ps, Res: 1.0deg, Day=7. HOMME/DG3D JW_Ps, Res: 1.0deg, Day=7.

surface pressure Pa surface pressure Pa
90N L L L L 90N L L L
60N 6N o = =

2, -08P)0)
30N o 30N =
0+ F oo H

308 | - 30s o =
60S | - e0s o =
908 T T T T T T T T T T T 908 T T T T T T T T T T T

0 30E G60E 90E 120E 150E 180 150W 120W 9SOW 6OW 30W 0 0 30 60E 9E 120E 150E 180 150W 120W 9OW 60W 30W 0

9865 9909 9953 9997 10041 10085 9865 9909 9953 9997 10041 10085
(a) SE (day 7) (b) DG (day 7)
HOMME/SE3D JW_Ps, Res: 1.0deg, Day=9. HOMME/DG3D JW_Ps, Res: 1.0deg, Day=9.

surface pressure Pa surface pressure Pa
20N | | I I 20N | 1 I
60N | - 6on %%p -
30N | 30N =

0o F oo =

30s | - s0s o =
605 | - e0s o =
908 T T T T T T T T T T T 908 T T T T T T T T T T T

0 30E G60E 90E 120E 150E 180 150W 120W 9OW 6OW 30W 0 0 30E 60E 9E 120E 150E 180 150W 120W 9OW 60W 30W 0

945 9507 9744 9891 10038 10185 945 9597 9744 9891 10038 10185
(c) SE (day 9) (d) DG (day 9)

Figure 3: Surface pressure at day 7 and 9 for the HOMME-SE (a,c) and
HOMME-DG (b,d) code for the Jablonowski-Williamson baroclinic wave in-
stability test case. Both methods used 1 degree resolution at the equator
(nlev = 26, SE: np = 4, n. = 30, DG: np = 6, n, = 18).

13

HOMME/SE3D JW_Zeta, Res:1.00deg, Day=7. HOMME/DG3D JW_Zeta, Res:1.00deg, Day=7.

908 T T T T T T T T T T T T 905 T T T T T T T T T T T
0 B0E 60E 90E 120E 150E 180 150W 120W 9OW 60W 3OW 0 0 B0E 60E 90E 120E 150E 180 150W 120W 9OW 60W 3OW 0

2 A 0 1 2 3 4 5 2 1 0 1 2 3 4 5

(a) SE (day 7) (b) DG (day 7)

HOMME/SE3D JW_Zeta, Res:1.00deg, Day=9. HOMME/DG3D JW_Zeta, Res:1.00deg, Day=9.
| | | I i | | 1 | 1 | I 1 1 I I | | 1 1 i I

(c) SE (day 9) (d) DG (day 9)

Figure 4: Vorticity at day 7 and 9 for the HOMME-SE (a,c) and HOMME-DG
(b,d) code for the Jablonowski-Williamson baroclinic wave instability test case.
Both methods used 1 degree resolution at the equator (nlev = 26, SE: np = 4,
ne = 30, DG: np = 6, n. = 18).

14

SE-ASPBARO-NP4-ne60 SE-ASPBARO-NP4-ne120

optimal
blocking
non-blocking % | 100

optimal
blocking
non-blocking %

run time
run time

338 675 1350 2700 5400 10800 21600 338 675 1350 2700 5400 10800 21600

#cores #cores
(a) ne = 60 (b) ne = 120

Figure 5: Strong scaling of the SE method in HOMME the Jablonowski-
Williamson test baroclinic wave instability test case for n, = 60 (a) and n, = 120
(b). For these runs we used np = 4 and nlev = 26.

For moderate numbers of elements per process, we see a significant decrease
in run time when using asynchronous communication. However, once the num-
ber of elements per process decreases below four elements per process, the ad-
vantage of using asynchronous communication becomes negligible. This is due
to the fact that there is a smaller amount of interior packing and unpacking to
be done while the messages are being sent and received.

Finally, for n. = 120 on 338 processes we see that there is a negligible
performance improvement (1.009x) when using the asynchronous method. Here,
the movement of element edge and vertex data is a large part of the total run
time. Although this data movement hides some of the communication costs,
the decrease in memory locality when packing/unpacking individual messages
compared to packing/unpacking entire elements can increase the total cost of
data movement relative to the original communication method.

4.3 Scaling results for the DG method

For the DG strong scaling we compare four different communication methods.
The pre-existing method using the same connectivity as the SE method (see
Figure 2a) is referred to synchronous. The method implementing asynchronous
communication but with the SE connectivity is called overlap (vx). The re-
maining two methods use the reduced connectivity described in Figure 2b. One
method only uses the overlapping of pack/unpack with send/receive and is re-
ferred to as asynchronous. The other method uses the overlapping of computa-
tion as described in Algorithm 3 and is simply denoted overlapping.

In Figure 6 the strong scaling results for the DG code for Jablonowski-
Williamson test case are presented. The numbers used to generate the plots are
presented in Table 2. We can see that the using the asynchronous communica-
tion leads to improved performance. Here, we encounter a performance gain of
approximately 8%. This is increased by reducing the connectivity to over 10%.
As the numbers for the non-blocking and the overlapping runs show, placing

15

Table 1: Results for the strong scaling of the SE method for n. = 60 (a)

nd n. = 120 (b).

We list the number processes P, the maximum number of

elements per process E/P, and the times for the synchronous and asynchronous

communication methods. The speed up of using asynchronous communication
is included in parentheses.

(a) ne =60
’ P \ E/P \ synch. \ asynch. ‘
338 | 64 | 204.64 | 192.518 (1.063)
675 32 102.50 98.85 (1.037)
1350 16 55.32 51.78 (1.068)
2700 8 31.16 30.93 (1.007)
5400 | 4 | 18.29 | 17.94 (1.020)
10800 2 10.69 10.71 (0.998)
21600 | 1 | 629 | 6.45 (0.975)
(b) ne = 120
’ P \ E/P \ synch. \ asynch. ‘
338 256 | 190.90 | 189.108 (1.009)
675 128 98.14 89.43 (1.097)
1350 | 64 | 49.10 | 45.18 (1.089)
2700 | 32 | 25.15 | 23.97 (1.049)
5400 | 16 | 13.73 | 13.37 (1.027)
10800 | 8 | 752 | 7.40 (1.017)
21600 4 4.44 4.39 (1.011)

16

run time

DG3D-JW-NP6-ne60

100

optimal
blocking

VX overlapping -
non-blocking -1
overlapping -~ ®

run time

DG3D-JW-NP6-ne120

optimal
blocking

vx overlapping %
non-blocking 3
overlapping -~

2700 5400 10800 21600

#cores

(b) ne = 120

2700 5400 10800 21600 338 675 1350

#cores

(a) ne =60

338 675 1350

Figure 6: Strong scaling of the HOMME-DG code for the Jablonowski-
Williamson baro-clinic wave instability test case. For the run we used np = 6,
nlev = 26, and (a) n, = 60 as well as (b) n, = 120. For each run we compute
4500 timesteps.

some work (other than the pack/unpack) between the send and receive calls in-
creases the overall performance of the simulation. This is a strong indicator for
refactoring code such that the maximum amount of computation can be placed
between the send and receive calls.

5 Discussion

5.1 Performance at Large-Scale

As seen in Section 4.2 the non-blocking asynchronous communication method
yields significant performance increases when the number of elements per MPI
process is four or above. This is due, in part, to the limited amount of data
associated with element boundaries when there are few elements per process.
Thus this technique is mainly beneficial when there are a moderate number of
elements per MPI process. Although HOMME scales fairly well out to one ele-
ment per MPI process, production climate runs typically assign more elements
per process [16]. In this regime, the asynchronous communication scheme is
significantly more efficient.

5.2 Bit-for-Bit Reproducibility

In the non-blocking asynchronous communication methods, messages received
from other processes are additively unpacked as they are received through the
use of MPI_Testany. Due to the indeterminate ordering of these contributions
and the fact that finite precision floating point arithmetic is non-associative,
two identical runs, which may have MPI messages received in different orders,
will not produce the exact same results.

17

Table 2: Time in seconds for the synchronous, the overlapping with vertex
connectivity, the asynchronous without vertex connectivity, and the overlapping
without vertex connectivity communication methods for the DG strong scaling
with £ = 21,600 elements (n. = 60). P denotes the number of cores used in
the simulation.

(a) ne =60
’ P \ E/P \ synch. \ overlap(vx) \ asynchronous \ overlapping ‘
338 63.9 | 458.88 | 434.73 (1.056) | 435.52 (1.054) | 421.32 (1.089)
675 32 | 228.54 | 216.37 (1.056) | 214.45 (1.066) | 206.68 (1.106)
1350 16 115.44 | 109.64 (1.053) | 104.45 (1.105) | 101.02 (1.143)
2700 8 56.95 | 59.48 (0.957) 53.95 (1.056) | 54.12 (1.052)
5400 4 30.15 | 31.07 (0.970) 27.32 (1.103) | 26.63 (1.132)
10800 | 2 18.02 | 19.42 (0.928) | 16.00 (1.126) | 15.65 (1.152)
21600 1 12.69 | 13.58 (0.934) 10.00 (1.269) 9.62 (1.318)
(b) ne = 60
’ P \ E/P \ synch. \ overlap(vx) \ asynchronous \ overlapping ‘
338 | 255.6 | 1829.71 | 1686.99 (1.085) | 1700.86 (1.076) | 1635.55 (1.119)
675 128 917.91 | 859.39 (1.068) | 856.77 (1.071) 822.08 (1.117)
1350 | 64 | 462.95 | 432.00 (1.072) | 424.79 (1.090) | 409.40 (1.131)
2700 32 227.26 | 218.71 (1.039) | 212.71 (1.068) 205.41 (1.106)
5400 16 116.40 | 107.28 (1.085) 105.41 (1.104) 100.39 (1.159)
10800 8 58.18 56.80 (1.024) 54.82 (1.061) 53.01 (1.097)
21600 4 30.89 30.30 (1.019) 27.62 (1.118) 27.19 (1.136)

18

This complexity can confound traditional methods of verifying the correct-
ness of simulations, ports to other machines, or code changes. However, knowl-
edge of the numerical accuracy of the underlying integration and discretization
schemes can be used to bound this difference and restore confidence in the ac-
curacy of the dynamic results. Additionally, statistical techniques such as [5]
can be used to verify that the differences are limited to machine level round-off
and will not have a drastic impact on qualitative results.

Although techniques such as Kahan summation [10] can limit the amount
of accumulated machine precision round-off error, ensuring bit-for-bit exactness
between identical runs requires more care. One possible avenue would be to
unpack messages as they are received storing this data in another buffer and
waiting to perform additive operations until all messages have been received.
This enforces a static order of operations and avoids the differences caused by
non-associativity.

6 Conclusion

In this paper we outlined our implementation of non-blocking asynchronous
communication in HOMME for both the SE and DG methods. This strategy
included the use of non-blocking MPI routines as well as a restructuring of the
pack and unpack methods to provide data movement as well as other computa-
tion during the communication. Most notably, even in the absence of additional
computation, the SE method attained performance gains simply by overlapping
the packing and unpacking of messages and internal buffers. These gains were
most significant when run at a modest number of elements per MPI process, as
is typical in production runs.

For the DG method, where additional computation is available to be per-
formed during the communication, there were even bigger efficiency and scalabil-
ity gains. The scaling results for the DG method also highlighted the increases
that could be gained in the SE version if there is additional computation with
which to overlap communication.

One limitation of the non-blocking asynchronous communication method,
as implemented, is round-off level differences of results between identical runs
for the SE method. However, numerical and statistical analysis can be used to
bound these differences and restore confidence in simulation results.

We expect that with additional development, non-blocking asynchronous
communication will provide more computation overlap, further increasing the
performance and scalability of HOMME, CAM, and CESM.

Acknowledgement
We would like to acknowledge high-performance computing support from Yel-

lowstone [1] provided by NCAR’s Computational and Information Systems Lab-
oratory, sponsored by the National Science Foundation. Robert Kléfkorn ac-

19

knowledges the DOE BER Program under the award DE-SC0006959.

References

[1]

[9]

[10]

[11]

Computational and Information Systems Laboratory. 2012. Yel-
lowstone: IBM iDataPlex System (Climate Simulation Labora-
tory). Boulder, CO: National Center for Atmospheric Research.
http://n2t.net/ark: /85065 /d7wd3xhe.

Sandia MPI Micro-Benchmark Suite (SMB).
http://www.cs.sandia.gov/smb/.

The 2012 Dynamical Core Model Intercomparison Project.
https://earthsystemcog.org/projects/dcmip-2012.

A. Baggag, H. Atkins, and D.E. Keyes. Parallel Implementation of the
Discontinuous Galerkin Method. In Proceedings of Parallel CFD’99, pages
115-122, 1999.

A. H. Baker, D. M. Hammerling, M. N. Levy, H. Xu, J. M. Dennis, B. E.
Eaton, J. Edwards, C. Hannay, S. A. Mickelson, R. B. Neale, D. Nychka,
J. Shollenberger, J. Tribbia, M. Vertenstein, and D. Williamson. A new
ensemble-based consistency test for the community earth system model.
Geosci. Model Dev. Discuss., 8:3823-3859, 2015.

J. M. Dennis, J. Edwards, K. J. Evans, O. Guba, P. H. Lauritzen, A. A.
Mirin, A. St.-Cyr, M. A. Taylor, and P. H. Worley. CAM-SE: A scal-
able spectral element dynamical core for the community atmosphere model.
IJHPCA, 26(1):74-89, 2012.

Message P Forum. Mpi: A message-passing interface standard. Technical
report, Knoxville, TN, USA, 1994.

P. R. Gent, G. Danabasoglu, L. J. Donner, M. M. Holland, E. C. Hunke,
S. R. Jayne, D. M. Lawrence, R. B. Neale, Ph. J. Rasch, M. Vertenstein,
P. H. Worley, Z.-L.. Yang, and M. Zhang. The community climate system
model version 4. Journal of Climate, 24(19):4973-4991, Apr 2011.

Ch. Jablonowski and D. L. Williamson. A baroclinic instability test case
for atmospheric model dynamical cores. Quarterly Journal of the Royal
Meteorological Society, 132(621C):2943-2975, 2006.

W. Kahan. Pracniques: Further remarks on reducing truncation errors.
Commun. ACM, 8(1):40—, January 1965.

H.-L. Liu, B. T. Foster, M. E. Hagan, J. M. McInerney, A. Maute, L. Qian,
A. D. Richmond, R. G. Roble, S. C. Solomon, R. R. Garcia, D. Kinnison,
D. R. Marsh, A. K. Smith, J. Richter, F. Sassi, and J. Oberheide. Ther-
mosphere extension of the whole atmosphere community climate model.
Journal of Geophysical Research: Space Physics, 115(A12), 2010.

20

[12]

[13]

[14]

[15]

[16]

[17]

R. D. Nair. Diffusion Experiments with a Global Discontinuous Galerkin
Shallow Water Model. Monthly Weather Review, 137:3339-3350, 2009.

R.D. Nair, H.-W. Choi, and H.M. Tufo. Computational aspects of a scalable
high-order discontinuous galerkin atmospheric dynamical core. Computers
& Fluids, 38(2):309 — 319, 2009.

R. B. Neale et al. Description of the NCAR community atmosphere model
(CAM 5.0). NCAR Tech. Note, (NCAR/TN-486+STR):268, 2010.

A. J. Simmons and D. M. Burridge. An energy and angular-momentum
conserving vertical finite-difference scheme and hybrid vertical coordinates.
Monthly Weather Review, 109(4):758-766, Apr 1981.

R. Justin Small, Julio Bacmeister, David Bailey, Allison Baker, Stuart
Bishop, Frank Bryan, Julie Caron, John Dennis, Peter Gent, Hsiao ming
Hsu, Markus Jochum, David Lawrence, Ernesto Munoz, Pedro diNezio,
Tim Sheitlin, Robert Tomas, Joseph Tribbia, Yu heng Tseng, and Mariana
Vertenstein. A new synoptic scale resolving global climate simulation using
the community earth system model. Journal of Advances in Modeling Farth
Systems, 6(4):1065-1094, December 2014.

M.A. Taylor and A. Fournier. A compatible and conservative spectral
element method on unstructured grids. J. Comput. Phys., 229(17):5879—
5895, August 2010.

21

	NCAR/TN 516+STR
	Asynchronous Communication in Spectral Element andDiscontinuous Galerkin Methods for AtmosphericDynamics
	Abstract
	Contents
	1 Introduction
	2 Background
	2.1 Non-blocking Communication
	2.2 Current Communication Strategy

	3 Overlapping Asynchronous Communication Strategy
	Algorithm 1 packAndSend
	Algorithm 2 receiveAndUnpack
	3.1 Overlapping for the SE method
	3.2 Overlapping for the DG method
	Algorithm 3 dg3d uv step

	4 Results
	4.1 The Jablonowski-Williamson baroclinic wave instabil-ity test case
	4.2 Scaling results for the SE method
	4.3 Scaling results for the DG method

	5 Discussion
	5.1 Performance at Large-Scale
	5.2 Bit-for-Bit Reproducibility

	6 Conclusion

	Acknowledgement
	References
	List of Figures
	Figure 1: Results from the Sandia MPI MicroBenchmark using the IBM MPIimplementation with Eager protocol
	Figure 2: Connectivity in HOMME-SE (a) and HOMME-DG (b)
	Figure 3: Surface pressure at day 7 and 9
	Figure 4: Vorticity at day 7 and 9
	Figure 5: Strong scaling of the SE method
	Figure 6: Strong scaling of the HOMME-DG code

	List of Tables
	Table 1: Results for the strong scaling of the SE method
	Table 2: Time in seconds for the synchronous, the overlapping with vertexconnectivity, the asynchronous without vertex connectivity, and the overlappingwithout vertex connectivity communication methods

