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‘fieldsMAGMA’: A MAGMA-accelerated extension to the
‘fields’ spatial statistics R package

John Paige, Douglas Nychka, Dorit Hammerling ∗

September 23, 2015

Abstract

This report introduces the ‘fieldsMAGMA’ R package, an extension to the ‘fields’ package
for spatial data analysis that is available on github. fieldsMAGMA uses the Cholesky decom-
position functionality of the MAGMA multi-GPU, multi-CPU computing library and elim-
inates some unnecessary distance and covariance calculations to create accelerated versions
of spatial statistics methods in fields. We demonstrate the performance of fieldsMAGMA’s
accelerated functions when applied to simulated datasets and the CO2 dataset available in
fields. We show that using the single precision Cholesky decomposition in particular has
the potential for vast improvements in the Cholesky decomposition and in spatial likelihood
computation time, yet the accuracy of the likelihood maximization is not significantly re-
duced. We gather some of our timing results on a 2014 MacBook Pro with a stock graphics
processing unit (GPU), an NVIDIA GeForce GT 750M with 2048 MB GDDR5 RAM.

Keywords: Spatial statistics, Kriging, High-Performance Computing, GPU, MAGMA

∗John Paige, is Research Associate, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA
94720 (paigejo@uw.edu), Douglas Nychka, is Senior Scientist, National Center for Atmospheric Research, PO Box
3000, Boulder CO 30307-3000 (nychka@ucar.edu), Dorit Hammerling is Project Scientist II, National Center for
Atmospheric Research, PO Box 3000, Boulder CO 30307-3000 (dorith@ucar.edu).

1



2

Contents

1 Introduction 5

2 Timing Results 7

3 Single Precision Likelihood Calculation Accuracy 11

4 Discussion and Conclusions 18

5 Appendix 27

5.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Installing MAGMA and Accelerated fields on a Mac . . . . . . . . . 27

5.1.2 Installing fieldsMAGMA on a Mac . . . . . . . . . . . . . . . . . . . . . 30

5.2 Supplemental Single Precision Likelihood Results . . . . . . . . . . . . . . . . 32



3

List of Figures

1 Cholesky decompsition computation times and speedups on mid-2014 15”

MacBook Pro. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 mKrig computation times and speedups on mid-2014 15” MacBook Pro. . . . 10

3 Spatial analysis workflow computation times and speedups on mid-2014 15”

MacBook Pro. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Mean and max “error” (absolute difference) of single versus double precision

true parameter log-likelihood for 5,000 observations . . . . . . . . . . . . . . . 13

5 Mean and max “error” (absolute difference) of single versus double precision

true parameter log-likelihood for 10,000 observations . . . . . . . . . . . . . . 14

6 Mean and max “error” (absolute difference) of single versus double precision

true parameter log-likelihood for 15,000 observations . . . . . . . . . . . . . . 15

7 Mean and max “error” (absolute difference) of single versus double precision

true parameter log-likelihood for 20,000 observations . . . . . . . . . . . . . . 16

8 Comparison between single and double precision log-likelihood surfaces and

95 percent confidence sets for θ = 0.05 (exponential scale), λ = 0.05 (Kriging

smoothing) with 1,000 observations. . . . . . . . . . . . . . . . . . . . . . . . 19

9 Comparison between single and double precision log-likelihood surfaces and

95 percent confidence sets for θ = 5 (exponential scale), λ = 0.05 (Kriging

smoothing) with 1,000 observations. . . . . . . . . . . . . . . . . . . . . . . . 20

10 Comparison between single and double precision log-likelihood surfaces and

95 percent confidence sets for θ = 0.2 (exponential scale), λ = 0.1 (Kriging

smoothing) with 1,000 observations. . . . . . . . . . . . . . . . . . . . . . . . 21

11 Comparison between single and double precision log-likelihood surfaces and

95 percent confidence sets for θ = 0.05 (exponential scale), λ = 1 (Kriging

smoothing) with 1,000 observations. . . . . . . . . . . . . . . . . . . . . . . . 22

12 Comparison between single and double precision log-likelihood surfaces and 95

percent confidence sets for θ = 5 (exponential scale), λ = 1 (Kriging smooth-

ing) with 1,000 observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

13 Comparison between single and double precision log-likelihood surfaces and

95 percent confidence sets for θ = 0.05 (exponential scale), λ = 0.05 (Kriging

smoothing) with 5,000 observations. . . . . . . . . . . . . . . . . . . . . . . . 33



4

14 Comparison between single and double precision log-likelihood surfaces and

95 percent confidence sets for θ = 5 (exponential scale), λ = 0.05 (Kriging

smoothing) with 5,000 observations. . . . . . . . . . . . . . . . . . . . . . . . 34

15 Comparison between single and double precision log-likelihood surfaces and

95 percent confidence sets for θ = 0.2 (exponential scale), λ = 0.1 (Kriging

smoothing) with 5,000 observations. . . . . . . . . . . . . . . . . . . . . . . . 35

16 Comparison between single and double precision log-likelihood surfaces and

95 percent confidence sets for θ = 0.05 (exponential scale), λ = 1 (Kriging

smoothing) with 5,000 observations. . . . . . . . . . . . . . . . . . . . . . . . 36

17 Comparison between single and double precision log-likelihood surfaces and 95

percent confidence sets for θ = 5 (exponential scale), λ = 1 (Kriging smooth-

ing) with 5,000 observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

18 Comparison between single and double precision log-likelihood surfaces and

95 percent confidence sets for θ = 0.05 (exponential scale), λ = 0.05 (Kriging

smoothing) with 10,000 observations. . . . . . . . . . . . . . . . . . . . . . . . 38

19 Comparison between single and double precision log-likelihood surfaces and

95 percent confidence sets for θ = 5 (exponential scale), λ = 0.05 (Kriging

smoothing) with 10,000 observations. . . . . . . . . . . . . . . . . . . . . . . . 39

20 Comparison between single and double precision log-likelihood surfaces and

95 percent confidence sets for θ = 0.2 (exponential scale), λ = 0.1 (Kriging

smoothing) with 10,000 observations. . . . . . . . . . . . . . . . . . . . . . . . 40

21 Comparison between single and double precision log-likelihood surfaces and

95 percent confidence sets for θ = 0.05 (exponential scale), λ = 1 (Kriging

smoothing) with 10,000 observations. . . . . . . . . . . . . . . . . . . . . . . . 41

22 Comparison between single and double precision log-likelihood surfaces and 95

percent confidence sets for θ = 5 (exponential scale), λ = 1 (Kriging smooth-

ing) with 10,000 observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



5

1 Introduction

Graphics processing units (GPUs) have rapidly evolved from computer chips meant exclu-

sively for controlling graphics displays to today’s general purpose GPUs (GPGPUs). GPG-

PUs are used in many applications, especially those that are highly parallelizeable, and have

in some settings enabled substantial speedups over traditional methods of computation, those

using only central processing units (CPUs). A single GPU can even be faster than multiple

CPUs for certain applications. This is because GPUs have hundreds of computing threads

whereas most CPUs have on the order of tens of threads or fewer (Nickolls and Dally 2010,

Du et al. 2012).

Yet in spite of GPUs’ many advantages over CPUs, CPUs continue to outperform GPUs

for some problems. This is why heterogeneous computer architectures—architectures that use

CPUs and GPUs together—can perform so well. Algorithms taking full advantage of these

hybrid architectures use CPUs and GPUs each for the portions of computation they are most

suited for, and are typically faster than algorithms using only CPUs or only GPUs (Nickolls

and Dally 2010). Since heterogeneous architectures are common among supercomputers and

ubiquitous among personal computers, it is important for algorithms to achieve a high level

of performance on these systems.

The ‘fields’ spatial statistics package (freely available on CRAN) is an R package that

can currently only run its computations with CPUs. It is widely used, but has computational

limits when estimating spatial processes using several tens of thousands of observations or

more. This is because it relies on the ‘Kriging’ algorithm, which is central to spatial statistics

and is O(n3) in computation time for n spatial observations (Katzfuss and Cressie 2012).

Since many spatial datasets contain millions or even tens of millions of observations, this

represents a serious problem (Katzfuss and Cressie 2012). The biggest computational hurdle

in Kriging is in computing the data’s likelihood given a spatial model and its parameters,

and the most computationally intensive step in the likelihood calculation is the Cholesky

decomposition of the data covariance matrix. Although there are many ways to get around

this problem using approximations, such as inducing sparsity into the covariance matrix, or

using reduced rank approximations (e.g. Nychka et al. 2014b, Nychka et al. 2014a, Cressie

and Johannesson 2008), these methods are approximations and have disadvantages in certain

circumstances (Stein 2014).

Recently, Paige et al. (2015) introduced an extension to the fields package that incor-
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porated the freely available Matrix Algebra on GPU and Multicore Architectures (MAGMA)

library. However, the code introduced in Paige et al. (2015) was not yet a pre-bundled pack-

age format, which made it more cumbersome to load into the R environment. This report

introduces the fieldsMAGMA R package, which adds single-precision support to the acceler-

ated functions from Paige et al. (2015) and bundles the modified functions into a package

that is publicly available on github. In addition, certain unnecessary covariance and distance

computations currently used in fields’ Maximum Likelihood Estimation (MLE) algorithm

are removed to further accelerate the MLE process.

The MAGMA library (Tomov et al. 2009) exploits the power of heterogeneous computer

systems to accelerate matrix algebra routines such as the Cholesky decomposition. In Paige

et al. (2015) the Cholesky decomposition speedup using one GPU for 10,000 spatial obser-

vations (generating a 10,000 × 10,000 covariance matrix) was 32.3 times when on Caldera

comptuational nodes on the Yellowstone supercomputer. The resulting speedup for the ex-

ample spatial analysis workflow was 2.4 due to the unaccelerated portions of the workflow.

These speedups did not take advantage of the performance benefits in GPUs when using

single rather than double precision, however, and this report illustrates the importance of

single-precision calculations.

Although some of the most advanced NVIDIA GPUs achieve a two times speedup when

using single rather than double precision floating point operations, previous GPU architec-

tures have eight times speedup or more (Du et al. 2012). Even a computer as new as the

mid-2014 MacBook Pro used in this report with its NVIDIA GeForce GT 750M GPU has an

8:1 single to double precision performance advantage (Brodtkorb et al. 2013, Du et al. 2012).

In addition, since single precision values take half the space of double precision values, they

can be transmitted between CPUs and GPUs twice as fast and matrices with twice the num-

ber of elements can be stored on GPU memory at once. Fortunately, MAGMA has support

for both single and double precision Cholesky decompositions so that even users without the

most advanced GPUs are able to see considerable speedup when performing the Cholesky

decomposition.

This technical report will use timings from a mid-2014, 15” MacBook Pro with a NVIDIA

GeForce GT 750M GPU with 2048 MB GDDR5 memory, clocked up to 5.0 GHz, and 384

cores clocked at approximately 967 MHz. It also is fitted with a 4-core, 2.8 GHz Intel Core i7

CPU with 16 GB memory. It should be emphasized that the GPU was the most basic GPU
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available with the computer when it was purchased, shipped by default with the computer

at the time. Instructions for installing MAGMA and fieldsMAGMA are given in this report

that extend those given in Paige et al. (2015).

The rest of this technical report is organized as follows. Section 2 provides timing and

speedup results for accelerated and unaccelerated implementations of the Cholesky decom-

position, fields’ mKrig function, and a simple spatial analysis workflow. Section 3 compares

data likelihood calculations as determined by single and double precision accelerated mKrig.

Section 4 concludes by interpreting the timing and single versus double precision accuracy

results. It then goes on to discuss possible future directions for this line of research. In-

structions for installing MAGMA on the MacBook Pro are given in the appendix along with

supplemental results illustrating the accuracy of the accelerated single precision likelihood

calculations.

2 Timing Results

In this section we give timings and speedups for unaccelerated and accelerated versions of the

Cholesky decomposition, mKrig, and a sample spatial analysis workflow. More specifically,

results are plotted for the default R implementation, and MAGMA-accelerated versions in

single and double precision with one GPU. For the accelerated implementations, we plot

results where the factored matrix is copied before being decomposed and also where the

Cholesky decomposition is computed in place, overwriting the original factored matrix. Note

that the x axis of each plot is the number of spatial observations. Given n observations, the

resulting factored covariance matrix is n× n and contains n2 elements.

Figure 1 shows times and speedups for the Cholesky decomposition (computation times

are plotted on a log scale). For 10,000 observations, the default Cholesky decomposition

took 2 minutes and 7 seconds. In comparison, the double precision accelerated Cholesky

decomposition took 13.3 seconds when copying the factored matrix and 12.8 seconds when

performing calculations in place, achieving 9.6 and 9.9 times speedup respectively. The single

precision accelerated decomposition only took 2.1 (1.7) seconds for 10,000 observations when

copying the factored matrix (performing the calculations in place), achieving 60.5 (76.0)

times speedup. Although the double precision accelerated Cholesky decomposition appears to

peak at approximately 10 times speedup due the GPU reaching near-maximum efficiency, the

single precision accelerated decomposition has not peaked after 12,500 observations (meaning
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a 12,500 × 12,500 sized matrix).

Timings for the unaccelerated and accelerated versions of fields’ mKrig function are

shown in Figure 2. All calculations for mKrig are performed using subsets of the CO2 dataset

in fields, where the data subsets are determined using a latitude/longitude window centered

at zero latitude and zero longitude. For just over 10,000 observations, fields’ mKrig function

takes 2 minutes 25 seconds, the accelerated function takes 20.2 seconds with one GPU in

double precision and 8.1 seconds in single precision. Hence, the double precision speedup is

7.2 times and the single precision speedup is 17.9 times. Both single and double precision

speedups increase as matrix sizes increase throughout the range of sizes used in our testing

(up to 10,000 observations).

Figure 3 displays the timings and speedups of a spatial problem workflow. This is the

same workflow as described in Paige et al. (2015), and it uses the same subsets of the CO2

dataset in fields as the mKrig timings (described above). The spatial analysis workflow

involves computing a Maximum likelihood Estimate (MLE) of λ, the Kriging smoothing

parameter, for a fixed θ, the spatial scale parameter of the exponential covariance model,

and then performing Kriging for the MLE of λ and the fixed θ. In the assumed exponential

covariance model, the correlation between two observations is:

k(xi, xj) =

e
−|xi−xj |/θ, i 6= j

e−|xi−xj |/θ + λ, i = j

,

for locations xi and xj . After performing the MLE process, we calculate a prediction surface

on an 80 × 80 grid. Finally, we estimate the surface’s theoretical standard error as a function

of space by taking five random draws from the conditional distribution of the spatial process

given the observations using the sim.mKrig.approx method in fields. Overall, 11 Cholesky

decompositions are required. For approximately 10,000 observations, the default (unaccel-

erated) workflow took 26 minutes 55 seconds. The accelerated workflow took 3 minutes 44

seconds and 1 minute 38 seconds for double and single precision respectively which corre-

sponds to 7.2 and 16.4 times speedup respectively. Just as for the mKrig timings, speedup

continues to increase as the number of observations increases throughout the range of number

of observations tested (up to 10,000 observations). The double precision speedup appears

to be nearing its theoretical asymptotic supremum of approximately 9.8 times speedup—

the maximum of the Cholesky decomposition—as the decomposition increasingly dominates
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Figure 1: Computation time (a) and speedup factor (b) of the MAGMA-accelerated implemen-
tations of the Cholesky decomposition versus the default implementation (b) are plotted. Times
for in-place calculations without setting the lower triangular portion of the matrix to zero are
shown as dotted lines, while non-in-place (listed as “with copy”) calculation times when setting
the lower triangular portion of the decomposition to zero are shown as solid lines. Note that the
computation time shown in (a) is plotted on a log scale.
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Figure 2: Computation time of the mKrig function in fields for default (black) and accelerated
implementations (green and orange) (a) and speedup factor versus the default implementation (b)
are plotted. All calculations for accelerated Cholesky decompositions in fields are performed
in-place while zeroing out the lower triangular portion of the matrix.
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the workflow computation. The single precision workflow speedup of 16.4 is still far from

its theoretical asymptote of over 80 times speedup, and is increasing with the number of

observations at a much faster rate than the double precision workflow speedup.

3 Single Precision Likelihood Calculation Accuracy

While double precision floating point numbers use 64 bits to represent a number, single

precision floating point numbers only use 32. Because of this, sacrifices must be made in

order to represent a number by rounding off the least significant digits. In this section we

test the accuracy of the data log likelihood calculated in the spatial analysis using a single

precision Cholesky decomposition as compared to that calculated with double precision.

As an initial test, we generated observations on a [0, 1]× [0, 1] square using an exponen-

tial covariance model with different sets of parameters. We varied λ, the Kriging smoothing

parameter, as well as θ, the exponential scale parameter. We then calculated the log like-

lihood of the observations using single and double precision Cholesky decompositions for

5,000, 10,000, 15,000, and 20,000 observations. For each set of true parameters, we generate

observations multiple times: 12 times for 5,000 observations, 6 times for 10,000 observations,

4 times for 15,000 observations, and 3 times for 20,000 observations. Plotted in Figures 4-7

are interpolated maximum and average absolute differences between single and double preci-

sion log-likelihoods. We then use thin plate splines generated by the Tps function in fields

to interpolate the log-likelihood samples (shown as black dots in the Figures).

As shown in Figures 4-7, absolute difference between single and double precision log-

likelihoods for true parameters tends to increase as λ increases over 1. Also, differences

increase when λ decreases much below 0.01, when the number of observations increase, and

when θ rises above 1. However, in no case did log-likelihood differences increase far over

2 and average log-likelihood differences did not increase far above 1.5. In these cases, the

true parameters were fairly extreme compared to the size of the spatial domain, a 1× 1 unit

square. Note that the 95 percent confidence interval for the true parameters can be calculated

by subtracting the 95th percentile of the χ2
2/2 distribution, which is approximately 3. Still,

even if the true parameter log-likelihood has a significant difference, it may not affect the

accuracy of the confidence set if the log-likelihood difference between the true parameters

and the MLE parameters is essentially unchanged.

In order to test the accuracy of confidence sets created with single precision Cholesky
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Figure 3: Computation time for spatial analysis of the CO2 dataset in fields for default (black) and
accelerated workflows (green and orange) (a) and speedup factor over the default implementation
(b). Spatial analysis includes 11 parameter samples for an exponential covariance function each
including a Cholesky decomposition, generating a prediction of the spatial process, and estimating
predictive error.
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(a)

(b)

Figure 4: Mean (a) and max (b) “error” (absolute difference) of the true model parameter log-
likelihood across multiple simulated datasets as calculated using single versus double precision
Cholesky decompositions. The sampled log-likelihoods are shown as black dots, and the plotted
surface is generated using the Tps function from fields, which uses thin plate splines to generate
an interpolating surface.
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(a)

(b)

Figure 5: Mean (a) and max (b) “error” (absolute difference) of the true model parameter log-
likelihood across multiple simulated datasets as calculated using single versus double precision
Cholesky decompositions. The sampled log-likelihoods are shown as black dots, and the plotted
surface is generated using the Tps function from fields, which uses thin plate splines to generate
an interpolating surface.
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(a)

(b)

Figure 6: Mean (a) and max (b) “error” (absolute difference) of the true model parameter log-
likelihood across multiple simulated datasets as calculated using single versus double precision
Cholesky decompositions. The sampled log-likelihoods are shown as black dots, and the plotted
surface is generated using the Tps function from fields, which uses thin plate splines to generate
an interpolating surface.
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(a)

(b)

Figure 7: Mean (a) and max (b) “error” (absolute difference) of the true model parameter log-
likelihood across multiple simulated datasets as calculated using single versus double precision
Cholesky decompositions. The sampled log-likelihoods are shown as black dots, and the plotted
surface is generated using the Tps function from fields, which uses thin plate splines to generate
an interpolating surface.
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decompositions, we begin by fixing a set of ‘true’ spatial parameters for an exponential

covariance Gaussian Process. We then simulate the spatial field by generating observations

on a [0, 1] × [0, 1] square, and calculate the log-likelihood of the generated data for a grid

of ‘guessed’ parameter values for an exponential covariance model using single and double

precision Cholesky factorizations. We compare these log-likelihood grids for several sets of

true spatial parameters. We choose five sets of true parameters that we feel best represent

the extreme and less extreme scenarios given the [0, 1]× [0, 1] spatial domain of the generated

data. We choose the following sets of true parameters:

θ λ

0.05 0.05

5 0.05

0.2 0.1

0.05 1

5 1

Since the domain was only of width 1 (or
√

2 across the diagonal of the square), we decided

to only increase θ up to 5, since this is already 5 times the size of the spatial domain.

We performed all calculations for three different numbers of observations: 1,000, 5,000,

and 10,000. In these cases we generated observations and recalculated the log-likelihood

grid 10, 2, and 1 times. We report the single sample with the biggest difference between

single and double precision MLE log-likelihoods. The log-likelihood surface was sampled on

a 25 × 25 parameter grid spaced on a logarithmic scale from 0.01 to 5. The resolution was

low because of the computational difficulty of calculating the log-likelihood, but we approx-

imated a higher resolution log-likelihood using the Tps method in fields. Tps uses thin-plate

splines to approximate multidimensional surfaces. Along with approximated log-likelihood

surfaces, we plot the approximated 95 percent confidence sets of the true parameters for both

double and single precision. We show each on their corresponding double and single preci-

sion log-likelihood surfaces, and both sets are plotted together on another double precision

log-likelihood surface for the same dataset. In addition, we show a thin-plate spline approx-

imation for the absolute difference between the single and double precision log-likelihood

surfaces and plot the confidence sets on that surface as well for reference.

Over these surfaces, we also plot the true parameter values and the maximum likelihood

estimates (MLEs) calculated independently using single and double precision maximum likeli-
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hood estimation. When multiple sets of observations are generated (as in the 1,000 and 5,000

observation scenarios), the surfaces, confidence sets, and parameters for generated datasets

causing the largest difference between single and double precision MLE log-likelihoods are

shown.

Results are plotted in Figures 8-12 for 1,000 observations and in the appendix for 5,000

and 10,000 observations. In all cases the MLE values estimated with single and double

precision log-likelihood calculations were similar in log-likelihood, and the single and double

precision MLE parameters were also similar in terms of their actual values. At times the

single precision MLE was actually better than the double precision MLE, and, of course,

the opposite was also sometimes true. We believe this is due to chance and inconsistencies

in the optim function used to determine the MLE of λ rather than systematic error. The

true parameters appeared on the same side of the contours of the single and double precision

95 percent confidence sets in all but ones case (1000 observations, θ = 5, lambda = 1).

In that instance, neither the double nor single precision confidence sets contained the true

parameters, and the parameters were fairly extreme for data on a unit square. In most of

the Figures the single and double precision MLEs are plotted almost on top of each other.

In a separate test, we generated 10,000 observation locations in a grid on a [0, 1]× [0, 1]

square, simulating observation values assuming an exponential covariance model and varying

the exponential scale, θ and the Kriging smoothing parameter, λ. In addition, we moved a

single observation closer and closer to one of its closest neighbors until the single precision

Cholesky decomposition resulted in an error due to the covariance matrix being numerically

singular. Varying θ from .01 to 1017 and λ from 10−5 to 1, we found that in most cases

mKrig returns an error before the matrix becomes singular. In fact, mKrig returns an error

whenever any observations have equal coordinates when rounded to eight decimal places.

However, if λ was 10−3 or smaller, the closest observations were 1
99 · 10−6 units apart or less,

and θ was larger than 10,000, the the single precision Cholesky often failed when the double

precision Cholesky did not necessarily.

4 Discussion and Conclusions

Just as in Paige et al. (2015), speedups tend to increase as the number of observations and

therefore the covariance matrix dimensions increase for accelerated mKrig and the spatial

workflow, although the Cholesky decomposition speedup peaks at 10 times speedup. How-
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Figure 8: The above plots show thin plate spline approximations to the log-likelihood surface for
simulated observations as calculated in single and double precision as well as a thin plate spline
approximation to the absolute difference between the surfaces. The log-likelihood surfaces are
sampled for parameter values plotted as black dots, where θ is the exponential covariance scale
parameter and λ is the Kriging smoothing parameter. 95 percent confidence sets (contours) for
the true parameters used to generate the data are shown along with MLE parameter estimates
(crosses) in orange (single precision) and blue (double precision). The true parameters are shown
as a green star. For 1,000, 5,000, and 10,000 observations, observations are generated 10, 2, and
1 times independently, and the depicted surfaces correspond to the replication where the absolute
difference in single and double precision MLE log-likelihoods is largest.
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(a)

Figure 9: The above plots show thin plate spline approximations to the log-likelihood surface for
simulated observations as calculated in single and double precision as well as a thin plate spline
approximation to the absolute difference between the surfaces. The log-likelihood surfaces are
sampled for parameter values plotted as black dots, where θ is the exponential covariance scale
parameter and λ is the Kriging smoothing parameter. 95 percent confidence sets (contours) for
the true parameters used to generate the data are shown along with MLE parameter estimates
(crosses) in orange (single precision) and blue (double precision). The true parameters are shown
as a green star. For 1,000, 5,000, and 10,000 observations, observations are generated 10, 2, and
1 times independently, and the depicted surfaces correspond to the replication where the absolute
difference in single and double precision MLE log-likelihoods is largest.
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Figure 10: The above plots show thin plate spline approximations to the log-likelihood surface for
simulated observations as calculated in single and double precision as well as a thin plate spline
approximation to the absolute difference between the surfaces. The log-likelihood surfaces are
sampled for parameter values plotted as black dots, where θ is the exponential covariance scale
parameter and λ is the Kriging smoothing parameter. 95 percent confidence sets (contours) for
the true parameters used to generate the data are shown along with MLE parameter estimates
(crosses) in orange (single precision) and blue (double precision). The true parameters are shown
as a green star. For 1,000, 5,000, and 10,000 observations, observations are generated 10, 2, and
1 times independently, and the depicted surfaces correspond to the replication where the absolute
difference in single and double precision MLE log-likelihoods is largest.
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Figure 11: The above plots show thin plate spline approximations to the log-likelihood surface for
simulated observations as calculated in single and double precision as well as a thin plate spline
approximation to the absolute difference between the surfaces. The log-likelihood surfaces are
sampled for parameter values plotted as black dots, where θ is the exponential covariance scale
parameter and λ is the Kriging smoothing parameter. 95 percent confidence sets (contours) for
the true parameters used to generate the data are shown along with MLE parameter estimates
(crosses) in orange (single precision) and blue (double precision). The true parameters are shown
as a green star. For 1,000, 5,000, and 10,000 observations, observations are generated 10, 2, and
1 times independently, and the depicted surfaces correspond to the replication where the absolute
difference in single and double precision MLE log-likelihoods is largest.
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Figure 12: The above plots show thin plate spline approximations to the log-likelihood surface for
simulated observations as calculated in single and double precision as well as a thin plate spline
approximation to the absolute difference between the surfaces. The log-likelihood surfaces are
sampled for parameter values plotted as black dots, where θ is the exponential covariance scale
parameter and λ is the Kriging smoothing parameter. 95 percent confidence sets (contours) for
the true parameters used to generate the data are shown along with MLE parameter estimates
(crosses) in orange (single precision) and blue (double precision). The true parameters are shown
as a green star. For 1,000, 5,000, and 10,000 observations, observations are generated 10, 2, and
1 times independently, and the depicted surfaces correspond to the replication where the absolute
difference in single and double precision MLE log-likelihoods is largest.
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ever, it is clear from Figure 1 that at least the laptop GPU, the NVIDIA GeForce 750M with

2048 MB memory, single precision performance is much better than double precision perfor-

mance, performing approximately 6 or 7 times faster for 10,000 observations respectively with

calculations involving a copy of the factored matrix or that are in place. This improvement

for single over double precision continues to improve as the number of observations increases.

The speedups of the accelerated Cholesky decomposition translate into smaller speedups

for the accelerated version of mKrig and the speedups are further reduced for the accelerated

spatial workflow. This is because the Cholesky decomposition is only a portion of the calcu-

lations in mKrig and the spatial workflow, although it takes the majority of the computation

time. In spite of this, the speedup for the example spatial problem workflow is 7.2 and 16.4

times for double and single precision respectively, using approximately 10,000 observations.

Although the speedups themselves are not as high as for the Cholesky decomposition itself,

the time savings is much larger. Compared to the default workflow computation time of 26

minutes 55 seconds, the accelerated workflows respectively took 3 minutes 44 seconds and 1

minute 38 seconds for double and single precision. This corresponds to over 20 minutes of

time saved. Of course, for a workflow with more than 1 likelihood evaluations, the speedup

would be greater due to the larger portion of computations spent performing Cholesky de-

compositions to evaluate the likelihood. For instance, if θ, the exponential covariance scale

parameter were not treated as fixed, more likelihood evaluations would probably be required.

It is important to note that the Caldera node GPUs (two NVIDIA Tesla K20Xs), used

in Paige et al. (2015) had much better double precision performance compared to the 2014

MacBook’s NVIDIA GeForce GT 750M. While the single precision speed of the Cholesky

decomposition is only (roughly) twice that of the double precision on Caldera, it is approxi-

mately eight times faster on the MacBook Pro. This is because the GeForce GT 750M GPU

has eight times as many single precision Arithmetic Logic Units (ALUs) as double precision

ALUs, whereas the Tesla K20X uses twice as many (Brodtkorb et al. 2013, Du et al. 2012).

Hence, although the newest GPUs still perform faster when operating in single precision, en-

abling single precision likelihood calculations would be of most benefit for the many fields

users without access to the latest, state-of-the-art GPUs.

The faster computation time induced by using single precision Cholesky decompositions

also seems to not significantly affect the parameter optimization process. In all of our tests

the true parameters were in the double precision 95 percent confidence set if and only if
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they were also in the equivalent confidence set calculated using single precision. We believe

the parameters used when generating the data in the likelihood calculations reflect fairly

extreme and relatively common circumstances alike when accounting for the fact that the

data’s spatial domain is the unit square.

Although the single precision Cholesky decomposition resulted in a numerically singular

matrix in cases where the double precision decomposition did not, the parameter values and

distances where this occurred are not likely to occur in many real-world applications. The

spatial domain of the simulated datasets has diameter at most
√

2, which is approximately

7,000 times smaller than the problematic spatial scale parameter singular threshold, at least

140 million times larger than the distances resulting in numerical singularity of the covari-

ance matrix, and at least 1,400 times larger than problematic values of the Kriging spatial

smoothing parameter, λ. Even in the case where points are too close together, causing the

covariance matrix to be numerically singular, this can in many cases be easily prevented by

removing any conflicting observations.

While exploiting heterogeneous architectures (those with CPUs and coprocessors such as

GPUs) is important, there is an inherent limit to what the Kriging algorithm can accomplish

if it must use an O(n3) operation for n spatial observations. R packages such as latticeKrig

(Nychka et al. 2014b) induce sparsity in the matrix to perform the Cholesky decomposition

by using the precision matrix in combination with compactly supported covariance functions

(Nychka et al. 2014a). MAGMA is not best suited for cases like these where the matrix op-

erated on is sparse, as it is designed primarily to accelerate dense matrix operations (Agullo

et al. 2009). It is therefore important to incorporate accelerated sparse Cholesky decompo-

sition algorithms for heterogeneous systems into spatial statistics packages that use sparse

matrices in the future.
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Appendix

5.1 Installation

5.1.1 Installing MAGMA and Accelerated fields on a Mac

The following instructions are for installing MAGMA and our accelerated fields methods

on a mid-2014 MacBook Pro laptop with a NVIDIA DeForce GT 750M GPU with 3 GB

VRAM and CUDA compute capability 3.0. The computer was also fitted with a 2.8 GHz

Intel Core i7 quad=core CPU with 16 GB, 1.6 GHz DDR3 RAM.

1. Install Macports, if necessary (https://www.macports.org/install.php)

2. Install the gcc 4.8 compiler suite using steps 3-5, if necessary. Otherwise, skip to step

6.

3. Update Macports using the command: “sudo port selfupdate”

4. Run command: “sudo port install gcc48 +gfortran”

5. After the above command is complete, gcc, g++, and gfortran compilers should be

installed to “/opt/local/bin/”. Run:

port select --list gcc

cd /opt/local/bin/

sudo port select --set gcc mp-gcc48

gcc -v

https://www.macports.org/install.php
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substituting /opt/local/bin/ as appropriate to wherever Macports installed mp-gcc48

on your computer. Your output for the first line should include “mp-gcc48”, and the

output for the last line should include “gcc version 4.8.x”.

6. Install OpenBLAS on your Mac using Macports with the command “port install openblas”.

OpenBLAS should now be installed in /opt/local under lib and include directories.

7. Check your GPU CUDA compute capability from https://developer.nvidia.com/

cuda-gpus. If your GPU’s compute capability is below 2.0, make sure to get a version

of CUDA before 6.5. Download CUDA if necessary from https://developer.nvidia.

com/cuda-downloads. This installation guide uses CUDA 7.0.36, but it might be pos-

sible to use another version of CUDA with similar instructions. If you already have

CUDA, skip to step 9.

8. Follow NCIDIA’s CUDA Mac OS X installation instructions (“Prerequisites,” “In-

stallation,” and “Verification” sections) available at http://doc.nvidia.com/cuda/

cuda-getting-started-guide-for-mac-os-x/#axzz3XJqJPRHg. Make sure to install

the CUDA Driver as well as the CUDA Toolkit, and to setup traditional cuda-gdb per-

missions at the end of the installation. It is also strongly recommended to install the

local samples to run tests to make sure CUDA was installed correctly.

9. Create a .bash_profile document in your home directory, if necessary, and include in

it the line “source ∼/.bashrc” (run “ls -a” in Terminal to show hidden files starting

with a “.”)

10. Now create a “.bashrc” file in your home directory to personalize your terminal set-

tings every time you open a terminal window. As suggested in CUDA’s installation

instructions, make sure the following lines are in .bashrc:

export PATH=/Developer/NVIDIA/CUDA-7.0/bin:$PATH

export DYLD_LIBRARY_PATH=/usr/local/cuda/lib/:\

/Developer/NVIDIA/CUDA-7.0/lib:$DYLD_LIBRARY_PATH

export CUDADIR=/Developer/NVIDIA/CUDA-7.0

export OPENBLASDIR=/opt/local

Note: make sure to adjust the paths to point to your specific version of CUDA and

OpenBLAS.

11. If you have a ∼/.profile file (possibly created by installing Macports) make sure to

include the line:

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
http://doc.nvidia.com/cuda/cuda-getting-started-guide-for-mac-os-x/#axzz3XJqJPRHg
http://doc.nvidia.com/cuda/cuda-getting-started-guide-for-mac-os-x/#axzz3XJqJPRHg
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source ∼/.profile

in .bashrc.

12. Open a new terminal window for the changes to come into effect

13. Download MAGMA version 1.6.1 from http://icl.cs.utk.edu/magma/software/index.

html. These instructions may also work for other versions of MAGMA, but they assume

MAGMA version 1.6.1.

14. Untar the .tar file and move it to your home directory. Modify “make.inc.macos” in

your MAGMA directory to include the following lines:

GPU_TARGET = Kepler

CFLAGS = -m64 -O3 $(FPIC) -DADD_ -Wall -fopenmp

LDFLAGS = -m64 $(FPIC) -fopenmp

LIB = -framework Accelerate -lopenblas -lcublas -lcudart -lstdc++ -lm

-include make.check-openblas

LIBDIR = -L$(CUDADIR)/lib \

-L$(OPENBLASDIR)/lib

INC = -I$(CUDADIR)/include \

-I$(OPENBLASDIR)/include

In other words, set the “GPU_TARGET” to “Kepler” (although this will depend on your

GPUs CUDA compute capability), add the “-lopenblas” tag to LIB, add

“-include make.check-openblas”, and add “-L$(OPENBLASDIR)/lib” to LIB_DIR.

Note that if your GPU has CUDA compute capability 2.x substitute Fermi for Kepler

and if it is 1.x substitude Tesla for Kepler (although that will only work for CUDA

version < 6.5.

15. Copy make.macos and rename the resulting file “make.inc” in the MAGMA directory

16. Still in the MAGMA directory, run “make” to build MAGMA (or, if this is not your

first time running the command, run “make clean” first).

17. After MAGMA is installed, run:

./testing_dpotrf -c --ngpu 1

./testing_dpotrf_m -c --ngpu 1

./testing_spotrf -c --ngpu 1

./testing_spotrf_m -c --ngpu 1

http://icl.cs.utk.edu/magma/software/index.html
http://icl.cs.utk.edu/magma/software/index.html
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in MAGMA’s testing directory. Note that the -h option gives help for the different

options you can pass to the testing functions. If the commands are both successful,

MAGMA should be successfully installed on your Mac.

5.1.2 Installing fieldsMAGMA on a Mac

MAGMA is required for these instructions, which show how to use MAGMA’s Cholesky

decomposition from R and how to install fieldsMAGMA.

1. If either ∼/.R or ∼/.R/Makevars does not exist (run “ls -a” in Terminal to show

hidden files starting with a “.”), create them and edit Makevars. Add the following

lines to Makevars:

CC=/opt/local/bin/gcc

CXX=/opt/local/bin/gcc

F77=/opt/local/bin/gfortran

FC=/opt/local/bin/gfortran

PKG_CFLAGS= -I/Users/USERNAME/magma-1.6.1/include -I/opt/local/include \

-I/usr/local/cuda/include -I/Developer/NVIDIA/CUDA-7.0/include -DHAVE_CUBLAS \

-DADD_ -fopenmp -std=c99

PKG_LIBS=/Users/USERNAME/magma-1.6.1/lib/libmagma.a -L/opt/local/lib \

-lopenblas -L/usr/local/cuda/lib/ -L/Developer/NVIDIA/CUDA-7.0/lib -lcudart \

-lcublas -fopenmp

substituting file paths for those on your specific system as necessary and USERNAME for

your user name.

2. Download the fieldsMAGMA package from https://bitbucket.org/jpaige/rpackages

by pressing the “Downloads” button on the left side of the window.

3. cd into the downloaded repository on the command line and run:

R CMD BUILD fieldsMAGMA

R CMD INSTALL fieldsMAGMA_1.0.tar.gz

making sure to substitute ”1.0” for the appropriate version of fieldsMAGMA.

4. If you are using RStudio or Rconsole, you may find an error when loading “fieldsMAGMA”

similar to:

Error in dyn.load(file, DLLpath = DLLpath, ...) :

unable to load shared object ’/Users/jpaige/Library/R/3.1/library/

fieldsMAGMA/libs/fieldsMAGMA.so’:

dlopen(/Users/jpaige/Library/R/3.1/library/fieldsMAGMA/libs/

fieldsMAGMA.so, 6): Library not loaded: @rpath/libcudart.7.0.dylib

https://bitbucket.org/jpaige/rpackages
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Referenced from: /Users/jpaige/Library/R/3.1/library/fieldsMAGMA/

libs/fieldsMAGMA.so

Reason: image not found

Error: package or namespace load failed for fieldsMAGMA

In this case, the “@rpath” loading path variable is incorrect, and it is likely due to a

problem with RStudio or Rconsole since it loads correctly when running from Terminal.

One way to fix this error is to load fieldsMAGMA when running R from Terminal instead.

If you do not want to have to use fieldsMAGMA from the command line each time, an

alternative is to cd to the directory enclosing “fieldsMAGMA.so” and run:

install_name_tool -change "@rpath/libcudart.7.0.dylib" \

"/Developer/NVIDIA/CUDA-7.0/lib/libcudart.7.0.dylib" fieldsMAGMA.so

where the path names should represent the specific path names for you system and

installation. You may need to run the equivalent command for libcublas as well. The

otool command with the -L option shows the paths of the libraries linked to the file

taken as its argument. You should now be able to load the fieldsMAGMA package in R.

5. Test to make sure everything runs correctly using the steps from Paige et al. (2015).

Begin an R session and run the following lines of code to check you have installed the

accelerated code correctly:

#get magmaChol MAGMA -accelerated Cholesky decomposition

library(fieldsMAGMA)

#This function generates an n x n positive definite matrix

getMatForChol = function(n) {

#get a random matrix

A = matrix(rnorm(n^2), n, n)

# A*A^T is positive definite

return(A %*% t(A))

}

Sigma = getMatForChol (5)

U = magmaChol(Sigma)

SigmaEst = t(U)%*%U

# The following printed matrices should be the same:

print(Sigma)

print(SigmaEst)

# See how much faster MAGMA is:
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Sigma = getMatForChol (2000)

system.time(U1 <- magmaChol(Sigma))[3]

system.time(U2 <- chol(Sigma))[3]

#check to make sure MAGMA Cholesky agrees with default

max(abs(U1 - U2))

In order to test using MAGMA to perform the Cholesky decomposition with n GPUs

at once, substitute “U = magmaChol(Sigma, nGPUs=n)” for “U = magmaChol(Sigma)”.

Run ?magmaChol in R to see its various arguments that can be set to improve or cus-

tomize its performance.

6. If both matrices (Sigma and SigmaEst) printed in the above code are the same, then

the code should be working correctly, and you can use fieldsMAGMA in R.

5.2 Supplemental Single Precision Likelihood Results
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Figure 13: The above plots show thin plate spline approximations to the log-likelihood surface for
simulated observations as calculated in single and double precision as well as a thin plate spline
approximation to the absolute difference between the surfaces. The log-likelihood surfaces are
sampled for parameter values plotted as black dots, where θ is the exponential covariance scale
parameter and λ is the Kriging smoothing parameter. 95 percent confidence sets (contours) for
the true parameters used to generate the data are shown along with MLE parameter estimates
(crosses) in orange (single precision) and blue (double precision). The true parameters are shown
as a green star. For 1,000, 5,000, and 10,000 observations, observations are generated 10, 2, and
1 times independently, and the depicted surfaces correspond to the replication where the absolute
difference in single and double precision MLE log-likelihoods is largest.
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(a)

Figure 14: The above plots show thin plate spline approximations to the log-likelihood surface for
simulated observations as calculated in single and double precision as well as a thin plate spline
approximation to the absolute difference between the surfaces. The log-likelihood surfaces are
sampled for parameter values plotted as black dots, where θ is the exponential covariance scale
parameter and λ is the Kriging smoothing parameter. 95 percent confidence sets (contours) for
the true parameters used to generate the data are shown along with MLE parameter estimates
(crosses) in orange (single precision) and blue (double precision). The true parameters are shown
as a green star. For 1,000, 5,000, and 10,000 observations, observations are generated 10, 2, and
1 times independently, and the depicted surfaces correspond to the replication where the absolute
difference in single and double precision MLE log-likelihoods is largest.
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Figure 15: The above plots show thin plate spline approximations to the log-likelihood surface for
simulated observations as calculated in single and double precision as well as a thin plate spline
approximation to the absolute difference between the surfaces. The log-likelihood surfaces are
sampled for parameter values plotted as black dots, where θ is the exponential covariance scale
parameter and λ is the Kriging smoothing parameter. 95 percent confidence sets (contours) for
the true parameters used to generate the data are shown along with MLE parameter estimates
(crosses) in orange (single precision) and blue (double precision). The true parameters are shown
as a green star. For 1,000, 5,000, and 10,000 observations, observations are generated 10, 2, and
1 times independently, and the depicted surfaces correspond to the replication where the absolute
difference in single and double precision MLE log-likelihoods is largest.
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Figure 16: The above plots show thin plate spline approximations to the log-likelihood surface for
simulated observations as calculated in single and double precision as well as a thin plate spline
approximation to the absolute difference between the surfaces. The log-likelihood surfaces are
sampled for parameter values plotted as black dots, where θ is the exponential covariance scale
parameter and λ is the Kriging smoothing parameter. 95 percent confidence sets (contours) for
the true parameters used to generate the data are shown along with MLE parameter estimates
(crosses) in orange (single precision) and blue (double precision). The true parameters are shown
as a green star. For 1,000, 5,000, and 10,000 observations, observations are generated 10, 2, and
1 times independently, and the depicted surfaces correspond to the replication where the absolute
difference in single and double precision MLE log-likelihoods is largest.
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Figure 17: The above plots show thin plate spline approximations to the log-likelihood surface for
simulated observations as calculated in single and double precision as well as a thin plate spline
approximation to the absolute difference between the surfaces. The log-likelihood surfaces are
sampled for parameter values plotted as black dots, where θ is the exponential covariance scale
parameter and λ is the Kriging smoothing parameter. 95 percent confidence sets (contours) for
the true parameters used to generate the data are shown along with MLE parameter estimates
(crosses) in orange (single precision) and blue (double precision). The true parameters are shown
as a green star. For 1,000, 5,000, and 10,000 observations, observations are generated 10, 2, and
1 times independently, and the depicted surfaces correspond to the replication where the absolute
difference in single and double precision MLE log-likelihoods is largest.
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Figure 18: The above plots show thin plate spline approximations to the log-likelihood surface for
simulated observations as calculated in single and double precision as well as a thin plate spline
approximation to the absolute difference between the surfaces. The log-likelihood surfaces are
sampled for parameter values plotted as black dots, where θ is the exponential covariance scale
parameter and λ is the Kriging smoothing parameter. 95 percent confidence sets (contours) for
the true parameters used to generate the data are shown along with MLE parameter estimates
(crosses) in orange (single precision) and blue (double precision). The true parameters are shown
as a green star. For 1,000, 5,000, and 10,000 observations, observations are generated 10, 2, and
1 times independently, and the depicted surfaces correspond to the replication where the absolute
difference in single and double precision MLE log-likelihoods is largest.
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(a)

Figure 19: The above plots show thin plate spline approximations to the log-likelihood surface for
simulated observations as calculated in single and double precision as well as a thin plate spline
approximation to the absolute difference between the surfaces. The log-likelihood surfaces are
sampled for parameter values plotted as black dots, where θ is the exponential covariance scale
parameter and λ is the Kriging smoothing parameter. 95 percent confidence sets (contours) for
the true parameters used to generate the data are shown along with MLE parameter estimates
(crosses) in orange (single precision) and blue (double precision). The true parameters are shown
as a green star. For 1,000, 5,000, and 10,000 observations, observations are generated 10, 2, and
1 times independently, and the depicted surfaces correspond to the replication where the absolute
difference in single and double precision MLE log-likelihoods is largest.
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Figure 20: The above plots show thin plate spline approximations to the log-likelihood surface for
simulated observations as calculated in single and double precision as well as a thin plate spline
approximation to the absolute difference between the surfaces. The log-likelihood surfaces are
sampled for parameter values plotted as black dots, where θ is the exponential covariance scale
parameter and λ is the Kriging smoothing parameter. 95 percent confidence sets (contours) for
the true parameters used to generate the data are shown along with MLE parameter estimates
(crosses) in orange (single precision) and blue (double precision). The true parameters are shown
as a green star. For 1,000, 5,000, and 10,000 observations, observations are generated 10, 2, and
1 times independently, and the depicted surfaces correspond to the replication where the absolute
difference in single and double precision MLE log-likelihoods is largest.
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Figure 21: The above plots show thin plate spline approximations to the log-likelihood surface for
simulated observations as calculated in single and double precision as well as a thin plate spline
approximation to the absolute difference between the surfaces. The log-likelihood surfaces are
sampled for parameter values plotted as black dots, where θ is the exponential covariance scale
parameter and λ is the Kriging smoothing parameter. 95 percent confidence sets (contours) for
the true parameters used to generate the data are shown along with MLE parameter estimates
(crosses) in orange (single precision) and blue (double precision). The true parameters are shown
as a green star. For 1,000, 5,000, and 10,000 observations, observations are generated 10, 2, and
1 times independently, and the depicted surfaces correspond to the replication where the absolute
difference in single and double precision MLE log-likelihoods is largest.
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Figure 22: The above plots show thin plate spline approximations to the log-likelihood surface for
simulated observations as calculated in single and double precision as well as a thin plate spline
approximation to the absolute difference between the surfaces. The log-likelihood surfaces are
sampled for parameter values plotted as black dots, where θ is the exponential covariance scale
parameter and λ is the Kriging smoothing parameter. 95 percent confidence sets (contours) for
the true parameters used to generate the data are shown along with MLE parameter estimates
(crosses) in orange (single precision) and blue (double precision). The true parameters are shown
as a green star. For 1,000, 5,000, and 10,000 observations, observations are generated 10, 2, and
1 times independently, and the depicted surfaces correspond to the replication where the absolute
difference in single and double precision MLE log-likelihoods is largest.
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