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Abstract

In this Technical Note we examine eight schemes for parallelizing Extreme Value
Analysis (EVA) on Coupled Model Intercomparison Project data via R foreach, do-
Parallel, and doMPI packages. We perform strong scaling studies to delineate the
performance impacts of factors such as R cluster type (TCP/IP sockets and MPI),
communication protocol (Ethernet, IP over InfiniBand, and MPI), loop parallelization
(outer or inner loop), and approaches to reading data from the NCAR GLADE parallel
filesystem. We elucidate peculiarities of R memory management and overhead associ-
ated with interprocess communication and discuss broadcast limitations of Rmpi. The
best performing scheme parallelizes the outer EVA loop across latitude and reads only
the subset of the data operated on in the inner loop over longitude; the different cluster
types and communication protocols all perform about equally for this scheme. This
configuration represents a parallel speedup of 50 with 96 R workers, and is scalable for
EVA on larger problem sizes than those presented here.
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1 Introduction

The Coupled Model Intercomparison Project (CMIP) began as a comparison of a small
number of coupled climate models, but has evolved into a large organization of 21 in-
dividual Model Intercomparison Projects (MIPs). CMIP now forms an integral part of
international evaluations of climate change, such as the Intergovernmental Panel on Cli-
mate Change (IPCC) [1]. In particular, the IPCC Fifth Assessment Report Evaluation of
Climate Models “draws heavily on model results collected as part of the Coupled Model
Intercomparison Projects as these constitute a set of coordinated and thus consistent and
increasingly well-documented climate model experiments” [2]. Beyond the IPCC, CMIP
has contributed tremendously to advance the field of climate science. The goal of CMIP is
“to better understand past, present, and future climate change arising from natural, un-
forced variability or in response to changes in radiative forcings in a multi-model context”
[1]. To that end, CMIP makes model outputs publicly available and standardizes their
formats to facilitate community analysis [1]. This charge itself is formidable: the CMIP
Phase 5 (CMIP5) archive contains 1.8 PB (petabytes) of data, and the current CMIP6 is
expected to produce up to 40 PB.

The CMIP Analysis Platform hosted at NCAR provides researchers with access to
CMIP data on the GLobally Accessible Data Environment (GLADE), thus allowing users
to employ NCAR’s Yellowstone, Geyser, and Caldera high performance computing systems
for analysis of CMIP data. This eliminates the need for researchers to transfer large
datasets to local storage and perform analysis on personal machines.

Effective parallelization is crucial for many types of analysis on CMIP data due to the
large number of grid cells and data points in question. If performed efficiently, analyzing
datasets in parallel can substantially reduce computation time. The goal of this TechNote
is to determine the optimal parallelization scheme for conducting grid point-wise statistical
analysis in a parallel computing environment– in this case the Yellowstone supercomputer.
We adopt a typical strong scaling testing approach, where the problem size remains con-
stant and the number of processors is varied. If the application exhibits perfect strong
scaling, doubling the number of processors will halve the runtime. Extreme Value Anal-
ysis (EVA) is the statistical analysis performed on the data set, but the strong scaling
investigation is suitable for any parallel application. This study is based on the statistical
computing language R and employs R’s foreach package to parallelize data analysis. R is
designed for statistics and graphics, and provides a large variety of packages for myriad
statistical analyses. R is also free, open-source, and regularly maintained, making it widely
available and accessible.

An ancillary objective of this TechNote is to enhance the reader’s appreciation for the
important roles both the computing hardware and software, and the code itself play in
effective parallelization. Indeed, understanding of both is necessary for performance opti-
mization. Ideally, a researcher should be aware of the networks available on a particular
cluster to select an appropriate internode communication protocol. Memory limitations
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and CPU properties are also important details that have implications for parallelization.
Filesystem I/O (the manner of reading from and writing to files) is perhaps the most fre-
quently overlooked factor when considering parallelization and optimization; adroit access
to storage can facilitate code scalability. We examine the effects of all these components
on runtime in this TechNote.

2 Dataset and Analysis

Data used in this TechNote (pr day CCSM4 historical r1i1p1 19550101-19891231.nc)
consist of daily precipitation climate model data spanning 35 years of 365 day years (ig-
noring leap years), from January 1, 1955 through December 31, 1989. Each data point
is associated with a specific latitude and longitude coordinate, forming a grid of 288 lon-
gitude and 192 latitude coordinates, resulting in 55,296 coordinate grid cells. Each data
point is recorded at the specific latitude and longitude coordinate every day for 35 years,
resulting in 12,775 time coordinates. Thus, this dataset is a 288 by 192 by 12,775 array
of time series data, for a total of 706,406,400 data points. The dataset occupies approx-
imately 2.7 GiB of filesystem space. The dataset and code from this work can be found
at https://doi.org/10.5065/D6JW8CK2 [3]. Note that throughout this TechNote units of
gigabytes (GB, or 109 bytes), gibibytes (GiB, or 230 bytes), and gigabits (Gb, or 109 bits)
are used according to system reporting.

A schematic representation of the 3D structure of the dataset is shown in Figure 1. The
other datasets in the CMIP library have similar structures containing a grid of values with
climate data through different time periods. Figure 2 represents the global precipitation
flux on a single day of the dataset examined in this TechNote, and Figure 3 represents the
precipitation flux time series for the grid cell containing Boulder, CO.

CMIP data is stored in netCDF format. NetCDF (network Common Data Form) “is
a set of interfaces for array-oriented data access and a freely distributed collection of data
access libraries for C, Fortran, C++, Java, and other languages” [4]. Individual files are self-
describing (contain metadata), portable, scalable, appendable, shareable, and archivable
[4].

Extreme Value Analysis (EVA) models extreme values from observations using special-
ized statistical distributions. In this TechNote we explore the parallelization of the Peaks
Over Threshold approach, which involves fitting the time series data grid cell-wise to a
Generalized Pareto Distribution. Since each grid cell’s time series is fit independently,
interprocess communication is not necessary for this stage. In this case, parallelization
simply involves choosing an efficient way to distribute grid cells across a group of proces-
sors. The EVA parallelization scheme developed is applicable to all CMIP files, which have
a similar netCDF structure as the one used in this TechNote.

5

https://doi.org/10.5065/D6JW8CK2


Figure 1: Visualization of a subset of the 3D dataset

Figure 2: Global precipitation flux ( kg
m2s

) on October 3, 1983
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Figure 3: Precipitation flux ( kg
m2s

) from Jan 1, 1955 through December 31, 1989 for 40.05◦

N and 105.0◦ W (grid cell containing Boulder, CO).

3 Parallel Processing Environment

3.1 Parallel R

R contains several packages with parallel computing capabilities which facilitate inter-node
communication and the concomitant efficient processing of large datasets. The main par-
allel R package investigated in this TechNote is parallel foreach. The R foreach package
allows the user to parallelize a for loop with the dopar command, which is placed after
the first line in the for loop. Foreach requires an initialized R cluster, which is a set of
R processes that run in parallel and communicate using different protocols and networks.
It is loaded via the doParallel package, which also includes registerDoParallel for
registering the parallel cluster backend. R clusters are broadly divided into two different
protocols: TCP/IP sockets and Message Passing Interface (MPI). R MPI clusters depend
on R’s doMPI package, which in turn requires the Rmpi package. The Rmpi package is an R

interface to the lower-level MPI library.

3.2 R Built on Yellowstone

To use the Rmpi package on Yellowstone, R (v3.3.2) was installed with parallelism and
performance in mind. The latest versions of bzip2 (v1.0.6), libzma (xz-v5.2.3), and PCRE
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(v8.40) provide compression and regular expression functionality, while matrix math opera-
tions are optimized by using the Intel compilers (v16.0.3) with the threaded Intel Math Ker-
nel Library (v11.3.3). The Rmpi package itself (v0.6-6) is built using Open MPI (v1.8.8), as
that MPI library increased Rmpi stability relative to other tested MPI options (IBM POE,
Intel MPI, and newer Open MPI versions). Open MPI is configured with the --disable-
dlopen option, which prevents dynamic loading of plugins, a feature that is incompatible
with Rmpi.

3.3 Yellowstone Supercomputer

The NCAR Yellowstone machine is an IBM iDataPlex High Performance Computing
(HPC) cluster. It consists of 4,536 compute nodes each with two eight-core Intel Sandy
Bridge CPUs and 32 GB memory (25 GB usable). This translates to 72,576 total cores and
144.58 TB total system memory. The high performance system interconnect is Mellanox
InfiniBand, which provides 13.6 GBps of bidirectional bandwidth per node. Each com-
pute node is also connected to a 1Gb Ethernet network. Yellowstone is connected to the
GLADE high performance parallel storage system, which provides the cluster with more
than 90GBps bandwidth to disk and tens of petabytes of storage space. Note that we
report the units per the Yellowstone documentation on the NCAR Computational and
Information Systems Lab (CISL) website: https://www2.cisl.ucar.edu/resources/

computational-systems/yellowstone.

4 Experimental Design

The design of the foreach experiments is shaped by our goal of minimizing EVA runtime
on CMIP datasets. This analysis is spatially independent and involves looping over latitude
and longitude values in the dataset. Since either coordinate can be iterated upon in the
inner or outer loop, we assess both options. While it is generally advantageous to parallelize
an outer loop due to parallelization overhead, we also test parallelizing the inner loop.
We explore two additional factors that impact runtime and memory usage: the method
of reading data from storage and the communication between the parallel workers. We
acknowledge that a job “load-balancing” parallelization approach can also be taken; in
this scheme the independent tasks are divided into separate jobs and the execution order
is determined by the cluster job scheduler. While this method is effective under limited
circumstances, coordinating job submission and analyzing the output of many jobs (perhaps
thousands) can be a formidable undertaking in its own right. Moreover, this tactic presents
greater exposure to cluster resource contention, thus predicting when all jobs will complete
can be very difficult. Ultimately, this tactic requires a greater total number of I/O calls as
each job must read the relevant subset of the data and write its result subset to disk.
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4.1 Description of Experiments

We first choose a dimension to loop through in parallel– either latitude or longitude. For
example, if the experiment parallelizes across longitude in the outer loop, the sequential
inner loop will iterate over latitude coordinates, while the outer longitude loop will be
parallelized such that each R process receives a subset of the longitude values. Eight
parallelization schemes are examined, with the major differences being parallelization across
latitude or longitude, inner or outer loop parallelization, and the method of reading the
data. A summary of the parallelization schemes is presented in Table 1. The following
sections describe the factors that are varied in the eight parallelization schemes.

4.1.1 Parallelization Across Longitude or Latitude

The CMIP dataset used here contains more longitude values than latitude values, so com-
paring parallelization schemes across latitude or longitude can illustrate the performance
impact of communication overhead. Experiments 1, 2, 7, and 8 parallelize across longitude
values, implying that the latitude coordinates were looped through sequentially. Exper-
iments 3, 4, 5, and 6 parallelize across latitude values, while the longitude coordinates
are looped through sequentially. Figure 4 visualizes iteration across latitude and Figure 5
across longitude. See Appendix B for code examples.

4.1.2 Placement of Parallel Loops

If the inner loop is parallelized, the outer loop sequentially iterates through one dimension,
while within each iteration the inner loop is distributed to the R workers. However, if the
outer loop is parallelized, the inner loop sequentially iterates over the second dimension.
Comparing these two approaches can reveal useful properties of R foreach communication
overhead.

4.1.3 Reading Data

The method of reading data is also explored– retrieving only the relevant data set for each
iteration or reading the entire dataset into memory at once. The first scheme involves each
worker extracting subsets of the data according to the latitude and longitude coordinates
of the sequential loop. In this case, each worker executes a getData function which takes
a latitude or longitude argument (depending on whether the experiment’s inner loop is
across latitude or longitude), the value of which is received from the master. Therefore
the workers engage in independent reads of different slices of the dataset before beginning
the inner loop. See Appendix B.3.2 for an example in R. In the second scheme the master
reads the entire dataset before starting the EVA. Depending on whether the inner or outer
loop is parallelized, the master will either send a slice or the entire dataset to each worker.
See Appendix B.1.2 for an example in R. Under specific circumstances this approach can
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Figure 4: This example represents a parallelized outer loop across latitude, where the inner
loop across longitude is executed in serial by each R process. The green grid cells highlight
the subsets that the first three R processes iterate across. In this case the first R process
performs EVA on the first latitude grid (top), and the third R process on the bottom grid.
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Figure 5: This example represents a parallelized outer loop across longitude, where the
inner loop across latitude is executed in serial by each R process. The purple grid cells
highlight the subsets that the first three R processes iterate across. In this case the first
R process performs EVA on the first longitude grid (top) and the third R process on the
bottom grid.
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be fast at the expense of requiring more memory per R process. See Tables 7, 9, 11, and
13 for details.

Ultimately, the most efficient method of reading netCDF data is for each worker to read
only its slice of the data once, before the outer loop. To accomplish this, each worker needs
to access its subset of latitude and longitude values before entering the dopar construct,
which is not possible in foreach. Pure Rmpi must be used to access this functionality, which
requires considerably more expertise and development time for effective parallelization of
EVA.

4.1.4 Communication Protocol

We examined the use of two different clusters: PSOCKcluster, known as sockets here, and
MPI. Ethernet and InfiniBand physical networks were also tested. Therefore each experi-
ment was run with sockets clusters via the Ethernet network (Eth), sockets clusters over the
InfiniBand network (Internet Protocol over InfiniBand: IPoIB), and MPI clusters over the
InfiniBand network. MPI over Ethernet is slow in comparison to MPI over InfiniBand due
to InfiniBand’s support of Remote Direct Memory Access (RDMA). In order to approach
InfiniBand speeds using MPI over Ethernet, specialized hardware and a protocol known as
RDMA over Converged Ethernet (RoCE) are necessary. This setup was not available, and
we did not test this combination.

Testing different protocols and clusters was done to provide a reference for researchers
with access to varied parallel computing infrastructures and software packages. Ethernet
is ubiquitous in parallel computing, but InfiniBand is restricted to High Performance Com-
puting clusters. Rmpi is not commonly installed on HPC clusters; if a researcher has access
to a cluster with InfiniBand it is quite possible that the Rmpi package will not be available,
hence the investigation into IPoIB.

4.2 Computing Resource Requirements

For the strong scaling study two resource requirements are listed in each experimental test–
the number of R workers and the number of nodes. For every experiment except 8, the
number of R workers is set equal to the number of cores per node so each core will receive
one R process. In experiment 8, parallelization of the outer loop combined with the master
process’ initial read of the full dataset into memory results in each worker process receiving
the entire dataset. For ptile=16 this requires more than the approximately 25GB of usable
physical memory on a Yellowstone compute node. In this case we set the LSF ptile option
to 8, which allows R to spawn a maximum of 8 processes on each node for the MPI cluster.
For sockets clusters the LSF ptile option controls the number of R processes per node
via the $LSB HOSTS environment variable. This variable contains a list of hostnames
with a hostname multiplicity equal to the ptile value. See Appendix B for details of how
this environment variable is used to start a sockets cluster with the correct number of
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R processes per node. Note that requesting 16 CPUs with a ptile of 8 instructs LSF to
allocate two nodes for the job. In the other seven experiments, the number of tasks per
node is kept constant at 16, while the number of nodes increases sequentially from 1 to 3.
Therefore the number of cores increases from 16 to 48 in multiples of 16.

4.3 Test Data Size and Timing Variability Assessment

To more rapidly identify the best performing schemes, each experiment is run on one
quarter of the data. If one loop uses all 288 longitude values, the other loop iterates over
only 48 latitudes (13,824 grid cells). Analogously, if one loop iterates across 72 longitudes,
the other loop will use 192 latitudes (13,824 grid cells). Hence the number of grid cells is
fixed across experiments and only the fastest configurations are then evaluated on the full
dataset.

We also perform an analysis of variability for the best performing experiments. Each
of these experiments is run 10 times for each protocol and node count, and the means,
standard deviations, and ranges are computed. It is important to recognize that the run-
time variability is strongly influenced by resource contention. Yellowstone, like most HPC
clusters, has tens or hundreds of concurrent user jobs running at any time. These jobs have
many varied workloads that require access to shared infrastructure. For example, nodes
from two different jobs may make concurrent resource requests from one of the storage
servers, which it satisfies more slowly than if only one request was made. Furthermore,
unless a network is topologically fully-connected it will have shared links that transmit
data from multiple sets of nodes to one or many destinations. These links can become
congested, affecting performance.

5 Timing Results

We present experimental results for the quarter-size dataset in Appendix Tables 6-13 and
for the full dataset in Tables 2-5. Only the loops containing the EVA are timed; cluster
startup and variable assignment are not included in the runtime. The two best performing
experiments (numbers 5 and 7) are considered in more detail via runtime variability stud-
ies and experimental runs using the full dataset. Experiments 6 and 8 exhibit excellent
runtimes on the quarter-size dataset but scale poorly. Results for experiments 6 and 8
for worker counts from 64-96 on the full dataset are excluded due to excessive memory
and node resource requirements. See Section 5.2 for details. Experiments 2, 4, 6, and 8
make salient the effect of the InfiniBand network’s much greater bandwidth: the runtimes
increase much more dramatically for Ethernet in comparison to IPoIB as the number of
workers increases. This is caused by the master sending the dataset to each worker, which
exposes the physical network bottleneck. Note that the MPI cluster and protocol performs
poorly for experiments 1-4, which may be due to an improper implementation of the MPI
library in Rmpi.

14



5.1 Variability Results

Experiments 5 and 7 both perform best, so we selected them for further analysis. Both
experiments conform to the general rule that parallelizing outer loops is preferable to
inner loop parallelization for minimizing communication overhead. In Tables 10 and 12,
variability characteristics are also included. For both of these tables, each experiment
was run 10 times to compute mean runtime, standard deviation, and runtime range. It is
important to note that filesystem caching effects in Linux buffer cache can contribute to
decreased run times beginning with the second execution. This can occur if each compute
node reads the same subset of the data for each execution. It is assumed that the caching
effects are similar between experiments 5 and 7 on the quarter dataset. Moreover, as
mentioned in Section 4.3, resource contention can have a tremendous impact on job runtime,
especially when the jobs are run sequentially as was done here. Some of the runtime spread
is due to resource contention from other users’ jobs. For a better representation of job
runtime variability jobs should run at random times over the course of several days.

The variability characteristics are similar between the two experiments, and due to
their higher number of filesystem reads (since both experiments perform a read before each
inner loop), differences between them are attributed to transient filesystem performance
decreases. Experiment 5 performs slightly better than 7, which we attribute to the lower
frequency of parallel communication necessary for distribution of tasks. In other words,
the inner loop in Experiment 5 contains more work, which reduces the number of tasks
sent to each R worker process and lowers the frequency of communication with the R master
process. For purposes of comparison, we also present the variability results for experiment
5 with a single process in Table 10.

5.2 Memory Footprint and Scalability

While experiments 6 and 8 with the MPI cluster achieve the shortest runtimes of all
experiments on the quarter-size dataset, they do so with an inherently flawed approach to
parallelization. The data distribution approach of experiments 6 and 8 results in each R

process sequentially receiving the entire dataset. Running the experiments with ptile=8 on
the full dataset fails due to over-allocation of memory. Despite the full dataset occupying
about 2.7 GiB on the filesystem, it occupies closer to 5.3 GiB of memory per R process.
Upon reading the file, the dataset values are cast from single to double precision, nearly
doubling the memory consumption. Furthermore, R allocates a surplus of memory when
the master process reads the dataset from the filesystem. The memory occupancy for the
dataset balloons to approximately 10 GiB, and surpasses 14 GiB on the master process
when sending the dataset to the worker processes. While this can be mitigated momentarily
by forcing R to perform garbage collection (deallocating unused memory areas) via gc(),
the memory footprint rapidly increases as memory addresses are mapped but unused (or
disused).

15



Protocol R workers Nodes
Runtime
(seconds)

Eth 16 1 514.6

Eth 32 2 263.9

Eth 48 3 186.8

Eth 64 4 139.3

Eth 80 5 127.4

Eth 96 6 102.5

IPoIB 16 1 519.4

IPoIB 32 2 271.4

IPoIB 48 3 194.1

IPoIB 64 4 153.6

IPoIB 80 5 135.4

IPoIB 96 6 106.0

MPI 16 1 617.3

MPI 32 2 320.8

MPI 48 3 225.3

MPI 64 4 174.8

MPI 80 5 152.1

MPI 96 6 135.8

Table 2: Experiment 5, full dataset - outer loop parallelization across latitude for 192
latitude values, only reading data used in each iteration.

Protocol R workers Nodes
Runtime
(seconds)

Eth 16 8 972.2

Eth 32 16 1604.0

Eth 48 24 3182.8

IPoIB 16 8 552.8

IPoIB 32 16 691.0

IPoIB 48 24 927.7

Table 3: Experiment 6, full dataset - outer loop parallelization across longitude for 192
longitude values and ptile=2.
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Protocol R workers Nodes
Runtime
(seconds)

Eth 16 1 612.7

Eth 32 2 318.4

Eth 48 3 218.4

Eth 64 4 175.0

Eth 80 5 145.2

Eth 96 6 115.0

IPoIB 16 1 608.2

IPoIB 32 2 323.6

IPoIB 48 3 233.9

IPoIB 64 4 178.2

IPoIB 80 5 146.2

IPoIB 96 6 125.6

MPI 16 1 605.4

MPI 32 2 315.4

MPI 48 3 207.0

MPI 64 4 167.2

MPI 80 5 139.8

MPI 96 6 124.7

Table 4: Experiment 7, full dataset - outer loop parallelization across longitude for 288
longitude values, only reading data used in each iteration.

Protocol R workers Nodes
Runtime
(seconds)

Eth 16 8 981.3

Eth 32 16 1651.9

Eth 48 24 2337.4

IPoIB 16 8 569.8

IPoIB 32 16 712.0

IPoIB 48 24 948.0

Table 5: Experiment 8, full dataset - outer loop parallelization across longitude for 288
longitude values and ptile=2.
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On the quarter-size dataset, experiments 6 and 8 MPI far surpass Eth and IPoIB.
This is due to MPI’s optimized tree broadcast algorithm that runs in near constant time
[5]. In contrast, TCP/IP broadcast (Eth and IPoIB protocols) uses a simple one-to-all
communication pattern that shows its limitations as the number of workers increases.
Network saturation occurs rapidly for Eth and even IPoIB.

To run experiments 6 and 8 effectively on the full dataset, a ptile of 2 must be chosen,
as the master process overhead drives the memory utilization beyond 25 GB with ptile=3.
The MPI cluster fails to complete the EVA on the full dataset with ptile=2. It produces
the following error:

Error in mpi.bcast(data, 4, 0, cl$comm) :

long vectors not supported yet: memory.c:3441

R long vectors contain more than 231 = 2, 147, 483, 648 elements; the entire dataset
consists of approximately 700,000,000, so this may be an indication of a bug in Rmpi.
These experiments neatly illustrate the importance of scalability in parallel processing, as
they cannot be run with an input dataset of greater than approximately 6 GiB (even with
ptile=1) on a Yellowstone compute node.

6 Discussion and Conclusions

Experiment 5 abides by conventional recommendations for parallelization: the outer loop
is parallelized and the amount of work per inner loop iteration is maximal, which decreases
communication frequency. Furthermore, it does not engage in redundant communication
(sending either a slice or the entire dataset to every worker) since each worker only reads its
subset of the data. Our tests indicate that Experiment 5 runs well on any available protocol
and physical network, but IPoIB with sockets cluster is our recommended configuration
due to the greater bandwidth available from an InfiniBand network. Experiment 5 for
the full dataset achieves a speedup of approximately 50 when run with 96 tasks on six
nodes. See Figure 6 for a graphical representation of strong scaling for Ethernet, IPoIB,
and MPI protocols in comparison with perfect scaling and the projected runtime for a
serial R script on the full dataset (based on the serial runtime on the quarter dataset:
5419.2s = 1354.8s × 4). Note that EVA on a single grid cell for the full temporal range
takes 4.2s (average of five runs).

It is notable that the runtimes for experiments 5 and 7 are very similar across protocols
and physical networks, with sockets clusters performing slightly better overall. This is
somewhat surprising as sockets clusters rely on encrypted communication between the
master and remote worker processes, and Rmpi is using Remote Direct Memory Access
for low latency. It is likely that the higher ratio of computation time to communication
time present in the outer loop parallelizations compensates for the higher bandwidth and
lower latency MPI protocol over the InfiniBand network. It is also possible that the small
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Figure 6: Experiment 5 scaling for the full dataset. Runtimes for the listed protocols
are compared to perfect scaling, and the projected serial runtime on the full dataset is
extrapolated from the runtime of the quarter-size dataset. Note the logarithmic scale of
both axes.

performance penalty for MPI clusters in these cases is due to an inefficient implementation
of MPI in the underlying Rmpi. In either case, the results suggest that any protocol can
be used effectively; this indicates that experiments 5 and 7 are well suited to nearly any
parallel computing environment. If a researcher has a choice of physical networks and
protocols, IPoIB should be used due to InfiniBand’s large bandwidth advantage over 1 and
10 Gb Ethernet. While we see no evidence of this phenomenon in our testing, Ethernet
networks’ lower bandwidth makes them more prone to saturation than InfiniBand, which
could dramatically increase runtime. This can occur if data transfers (e.g. from an external
storage system accessed across Ethernet) to compute nodes are using the same upstream
Ethernet links.

Another reason experiments 5 and 7 scale so successfully is Yellowstone’s high perfor-
mance parallel filesystem. GLADE is designed for low latency concurrent file access, which
occurs after the completion of each inner loop. Running these experiments on filesystems
that are not designed for this access pattern will likely result in less optimal scaling than
the results reported here.
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Appendix A Quarter Dataset Test Results

Protocol R workers Nodes
Runtime
(seconds)

Eth 16 1 373.9

Eth 32 2 541.5

Eth 48 3 682.8

IPoIB 16 1 374.5

IPoIB 32 2 421.9

IPoIB 48 3 480.5

MPI 16 1 1968.6

MPI 32 2 2046.1

MPI 48 3 2107.4

Table 6: Experiment 1, quarter dataset - inner loop parallelization across longitude
for 48 latitude values, only reading data used in each iteration.

Protocol R workers Nodes
Runtime
(seconds)

Eth 16 1 202.2

Eth 32 2 351.7

Eth 48 3 539.0

IPoIB 16 1 204.5

IPoIB 32 2 248.2

IPoIB 48 3 291.3

MPI 16 1 1777.1

MPI 32 2 1833.0

MPI 48 3 1906.9

Table 7: Experiment 2, quarter dataset - inner loop parallelization across longitude
for 48 latitude values, all data read at once in the beginning.
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Protocol R workers Nodes
Runtime
(seconds)

Eth 16 1 293.3

Eth 32 2 397.8

Eth 48 3 502.1

IPoIB 16 1 298.3

IPoIB 32 2 308.4

IPoIB 48 3 351.2

MPI 16 1 1437.3

MPI 32 2 1494.0

MPI 48 3 1547.5

Table 8: Experiment 3, quarter dataset - inner loop parallelization across latitude for
72 longitude values, only reading data used in each iteration.

Protocol R workers Nodes
Runtime
(seconds)

Eth 16 1 141.4

Eth 32 2 237.0

Eth 48 3 370.6

IPoIB 16 1 136.4

IPoIB 32 2 156.6

IPoIB 48 3 193.1

MPI 16 1 1225.4

MPI 32 2 1265.2

MPI 48 3 1361.0

Table 9: Experiment 4, quarter dataset - inner loop parallelization across latitude for
72 longitude values, all data read at once in the beginning.
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Protocol R workers Nodes
Mean

runtime
(seconds)

Runtime
stddev

Runtime
min, max

Serial 1 1 1354.8 37.0
1290.9,
1382.1

Eth 16 1 142.0 3.0 136.4, 144.8

Eth 32 2 89.3 2.5 85.4, 93.7

Eth 48 3 56.6 1.7 53.9, 59.1

IPoIB 16 1 140.0 2.1 137.4, 143.1

IPoIB 32 2 90.2 2.9 86.9, 95.2

IPoIB 48 3 55.2 1.6 51.5, 56.7

MPI 16 1 148.9 3.5 144.5, 156.3

MPI 32 2 81.0 1.5 78.4, 82.8

MPI 48 3 71.0 0.7 69.9, 72.3

Table 10: Experiment 5, quarter dataset - outer loop parallelization across latitude for
48 latitude values, only reading data used in each iteration. The mean, standard deviation,
and range of runtimes are reported for 10 successive runs of each protocol and number of
tasks. Results for the serial version for 5 runs are also reported for comparison.

Protocol R workers Nodes
Runtime
(seconds)

Eth 16 2 219.6

Eth 32 4 377.7

Eth 48 6 540.8

IPoIB 16 2 147.0

IPoIB 32 4 195.1

IPoIB 48 6 245.3

MPI 16 2 93.7

MPI 32 4 55.9

MPI 48 6 54.8

Table 11: Experiment 6, quarter dataset - outer loop parallelization across latitude
for 48 latitude values, all data read at once in the beginning and ptile=8.
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Protocol R workers Nodes
Mean

runtime
(seconds)

Runtime
stddev

Runtime
min, max

Eth 16 1 167.5 3.9 161.9, 173.8

Eth 32 2 99.3 2.7 95.4, 104.1

Eth 48 3 68.6 2.2 64.6, 73.1

IPoIB 16 1 168.9 3.1 161.8, 172.4

IPoIB 32 2 99.9 1.9 96.5, 102.9

IPoIB 48 3 69.1 1.6 65.9, 72.0

MPI 16 1 154.6 3.3 151.0, 163.0

MPI 32 2 92.7 2.7 89.1, 98.2

MPI 48 3 67.5 1.4 65.4, 69.9

Table 12: Experiment 7, quarter dataset - outer loop parallelization across longitude
for 72 longitude values, only reading data used in each iteration. The mean, standard
deviation, and range of runtimes are reported for 10 successive runs of each protocol and
number of tasks.

Protocol R workers Nodes
Runtime
(seconds)

Eth 16 2 135.7

Eth 32 4 246.0

Eth 48 6 361.0

IPoIB 16 2 97.7

IPoIB 32 4 128.9

IPoIB 48 6 165.7

MPI 16 2 62.9

MPI 32 4 39.7

MPI 48 6 38.8

Table 13: Experiment 8, quarter dataset - outer loop parallelization across longitude
for 72 longitude values, all data read at once in the beginning and ptile=8.

Appendix B Code Examples

The following sections are examples of batch job submission scripts and R code for experi-
ments 2 and 5 with both Ethernet and MPI protocols. The batch job scripts were written
in Bash for the Yellowstone cluster, which uses the IBM Spectrum LSF workload man-
ager. LSF directives (#BSUB lines) will need to be modified for the appropriate workload
manager. Furthermore, Yellowstone uses Lmod for environment management (e.g. module
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load intel/16.0.3), so these lines should be adapted to the appropriate environment. The
R script contains references to the CMIP dataset used in this TechNote; the path to the
desired dataset must be modified accordingly. In general, mutatis mutandis.

On Yellowstone, the experiment 2 Ethernet R script is submitted (requesting 16 CPUs
with -n) via the following command:

bsub -n 16 < fe_CMIP_2a.lsf

The “a” suffix after the experiment number signifies that the R script is Ethernet protocol.
We designate IPoIB scripts with “b,” and MPI with “c.”

Note that we have preserved the path to the dataset residing on GLADE scratch in
the R scripts. This is to highlight that the highest performance storage available (GLADE
scratch here) should be used for optimal results.

The code for all experiments and the dataset used in this TechNote can be found at
https://doi.org/10.5065/D6JW8CK2 [3].

B.1 Experiment 2: Ethernet

B.1.1 LSF submission script

#!/bin/bash -f

#BSUB -J fe2

#BSUB -q small

#BSUB -P ACCT

#BSUB -W 00:30

#BSUB -o fe2.%J.stdout

#BSUB -e fe2.%J.stderr

#BSUB -N

#BSUB -x

#BSUB -R "span[ptile=16]"

source /glade/apps/opt/lmod/lmod/init/bash

module load intel/16.0.3

module load R/3.3.2

cd /glade/u/home/$USER/<R script location>

# For Ethernet remove the -ib suffix from hostnames, since

# we want traffic to flow across the onboard

# 1Gb NIC.
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echo $LSB_HOSTS | sed 's/-ib//g' | tr ' ' '\n' > hostfile.$LSB_JOBID

# For IPoIB, remove "| sed 's/-ib//g'" from the previous expression

# Run this script for 1/4 dataset (48 latitude grid cells).

# For the full dataset, use 192.

Rscript fe_CMIP_2a.R 48 hostfile.$LSB_JOBID

rm -f hostfile.$LSB_JOBID

B.1.2 R script

library(ncdf4)

library(extRemes)

library(doParallel) # loads foreach, parallel and iterators as dependencies

#######################################################################################

#### EXPERIMENT 2a: INNER LOOP PARALLELIZED ACROSS LONGITUDE, DATA ONLY READ ONCE ####

#######################################################################################

dataPath <- "/glade/scratch/$USER/pr_day_CCSM4_historical_r1i1p1_19550101-19891231.nc"

args <- commandArgs(trailingOnly = TRUE)

# Arguments passed to R script

numLat <- as.numeric(args[1])

hostfile <- args[2]

##### Data Read #####

dataHandle <- nc_open(dataPath)

lon <- ncvar_get(dataHandle, "lon")

lat <- ncvar_get(dataHandle,"lat")

tm <- ncvar_get(dataHandle,"time")

dataset <- ncvar_get(dataHandle, "pr", start = c(1, 1, 1),

count=c(-1, numLat,-1))

nc_close(dataHandle)

##### User specifications #####

tailProb <- .01 # tail probability used in extremes fitting

returnLevelYear <- 100 # years used for return level

numResults <- 5 # number of result outputs for each gridcell

# empty array to store results

outSummary <- array(NA, c(dim(lat), dim(lon), numResults))
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##### Cluster setup #####

lines <- readLines(hostfile)

hosts <- character()

# This construct comes from an R email list question.

for (line in lines) {

x <- (strsplit(line[[1]], " "))

hosts <- c(hosts, rep.int(x[[1]][1], 1))

}

local <- system("hostname", intern=TRUE)

batchMaster <- hosts[1]

for (i in 1:length(hosts)) {

if (grepl(local, hosts[i])) {

hosts[i] <- "localhost"

}

}

if (length(unique(hosts))==1) {

numWorkers <- length(hosts)

# remove outfile option to suppress debugging messages

cl <- makePSOCKcluster(numWorkers, outfile="")

} else {

workers <- hosts

# remove outfile option to suppress debugging messages

cl <- makePSOCKcluster(master=batchMaster, workers, outfile="")

}

registerDoParallel(cl) # Register parallel backend for foreach

numCores <- getDoParWorkers()

print(numCores)

##### EVA fitting #####

p1 <- proc.time()

# outer loop over latitude

for (latindex in 1:numLat) {

subDataset <- dataset[, latindex, ]

# start of inner loop over longitude
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# Note that outSummary assigns the data structure returned from

# the inner loop due to R's rbind combine statement.

outSummary[latindex,,] <- foreach (lonindex=1:dim(lon),

.combine=rbind,

.packages=c("extRemes")) %dopar% {

Y <- subDataset[lonindex,]

threshold <- quantile(Y, 1-tailProb)

frac <- sum(Y > threshold)/length(Y)

# Fit Generalized Pareto Distribution

GPFit <- fevd(Y, threshold=threshold, type="GP", method="MLE")

returnLevel <- try(return.level(GPFit, returnLevelYear, do.ci=FALSE))

# data structure returned from inner loop

c(threshold, GPFit$results$par, frac=frac, returnLevel)

}

print(latindex) # Counter to monitor progress

}

diffp <- proc.time()-p1

loopTime <- diffp[3]

print(loopTime)

save("outSummary", "loopTime", file=paste("outSummary_exp2a_",

numCores, ".Rdata", sep=""))

stopCluster(cl) # Close cluster

B.2 Experiment 2: MPI

B.2.1 LSF submission script

#!/bin/bash -f

#BSUB -J fe2

#BSUB -q small

#BSUB -P ACCT

#BSUB -W 02:00

#BSUB -o fe2.%J.stdout

#BSUB -e fe2.%J.stderr

#BSUB -N

#BSUB -x

#BSUB -R "span[ptile=16]"
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source /glade/apps/opt/lmod/lmod/init/bash

module load intel/16.0.3

module load R/3.3.2

module load rmpi

cd /glade/u/home/$USER/<R script location>

# Get the number of processors for the mpirun command.

numProcs=$( echo $LSB_HOSTS | tr ' ' '\n' | wc -l )

# We use n-1 MPI workers since the master also performs

# computation. Run this script for 1/4 dataset (48 latitude grid cells).

# For the full dataset, use 192.

mpirun -np 1 Rscript fe_CMIP_2c.R 48 $(( $numProcs - 1 ))

B.2.2 R script

library(ncdf4)

library(extRemes)

library(doParallel) # loads foreach, parallel and iterators as dependencies

library(Rmpi)

library(doMPI)

#######################################################################################

#### EXPERIMENT 2c: INNER LOOP PARALLELIZED ACROSS LONGITUDE, DATA ONLY READ ONCE ####

#######################################################################################

dataPath <- "/glade/scratch/$USER/R/pr_day_CCSM4_historical_r1i1p1_19550101-19891231.nc"

args <- commandArgs(trailingOnly = TRUE)

# Arguments passed to R script

numLat <- as.numeric(args[1])

numCores <- as.numeric(args[2])

##### Data Read #####

dataHandle <- nc_open(dataPath)

lon <- ncvar_get(dataHandle, "lon")

lat <- ncvar_get(dataHandle,"lat")

tm <- ncvar_get(dataHandle,"time")
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dataset <- ncvar_get(dataHandle, "pr", start = c(1, 1, 1),

count=c(-1, numLat,-1))

nc_close(dataHandle)

##### User specifications #####

tailProb <- .01 # tail probability used in extremes fitting

returnLevelYear <- 100 # years used for return level

numResults <- 5 # number of result outputs for each gridcell

# empty array to store results

outSummary <- array(NA, c(dim(lat), dim(lon), numResults)

##### Cluster setup #####

cl <- startMPIcluster(numCores) # Create MPI cluster

registerDoMPI(cl)

print(numCores)

##### EVA fitting #####

p1 <- proc.time()

# outer loop over latitude

for (latindex in 1:numLat) {

subDataset <- dataset[, latindex, ]

# start of inner loop over longitude

# Note that outSummary assigns the data structure returned from

# the inner loop due to R's rbind combine statement.

outSummary[latindex,,] <- foreach (lonindex=1:dim(lon),

.combine=rbind,

.packages=c("extRemes")) %dopar% {

Y <- subDataset[lonindex,]

threshold <- quantile(Y, 1-tailProb)

frac <- sum(Y > threshold)/length(Y)

# Fit Generalized Pareto Distribution

GPFit <- fevd(Y, threshold=threshold, type="GP", method="MLE")

returnLevel <- try(return.level(GPFit, returnLevelYear, do.ci=FALSE))

# data structure returned from inner loop

c(threshold, GPFit$results$par, frac=frac, returnLevel)

}

print(latindex) # Counter to monitor progress

}

diffp <- proc.time()-p1
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loopTime <- diffp[3]

print(loopTime)

save("outSummary", "loopTime", file=paste("outSummary_exp2c_",

numCores, ".Rdata", sep=""))

closeCluster(cl) # Close cluster

Rmpi::mpi.quit()

B.3 Experiment 5: Ethernet

B.3.1 LSF submission script

The script is identical to experiment 2 Ethernet, with appropriate changes to the script
and job names.

B.3.2 R script

library(ncdf4)

library(extRemes)

library(doParallel) # loads foreach, parallel and iterators as dependencies

###############################################################

#### EXPERIMENT 5a: OUTER LOOP PARALLELIZED ACROSS LATITUDE ###

###############################################################

dataPath <- "/glade/scratch/$USER/pr_day_CCSM4_historical_r1i1p1_19550101-19891231.nc"

args <- commandArgs(trailingOnly = TRUE)

# Arguments passed to R script

numLat <- as.numeric(args[1])

hostfile <- args[2]

##### Initial data read #####

dataHandle <- nc_open(dataPath)

lon<- ncvar_get(dataHandle, "lon")

lat<- ncvar_get(dataHandle,"lat")

tm<- ncvar_get(dataHandle,"time")

nc_close(dataHandle)

#function to reading data for loop

getData <- function(latnum){
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dataHandle <- nc_open(dataPath)

dataSlice <- ncvar_get(dataHandle, "pr",

start = c(1, latnum, 1), count=c(-1,1,-1))

nc_close(dataHandle)

return(dataSlice)

}

##### User specifications #####

tailProb<- .01 # tail probability used in extremes fitting

returnLevelYear <- 100 # years used for return level

##### Cluster setup #####

lines <- readLines(hostfile)

hosts <- character()

# This construct comes from an R email list question.

for (line in lines) {

x <- (strsplit(line[[1]], " "))

hosts <- c(hosts, rep.int(x[[1]][1], 1))

}

local <- system("hostname", intern=TRUE)

batchMaster <- hosts[1]

for (i in 1:length(hosts)) {

if (grepl(local, hosts[i])) {

hosts[i] <- "localhost"

}

}

if (length(unique(hosts))==1) {

numWorkers <- length(hosts)

# remove outfile option to suppress debugging messages

cl <- makePSOCKcluster(numWorkers, outfile="")

} else {

workers <- hosts

# remove outfile option to suppress debugging messages

cl <- makePSOCKcluster(master=batchMaster, workers, outfile="")

}

registerDoParallel(cl) # Register parallel backend for foreach
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numCores <- getDoParWorkers()

print(numCores)

###### EVA fitting #####

p1<-proc.time()

# outer loop over latitude

# Note that outSummary assigns the data structure returned from

# the inner loop due to R's rbind combine statement.

outSummary <- foreach(latindex=1:numLat,

.combine=rbind,

.packages=c("extRemes", "ncdf4", "foreach")) %dopar% {

dataset <- getData(latindex)

foreach(lonindex = 1:dim(lon),

.combine=rbind,

.packages=c("extRemes", "foreach")) %do% {

Y <- dataset[lonindex,]

threshold <- quantile(Y, 1-tailProb)

frac <- sum(Y > threshold)/length(Y)

# Fit Generalized Pareto Distribution

GPFit <- fevd(Y, threshold=threshold, type="GP", method="MLE")

returnLevel <- try(return.level(GPFit, returnLevelYear, do.ci=FALSE))

c(latindex, lonindex, threshold, GPFit$results$par, frac=frac, returnLevel)

}

}

diffp <- proc.time()-p1

loopTime <- diffp[3]

print(loopTime)

save("outSummary","loopTime", file=paste("outSummary_exp5a_",

numCores, ".Rdata", sep=""))

stopCluster(cl) # Close cluster

B.4 Experiment 5: MPI

B.4.1 LSF submission script

The script is identical to experiment 2 MPI, with appropriate changes to the script and
job names.
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B.4.2 R script

library(ncdf4)

library(extRemes)

library(doParallel) # loads foreach, parallel and iterators as dependencies

library(Rmpi)

library(doMPI)

######################################################################

#### EXPERIMENT 5c: OUTER LOOP PARALLELIZED ACROSS LATITUDE ####

######################################################################

dataPath <- "/glade/scratch/$USER/pr_day_CCSM4_historical_r1i1p1_19550101-19891231.nc"

args <- commandArgs(trailingOnly = TRUE)

# Arguments passed to R script

numLat <- as.numeric(args[1])

numCores <- as.numeric(args[2])

##### Initial data read #####

dataHandle <- nc_open(dataPath)

lon <- ncvar_get(dataHandle, "lon")

lat <- ncvar_get(dataHandle,"lat")

tm <- ncvar_get(dataHandle,"time")

nc_close(dataHandle)

#function to reading data for loop

getData <- function(latnum){

dataHandle <- nc_open(dataPath)

dataSlice <- ncvar_get(dataHandle, "pr",

start = c(1, latnum, 1), count=c(-1,1,-1))

nc_close(dataHandle)

return(dataSlice)

}

##### User specifications #####

tailProb <- .01 # tail probability used in extremes fitting

returnLevelYear <- 100 # years used for return level

##### Cluster setup #####

cl <- startMPIcluster(numCores) # Create MPI cluster
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registerDoMPI(cl)

print(numCores)

###### Fitting #####

p1<-proc.time()

# outer loop over latitude

# Note that outSummary assigns the data structure returned from

# the inner loop due to R's rbind combine statement.

outSummary <- foreach(latindex=1:numLat,

.combine=rbind,

.packages=c("extRemes", "ncdf4", "foreach")) %dopar% {

dataset <- getData(latindex)

foreach(lonindex = 1:dim(lon),

.combine=rbind,

.packages=c("extRemes", "foreach")) %do% {

Y <- dataset[lonindex,]

threshold <- quantile(Y, 1-tailProb)

frac <- sum(Y > threshold)/length(Y)

# Fit Generalized Pareto Distribution

GPFit <- fevd(Y, threshold=threshold, type="GP", method="MLE")

returnLevel <- try(return.level(GPFit, returnLevelYear, do.ci=FALSE))

c(latindex, lonindex, threshold, GPFit$results$par, frac=frac, returnLevel)

}

}

diffp <- proc.time()-p1

loopTime <- diffp[3]

print(loopTime)

save("outSummary", "loopTime", file=paste("outSummary_exp5c_",

numCores, ".Rdata", sep=""))

closeCluster(cl) # Close cluster

Rmpi::mpi.quit()
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