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ABSTRACT

Dave published the first widely-used Mie scattering codes in

1968. Even on the fastest computers, these codes and their descendants

often took a great deal of computer time for problems of practical

interest. In the intervening years, there have been a number of

improvements in technique (some developed by this author and reported

herein for the first time). At the same time, vector processing has

increasingly become the wave of the future in scientific computing

machines, and Mie computations can be effectively reorganized to take

advantage of it.

The present document gathers these improvements in technique,

together with the necessary reorganization to attain vector speed,

to produce new Mie scattering codes suitable for modern computation.

Actually, two codes are presented. The first, MIEVO, attains

as much vector speed as possible within the constraint of using the

minimum possible memory. MIEVO is suitable for almost any computer,

whether or not it has vector capabilities, and is generally faster

and better designed than existing Mie codes.

The second code, MIEV1, attains maximum vector speed, at the

expense of using more memory than MIEVO. It is most suitable for

vector-processing computers. MIEV1 is anywhere from 10% to 300%

faster on the CRAY-1 than MIEVO.

Detailed timing results are presented for both codes. The

codes are thoroughly tested and documented and are exceptionally

reliable and well-conditioned. Mie results up to size parameters

of 20,000 have been generated without difficulty.
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PREFACE

Mty own investigations in radiative transfer in the atmosphere

have always depended on Hie scattering calculations, and such calcu-

lations have invariably devoured the lion's share of my computing

resources. Therefore, I continually sought ways to speed-up Mie

scattering calculations (or circumvent them). No major breakthroughs

along these lines appeared in the literature. In the meantime, I

made several minor advances in the Mie algorithms, none of which I

published.

Then came the new vector-processing computers (like NCAR's

CRAY-1), with their promise of speed increases of tenfold or more if

one "vectorized" one's calculations. With this incentive,. I com-

pletely scrapped my old set of Hie codes and proce.eded to write, from

scratch, Mie codes that would work at vector speed, yet be compatible

with scalar machines. They incorporate everything I have learned

about Mie calculations, both by myself and from others, during the

past seven years. Several colleagues who tested these codes found

them significantly better than what they had been using before; in

particular, they reported speed increases by factors of 6 to 100.

Hopefully other investigators will find the routines as useful as

they did.

Many thanks to Holly Howard for her excellent job in typing my

rather unruly manuscript and to Dr. James Coakley for reviewing it.

Warren Wiscombe
June 1979
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1. INTRODUCTION

Calculations of light scattering from particles are needed in

the widest variety of research endeavors, ranging from astronomy

(interstellar dust scattering) to zoology (bacterial scattering).

The prototypical such calculation assumes that the particle is a

homogeneous sphere, and the incident light a monochromatic plane

wave. Clebsch worked out the mathematical machinery for this problem

in 1861; in 1890 Lorenz gave a full solution for transparent spheres;

in 1908 Mie, and in 1909 Debye, published completely general solutions.

These references, and many others up through 1945, may be found in

the excellent historical survey by Logan (1965). By an odd twist of

fate, Mie's name has come to be exclusively associated with the

problem; we shall adhere to this convention, but with full awareness

that a misnomer- is involved. Excellent accounts of Mie theory may

be found in the books by Shifrin (1951), Van de Hulst (1957), Kerker

(1969) and Born and Wolf (1975).

While the vast majority of scattering particles are not spherical,

so that the Mie solution does not strictly apply to them, both intu-

ition and experimental evidence (e.g., Zerull, 1976) indicate that,

with averaging over orientation and/or size, mildly nonspherical

particles scatter very much like 'equivalent' spheres. This, of

course, vastly enhances the utility of the Mie solution.- Van de Hulst

(1957) and Kerker (1969) indicate some of the wide-ranging appli-

cations which are then possible.

The computational history of Mie scattering is quite different

and much more recent than the theoretical history; Van de Hulst's
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and Kerker's books both contain accounts of it. Van de Hulst notes

that, while there have been some ambitious tabulations of various

Mie quantities, these are useful mostly for checking computer codes.

The reason is simply the rapid oscillation of most Mie quantities;

these oscillations would be impossible to resolve in a comprehensive

table, and they make tabular interpolation risky. Furthermore, there

are resonances (sharp spikes) within Mie quantities whose scale is

much finer even than the oscillations (Rosasco and Bennett, 1978;

Chylek et al., 1978). Hence Mie scattering is a field which, unlike

some, absolutely demands computer calculations. (Analytic approxi-

mations to Mie's solution are usually very limited in their range of

application and, even when available, have an unfortunate tendency to

be at least as complicated as the Mie solution itself.)

The number of Mie scattering calculations performed prior to

the mid-1950s was expectably small. Things picked up rapidly there-

after, but until the late 1960s Mie calculations were done without

much understanding of computational error, particularly ill-conditioning

from subtraction of nearly equal numbers, and instability in recursion

relations. Defining the size parameter

circumference of sphere
wavelength

we may easily find cases where a straightforward programming of Mie's

solution would incur serious computational error for x as small as

20-30. Thus, while many of the pre-1970 Mie results are undoubtedly

correct, it would be foolish to place blind faith in them.



3

Because the Mie solution is a series with approximately x terms,

because early computers were slow, and because x > 1 .was virtual terra

incognita, early computer calculations were generally restricted to

1 < x < 100. Irvine's 1965 paper is an excellent and frequently cited

example from this period. But the explosive growth of computer tech-

nology soon permitted calculations for much larger size parameters;

Dave's 1968b paper, which considers up to) f785 is a good example.

A further development was Kattawar and Plass' (1967) paper pointing

out the potential instability in the upward-recursive calculation of a

Bessel function ratio in Mie theory (cf. Eq. 20). (Rayleigh actually

discovered this around the turn of the century (Logan, 1965), but his

observations had long been forgotten.) Their resolution of the diffi-

culty, which has become standard, was to use downward recursion.

Deirmendjian's -(1969) book describes the same instability problem but

offers no solution to it.

Dave's (1968a, 1969a) IBM reports were important landmarks. They

set forth an algorithm and a brace of computer codes for performing Mie

calculations. While the number of different Mie codes in use today is

undoubtedly large, most of them can trace their lineage back to Dave's

subroutines.

With powerful subroutines like Dave's in hand, the 1970s saw an

explosive growth in applications. My own experience may- be illustrative.

In 1971 I began investigating solar and longwave radiation transfer in

an atmosphere containing clouds. The presence of clouds required Mie

scattering calculations for a size distribution of water droplets for

100 or more wavelengths from 0.3 im to 500 im. Consider a wavelength

of 0.5 1m and a cloud with drop sizes ranging from 0ol um to 50 Um.



The Mie calculation for this case proceeds from x = 1 to x = 628, in

steps Ax = 0.1 (Dave, 1969b); for each value of x there are roughly

x terms to be summed, at each of say 100 angles, so the total number

of terms to be summed is about 200 million. And each term by itself

requires considerable computation to generate! Now imagine this

calculation repeated for 100 wavelengths (it is less onerous for

longer wavelengths) and it will become clear why 'staggering' is not

an exaggerated description of the task. Yet, as the decade wore on,

applications-oriented Mie calculations of this magnitude became

increasingly commonplace.

In spite of this pressure of applications, the decade has so far

brought forward no great changes in the algorithmic structure of Mie

computations, save for Palmer's (1977) work suggesting that replacing

series by continued fractions may be faster and more accurate. There

have, however,-been a few minor improvements. One is a new way to

initialize the downward Bessel function ratio recursion (Lentz, 1976).

Others are in the nature of more efficient ways to organize the com-

putation, devised by the present author in response to the problem

outlined in the previous paragraph and published here for the first

time.

The present document has, as its overall purpose, the incorporation

of these advances in technique, made in the decade since Dave (1968a,

1969a), into a new set of Mie scattering codes. The specific goals of

this effort are laid out in the following section, and the analytical

and computational details are worked out in the remainder of theI

document.
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To the uninitiated reader, the codes may appear as if they could

have been written straightaway, without all the apparent niggling over

small points. But their simplicity is deceptive; it conceals a mul-

titude of blind alleys, pitfalls, instabilities, inefficiencies and

inelegancies to which the "straightaway" approach would fall victim.

A variety of decisions has to be made, often requiring considerable

background study and some sophistication in numerical analysis.

Further advances will undoubtedly be forthcoming; but these algorithms

already represent quite an advanced stage.
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2. SPECIFIC GOALS OF ALGORITHMS

The specific goals that guided the formulation of the algorithms

and codes herein were:

* maximum speed (including vector processing wherever possible)

* generality (furnishing all Mie quantities necessary for full

polarization-dependent studies)

* reliability over broad ranges of refractive index and size

parameter

* avoidance of all numerical instability

* portability (immediate executability on computers having

single precision of at least 14 significant digits, like

CDC and CRAY; executability with minor alterations on

computers having significantly lower single precision)

* accuracy: at least 5-6 significant digits

* as simple and straightforward as possible within the constraints

imposed by the previous goals.

Another goal, the use of minimum computer memory, proved incom-

patible in part with the main goal of maximum speed. This is because

vector processing requires quantities, which could otherwise be scalars,

to be stored in arrays. Therefore two separate codes were devised

which have much in common but which either (a) have maximum speed,

using as much memory as needed to achieve it (MIEV1); or (b) use

minimum memory, attaining as much speed as possible within that con-

straint (MIEVO).
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3. MIE SCATTERING FORMULAE--GENERAL CASE

The Mie scattering formulae are given in several books (Van de

Hulst, 1957; Kerker, 1969; Deirmendjian, 1969) and by Dave (1968a,

1969a), although not always in the forms most suited to computation.

We merely transcribe most of the relevant formulae below and give a

reference; for those which are new, short derivations are provided.

The five formulae (6-9) give the quantities actually calculated and

returned by the codes MIEVO and MIEV1.

The two important independent variables in Mie theory are the

size parameter

_= - | (1)

and

z = mx - (2)

where

r = radius of scattering sphere

X = wavelength of incident plane wave

m = complex refractive index of sphere relative

to surrounding medium

Ynm= Me im. (3)

|ml > 1 (4)

Im >° (5)im

Restriction (4), which would, for example, exclude scattering from

air bubbles in water, may not be necessary, but we have not tested

the codes for such situations.
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Extinction Efficiency Factor (Van de Hulst, Sec. 9.32)

2
Qext 2

x
(2n + 1) Re (an + bn)

n n (6)

Scattering Efficiency Factor (Van de Hulst, Sec. 9.32)

Qsca

*27 N
_ 2 N

2
x n=l

(2n + 1) {la 2 + Ibn 2 } (7)

Asymmetry Factor (Kerker, Eq. 3.11.6)

4 N n(n + 2) Re
x = 2 E n + 1 R e

sca n=l

+ 2 n + l Re (anbn)
n(n + 1) n n

* *
(anan+1 + b n+)n n-l n n+l

(8)

Scattering Amplitudes (Van de Hulst, Sec. 9.31)

N 2n+l {a r (i)

S1(p) = Z n(n + 1) n n
n=l

N 2nl+ 1

S2(p) = n(n + 1) {anTn(p)
n=l

+ b T ()}
+ n(p)}

n ny)

where P = cos9 and 0 is the angle of scattering.

The most efficient way to calculate the scattering amplitudes

is in a loop n, for summing, within which is a loop over 0.

(This will be explained when we discuss vectorization, Sec. 7.1.)

Every extra operation in the O-loop can add significantly to the

computation time. Each term of the sums (9a) and (9b) requires two

multiplies and one add, if the factor (2n + 1)/n(n + 1) is incorporated

into a and b outside the O-loop. We discovered that we couldn n

(9a)

(9b)

I I I · I I '~~~~~
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eliminate one of the multiplies by calculating, not S and S but

rather,

N

S+(P) = S + S 2n+ (=+ ) - =2 n(n + 1) (an+ b ){rn (1V) + T () }

S-P 1 2 ES . n(n + 1) nn nn
n=l

(lOa)

(lOb)

The factors multiplying (rn ± Tn) are formed outside the -loop.

Then, when the n-loop is finished, S1 and S2 are easily recaptured:

S (p) = [S+(P) + S- ()]

S2 () = 1[S (P) - S (y)] .

(la)

(lib)

If e c [0, Tr/2], then its supplement Tr - e has cosine -p. The

angular functions of T - e are then simply related to the angular

functions of e -(Dave, 1969a):

r (-1a)

T (-P)

which leads 1

S (-P)

n+l(-I) n T (P)

(- n (
(-1) n T (v) I

n

N

E (-1) n+l) 2n + 1 (

(-1)n +l 2n + 1
= E ( - 1 ) n(n + l) (a

n=l(n + 1)

+ bn) {Tn (p) - T (U)}

- b ) {7Tn(p) + T n()}

(12a)

(12b)

Thus it requires only two extra multiplies in the O-loop to get S (-P)

and S (-p), since the necessary quantities have already been formed in

Eq. (10). For this reason, the codes are set up (as were Dave's, 1969a)

to calculate the scattering amplitudes at an arbitrary set of

to
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angles in [0, r/2], but only at the supplements of those angles in

[r/2, T].

This is not as restrictive as it might seem. For example,

in order to calculate the phase function moments, or other angular

integrals over [0, 7T], this is frequently the required structure

of the angular quadrature point set. Also, when taking a dense

mesh of angles near 0 = 0 to resolve the forward diffraction

peak, one automatically obtains good resolution of the structure

in the glory region. Last, but not least, taking an arbitrary

set of angles in [rT/2, 'r] may significantly increase computation

time, through the necessity of calculating ir (I) and T (p) at

those angles.

Note finally that, if one is only interested in the unpolarized

approximation, as in many radiative transfer problems, the final

step, Eq. (11),'is unnecessary, for

Is1 12 + Is2 12 = s+12+ s-1 2

However, the side-stepping of Eq. (11) is not explicitly provided

for in the codes, since the savings in computer time would be

relatively trivial,

Mie Coefficients (Dave, 1969a, Eqs. 2-3)

a = A(z) (16a)

|n + nrX - xl)m xI n~ "n-i
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mA (z) + p(x) ) (16b)

mn (Z) + n %(x) - % (x)

Here we have used the Debye and Van de Hulst (1957, Sec. 9.22) notation

for the Riccati-Bessel functions P and % , which are defined below
n n

along with the function A .
n

Ricatti-Bessel Functions (Abramowitz/Stegun, Sec. 10.3)

n (x) = xjn (x)

Xn(x) = - xy n (x)

n (x) = n (x) + iXn(x)

where J ,yn are the familiar spherical Bessel functions. The Riccati-

Bessel functions satisfy the same recurrence relations as j ,y

(Abramowitz/Stegun, Eq. 10.1.19), namely

nl(X) = 2n + 1 (x)-(17xn +l\X/ = x n( X ) n-l ) (<17)

Furthermore, by a simple modification of the cross-product relation

for spherical Bessel functions (Abramowitz/Stegun, Eq. 10.1.31), we

find

=n(x) Xn+l(x) - 1
Wn+l ( x) . (18)

n

The initial values are (Abramowitz/Stegun, Eq. 10.3.2-3)

W(x) = sin x (19a)o0

X (x) = cos x (19b)
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l(x) =x o(x) - Xx (19c)

X1( = - X (x) (19d)

Careful attention to the accuracy of the n' calculation is

necessary because: first, the n) up-recurrence is numerically unstable

(Abramowitz/Stegun, Introduction .7); second, the convergence of the

Mie series hinges on the rapid decay of 4 to zero when n > x, with a

concomitant blow-up of X , which forces a and b (Eq. 16) to zero;

third, phenomena like the glory, surface waves, and resonances depend

on Mie series terms with n > x, and hence are particularly sensitive

to errors in 4n or X.

Dave (1968a, 1969a) used upward recurrence (Eq. 17) for C , i.e.,

for both P and X . He needed IBM double precision (equivalent to CDC

or CRAY single precision) to minimize numerical instability, i.e., to

minimize error growth relative to the magnitude of i as the recurrence
n

proceeded. In our own early experiments on a UNIVAC 1108, we also

found that up-recurrence on 4n deteriorated much too catastrophically

for n > x when single precision (8 digits) was used, and it was

necessary to go over to UNIVAC double precision (18 digits) to achieve

satisfactory accuracy.

We tested three possible schemes for computing ) . (X is always
n n

computed by upward recurrence, which is stable.) These were:

(a) upward recurrence (Eq. 17)

(b) cross product (Eq. 18)

(c) downward recurrence (Abramowitz/Stegun, Sec. 10.5)
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All computations were carried out in CDC single precision (14 digits).

Scheme (c), which is stable, was used for determining errors in the

other two schemes. It was initialized, in the manner of Miller, by

N*+1 =

N* 1

where N* exceeds the largest index N for which n is needed. We

tried both N* = 1.9 N and N* = 1.5 N and obtained identical values

of n (n = 1 to N) in either case, which satisfied us that the down-

recurrence was an accurate and reliable benchmark.

Schemes (a) and (b) prove to be almost as accurate as down-

recurrence for n < x (except as noted below). Only when n > x do they

begin to deteriorate, and their errors grow monotonically as n con-

tinues to increase beyond x. Both schemes invariably have their

largest error at n = N; these errors are shown in Table 1 for a wide

range of x's. Up-recurrence is always more accurate than the cross-

product relation; typically, its error is two to four times smaller.

This situation holds for n < N as well.

Furthermore, up-recurrence has an acceptable error, as Table 1

witnesses (remember Table 1 shows worst errors; errors are much smaller

for n < N). And since down-recurrence requires considerably more com-

putation, more storage, and is also subject to overflow failure

(because in grows when recursed downward), up-recurrence on in

was the obvious choice for our algorithms. Thus, in the end, we

made the same choice as Dave, but our confidence in that choice was

considerably raised.
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Table 1. Percent error in lPN(x), as computed by two different methods,

where N is the largest index required in the Mie series.

Exact values of IN were from downward recurrence. All com-

putations done in CRAY-1 single precision.

% error in N
from up-recurrence

1.7 x 10- 5

8.2 x 10~5

2.0 x 10 4

2.7 x 10 4

7.2 x 10

1.9 x 10 3

1.4 x 10~ 3

2.4 x 10 3

5.6 x 10~ 4

2.6 x 10 3

3.6 x 10 3

5.5 x 10 3

0.010

0.026

0.060

0.041

% error in 'N
from cross-product

2.5 x 10 5

17 x 10 5

-13 x 10 4

5.6 x 10

15 x 10 4

6.0 x 10 3

4.5 x 10 3

5.5 x 10 3

266 x 10~ 4

3.5 x 10 3

10 x 10- 3

15 x 10~3

0.047

0.090

0.095

-0.17

x

1

5

10

20

40

80

200

400

600

800

1,000

2,000

4,000

8,000

12,000

16,000

N

5

12

19

31

54

98

224

430

634

837

1,040

2,050

4,063

8,080

12,091

16,100
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There are also occasional values of n < x at which the accuracy

of both schemes (a) and (b) is reduced. These are invariably where

n falls several orders of magnitude below its neighboring valuesn

n-1 and 'n+l In all such cases, up-recurrence is still preferable

to the cross-product relation and still has acceptable error.

Since the zero-subscript feature is not widely available in

FORTRAN, the quantities actually calculated in the codes are n = '
n n-l

and n M Cn-1 (Xn is never used explicitly).

An (Logarithmic Derivative of Hn)

n(Z)An(Z) = (P(z)
n

This can be calculated by up-recurrence (Dave, 1969a)

A (z) = --+ 1 (n = 2,...,N) (20)
n n- A (z)

z n-1

with initial value

A _1 + tan z (21)

- tan z - 1
z

Dave worried about two problem cases. First, z = kr for any integer

k # 0 leads to A = cot z = co; but we never actually need A , and Al,

written as in Eq. (21), is perfectly well-conditioned at z = ki.

Second, if tan z is written simplistically as sin z/cos z, exp(Im(z))

will occur in both numerator and denominator, causing overflow if

Im(z) is large; but we circumvent this problem by writing tan z as

tan(x + iy) = 2e2y sin 2x + i(e4 y - 1)

2e2 y cos 2x + 1 + e4y
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which is calculated by the function CTAN listed in Appendix I. There

remains the problem that tan z blows up when z is an odd multiple of

7r/2, but because of round-off in computing the denominator this never

actually occurs.

Kattawar and Plass (1967) pointed out the instability in up-

recurrence of A when Im(z) is appreciable. They suggested down-recurrence
n

An_(z) = n _ 1 (n = N',...,N,...,2) (22)A-n Z n + A (z)
z n

as an alternative, and showed that it was stable. However, neither

they nor subsequent investigators offered a clear-cut criterion as to

when down-recurrence should be used. We have developed such a criterion,

which is described in Sec. 5.

Kattawar and Plass, Dave (1969a), and many subsequent investigators

initialized the down-recurrence by

AN() = 0

where, in principle, one must have N' >> izl. Dave found that

N' = 1.1 ZI + 1

was sufficient. Of course, this causes more values of A to be
n

calculated than are actually needed in the Mie series, since N' > N

and possibly N' >> N.

We found it preferable to initialize the down-recurrence by

calculating AN(z) correctly to 5 or 6 significant digits, using the

newly-developed method of Lentz (1976) discussed below. Besides

being more aesthetic, this results in less computation and greater
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code reliability, especially in difficult cases (e.g., Iml > > 1 or

Im - 11 < < 1).

We note in passing that our early experiments on a UNIVAC 1108

showed that neither up- nor down-recurrence of A was sufficiently
· n

accurate in its 8-digit single precision. The down-recurrence some-

times deteriorated badly as n - 1. UNIVAC double precision of

18 digits had to be employed.

AN from Lentz Method

The standard continued fraction representation of AN, which

follows directly from the down-recurrence (22), is

AN(z) = limr [a1,a2 ...,ail (23)

where

[l,a2,...,ai] = al + 1 . 1lP a2+ + a i

a1 = (N + l)/z (25a)

ak = (-1)k + l (2N + 2k - l)/z (k = 2,3,...) . (25b)

But this is really no different from Dave's procedure; setting AN, = 0

amounts to setting AN = [ala 2 ...,,aN,-N]. Thus many terms are

frequently required for convergence of the continued fraction (24),

and recursive computation is impossible because [al,...,ai+l] is

not simply related to a few prior values of [al,...,ai] but must be

computed completely anew.

Lentz has discovered a product representation of Eq. (24) which

can be computed recursively, and which requires, in just those cases
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where down-recurrence of A is necessary, far fewer steps than Dave'sn

method:

[a,...,ai] = i T .(26)
k=l

where

ai k= 1
Tk = Nk /Dk k > 1 (27)

Nk = [ak, .. ,a (28a)

Dk = [ak', .. a2] (28b)

and where, by definition,

[a., aj] = a.

Unlike Eq. (24), Eq. (26) is well-suited to recursive computation in

that

[al'...'ai] -= [al'@'.ai-] Ti (29)

and both the numerator and denominator of Ti follow immediately from

the numerator and denominator, respectively, of T

Ni
= a + N 

(30a)

D = a 1 (30b)i i D (30b)i-il

We deem the iteration to have converged when T = 1 to a certain degree

of accuracy, i.e., when

|Re(Ti) - < and !I(T,)l < E£ (31)
A- L I -
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where we generally take £ = 10- 8 and, as a result, obtain at least

5 to 6 significant figures in AN.

It may occur that

N D.
-^ 
< e ! or < £

(32)ai 1 o a 1

where 1 << 1 (we generally take 1= 10-2); this means that Eq. (30)

has resulted in loss of significant digits in Ni and/or Di, which

would be magnified in Ni+ 1 and/or Di+l. In this case, we can side-

step the ill-conditioning by skipping the convergence test (31) and

striding two iterations instead of one; i.e., we go immediately to

[a1' ',ai+l] = [al'...,ai_1] Ti T+l (33)

where

T.T = _ (34a)i i+l 

(34a)s1 - 1 + ai+l Ni (34b)

2 - 1 + ai+l Di (34c)

Unlike the ratios Ti or Ti+l individually, their product (34a) is

well-conditioned. In order to re-start the iteration (30) without

requiring the ill-conditioned results Ni+1 or Di+ 1 we can use

Eq. (30) twice to obtain

N.1 z
Ni+2 = ai+2 + 1 i+2 (35a)

ai+l + N. 1

D.

Di+2 = ai1+2+ . (35b)
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In Table 2 is shown, for selected values of m and x, the number

of iterations of Lentz's method necessary to achieve convergence, i.e.,

the value of i such that condition (31) is satisfied for either

2 = 10 or E 2 = 108. Note that, for x > 100 and Im(m) small

enough, the number of iterations is roughly im - l|x. This is about

the same number of iterations required by Dave's method [(l.l|m|-l)x].

But these cases of small Im(m) can be handled by up-recurrence (see

Sec. 5). And for larger values of Im(m), Lentz's method requires

far fewer iterations than Dave's.

Angular Functions

7T (i) - P '(p)n n

Tnp) u) - ( - P2 ) '(P) (36)n n n

(Dave, 1969a) 'where Pn is a Legendre polynomial. These functions can

most simply be calculated by upward recurrence, which is numerically

stable (Abramowitz/Stegun, Introduction.7). Since these recurrences

are buried in the O-loop where S (Eq. 10) are calculated, formulating

them more efficiently can lead to a substantial saving of computer

time. Dave (1969a) gives particular forms for these recurrences; but

we have discovered better ones which we derive below.

The usual 3-term recurrence relation for Legendre polynomials is

(n + 1) Pn+l() (2n + 1) P n(p) - nP (pi)

Differentiating this, and using the relation

n+l ( - Trn-1 ( ) = (2n+l) P()
n
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Table 2. Number of Lentz method iterations (Eq. 29) necessary to

converge to AN(mx) for a range of size parameters x and

refractive indices m. First figure refers to c = 10-6

second in parentheses) to 2second (in parentheses) to 2 = 10 .

x N

1 5 1.05
1.95

10 19 1.05
1.95

100 119 1.05
1.50
1.50
1.50
1.95
1.95
1.95

1,000 1,040 1.05
1.05
1.05
21.05
1.50
1.50
1.50
1.50
1.95
1.95
1.95
1.95

10,000 10,086 1.05
1.05
1.05
1.05
1.50
1.50
1.50
1.50
1.95
1.95
1.95
1.95

m

- {1 -6
- {10- 6 _

- o-6 _
- {10- 6 _

- {-6 _
- {10- 6 _
- 0.1 i

0- -
- {10 _
- 0.1 i

-i

- 10 i
- 0.1 i
- io-6 -

- {lo]2-
- 10 i
- 0.1 i

- 10 i
- 0.1 i
- i

1-6

- 10 i

-0.1 i
- i

{1 -2
- 10 i
- 0.1 i
- i-1 -6

-2
- 10 i

- 0.1 i
- i

number of Lentz method
iterations to get Aj (mx)

l}i
} i

l}i
l}i

l}i
10-2}i

10-2}i

10-3}i

10-3}i

10-3}i

10-4}i

10-4} i

10-4}i

4
5

7-8
11-12

13
51-52

40
18

97-99
79
25

59-50
44
25
15

500-502
459
104
22

953-956
880
203
33

492-495
183
31
16

4496-5001
1092
124
23

9501-9510
2055
236
34

(5)
(6)

(8-10)
(14)

(16)
(55-57)

(46)
(22)
(102-103)
(87)
(31)

(58)
(53)
(32)
(20)
(509-512)

(479)
(135)
(28)
(964-967)

(919)
(254)
(42)

(510-513)
(232)

(40)
(20)
(5017-5021)
(1384)
(161)

(30)
(9525-9533)
(2599)
(309)
(44)



from Whittaker and Watson (1965, chapter 15) leads to

nrn+l() = (2n + 1) 17T(1)- (n + 1) 1 (p)

which for our own purposes we write in the strung-out form

s = n ®(I) 
(37a)

t = s -n-1 ( )
(37b)

Tn+lr( ) = s + ( 1 ) t . (37c)

Written thus, only two multiplies and two adds are required, since

the purely numerical factor (n+l/n) may be precalculated.

For T , differentiate the relation

(1- 2) 7T (u) = n[P () - P(p)]n n-i n

and use the relation

nP (u) 7= 7T(l) - 7T ()n(p) n n-1

(both from Whittaker/Watson, chapter 15) to obtain

(1 - u2) '() = 2p7n (p) - (n + 1) [pn (p) - T ( )]n n n-i

Putting this into the definition (36) of T leads to
n

Tn(p) = (n + 1) t - s (38a)

= nt n-7T () (38b)

where t and s were defined in Eq. (37). This requires only one multiply

and one add, for a total of three multiplies and three adds to calculate

7T and T This compares with six multiplies and four adds in Dave'sn+1 n969a) recurrences.

(1969a) recurrences.
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The recurrences are initialized by

7\ =0 (39a)0

r1 = 1 . (39b)

Note that we actually require, not 7 and T separately, but theirn n _____________..

sum and difference, to obtain S (Eq. 10). Using the definition (36)

of Tn
nn

n - = (1 ) [ ( 1 )

Yet, in spite of this simple form, we were unable to come up with a

recurrence directly for 'T ± T , which avoided calculating Tr and Tn n n n
individually, and was at the same time more efficient than Eqs. (37-

38). This must remain a challenge for future investigators.

By using a fixed set of angles P , one could precalculate the

angular functions once for all, as matrices A TT (p ) and
nm n m__

B T (l m). This might offer advantages if one were to restrictnm n m

oneself to Mie series no longer than ' 1000 terms and to no more

than 50-100 angles. But outside these limits the computer storage

requirements would be prohibitive; and even with only 100 terms and

50 angles, An and Bn would take up a total of 10,000 words of

storage, which might well strain a smaller computer. Furthermore,

a fixed set of angles would be too inflexible for many applications.

Thus, in the interests of a general purpose code, we have rejected

this approach.
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4. MIE SCATTERING FORMULAE-SMALL PARTICLE LIMIT

It is necessary to compute the small-particle (Rayleigh) case,

x -+ 0, separately, not only because 1/x occurs in several places in

the Mie formulae, but because:

(a) the calculation of A is numerically ill-conditioned asn

x -+ 0; e.g.,

- l~ 1 2
A1( Wz 1 1 z O(z)

z tan z

and the subtraction of 1/tan z from 1/z causes significant

digits to be lost; similarly,

A - -2 1A2(z) = -+
z 1- A1 (z)

and the subtraction of A1 (z) from 2/z further compounds

the ill-conditioning.

(b) The subtraction in the upward recurrence for P loses
n

significant digits, and the ill-conditioning rapidly

compounds; e.g.,

~1.~~ ~~2 2
(x) = - sin x- cos x = ( - - + .- (+ .)

2

3

- 3 2 . 2
2( X ) = x( -)) ( x ) =3 (~ + ..() - sin xx 1 o x '

= (x+...) - (x+ ... ) .

(c) The subtraction in the numerator of b becomes ill-conditioned.
n

The x + 0 formulae are also computationally faster, which would

make them desirable even were they unnecessary. We should bear in mind

Van de Hulst's (1957, Sec. 10.3) warning, however:
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"Aside from their simplicity, they (the small-x formulae)

have little advantage. They describe the very first deviations

from Rayleigh scattering, but further deviations appear very soon

after the first have become prominent, so that the full Mie

formulae have to be used."

In view of this warning, we set ourselves the modest goal of applying

the x + 0 formulae only over a range of x sufficient to avoid serious

ill-conditioning and to give six significant digits in all Mie quan-

tities. The x - 0 formulae which we found most suitable, and the

range over which they are to be applied, are given below.

The obvious approach is to expand the Mie coefficients (Eq. 16)

in powers of the size parameter x. It is necessary to expand the

dominant coefficient a1 at least out to O(x6 ), or else the extinction

efficiency (Eq. 6) for Im(m) << 1 will be vanishingly small; for the

first nonnegligible contribution to Q is O(x6 ) in such cases. But
ext

by carrying a1 out to O(x 6 ), one must for consistency keep a2 and b

also, for they are both O(x 5 ). The remaining values of a and b
n n

are O(x 7 ) or higher.t

Some authors insert the expansions for al, a2 and b1 into Eqs. (6-9)

and continue expanding and truncating those series. This is useful for

tThe asymptotic forms as x -+ 0 are:

n+l m2 - 2n+l
an i (2n-l) ! ! (2n+l)!! 2

nm + n+l

b m i 2_-1 - - 2n+3

(2n+3) [ (2n+l) ! ]
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seeing the leading terms, but every additional step of expansion/

truncation must cause additional error, so we have chosen instead to
use Eqs. (6-9) as is, namely:

Qet = 6x {Re(a + b) + Re(a)} (40a)

Q = 6x4T 
(40b)sca

g Re[a 1(a2 + b1)*]/T (40c)

S1 2= x [al + (bl + a2)P] (40d)

2 2x 113 2
S2 ( ) = -x [b1 + all + 3a 2 (2 - 1)] (40e)

where

T E al2 + b112 + ^ a212 
(40f)

and where a factor of x3 has been taken out of each coefficient,

A a1
al - 3 , etc.

x .

in order to avoid 0 singularities as x -+ 0.

An additional advantage of Eqs. (40) is that, unlike many of

the expansions one finds in the literature, they are internally con-

sistent, being simply special cases of the Mie formulae with

a3 = = ... = b2 = b3 = ... = 0. For example, Eqs. (40a-c) can

be derived directly from Eqs. (40d,e).

Comparisons were made between the exact Mie results and Eqs. (40),
A A Ausing two different approximations for a and b, for a wide range

of values of x and m. First, we tried the 3-term expansion of a and

the 1-term expansions of a2 and bl, as given by Van de Hulst (1957,

Sec. 10.3), to wit,
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^ _ im- 1 i 3 m -2 2 2 mr +o (x
1 2 +2 [ 1m + 2 X m 2 + 24

(41a)
A 2 2 4
bl = i m x + 0(x4 ) (41b)

A i m2 - 1 2 4a 2 = 15 2 1 x 2 + O(x4 ) . (41c)2 - 15 2m2 + 3

(Errors may still be found in such results; e.g., Kerker (1969, Sec. 3.9)

has the wrong sign for bl.) These were found to give our desired

6-digit accuracy for all Mie quantities, provided Im(m) was large

enough. But when Im(m) << 1, the accuracy of Q ext' Re(S l) and Re(S2)

deteriorated to as little as 3 digits even for very small values of x.

Examples of such errors are shown, for Q ext' in Table 3. The remaining

quantities, like Qsca or Im(S1), retained 6-digit accuracy out to

x " 0.08.

We diagnosed the problem to be that Qext' Re(S1) and Re(S2) all

depend only on the real parts of al, a2 and b . For Eqs. (41), with

Im(m) << 1, only the smallest-order term in a1 contributes to Re(al),

and both Re(a2 ) and Re(b ) are nearly zero. Clearly a correction term

would be desirable in Re(al), and presumably in a2 and b1 as well. Such

a correction term can only be obtained by continuing the expansion of
A 5
a1 out to 0(x ). We also realized that it would be preferable to leave

a1 in quotient form, that is, to just expand its numerator and denom-

inator in Eq. (16). The further expansion of the quotient as a poly-

nomial is just an extra and unnecessary step of approximation. Hence

we used the following formulation:
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Table 3. Values of Q in the small-particle limit, as given by Mieext
theory and by Eq. (40) with two approximations for al, a 2

and b1 . The digits in error are underscored for each

approximation.

x m

0.02 1.5 - 10 i

1.95 - 10 6i

1.95 - 10 5i

0.04 1.05 - 10 6i

1.5 - 10 i

1.5 - 10 i

1.95 - 10-4i

0.08 1.05 - 10- 6i

1.5 - 10 6i

1.5 - 10 i

1.95 - 10 i

0.20 1.05 - 0.0i

1.05 - i

1.95 - O.Oli

1.95 - i

Eqs. (40,41)

7.67794 x

1.27341 x

3.77644 x

1.12183 x

6.70337 x

8.57001 x

7.16164 x

3.28743 x

9.60869 x

2.54505 x

3.66727 x

5.25292 x

5.79042 x

3.88981 x

10-8

10- 7

10-7

10- 7

10-7

10- 6

10- 6

10-7

10-6

10-5

10- 5

10-3

10- 1

10- 3

2.58547 x 10-1

Eqs. (40,42)

7.67805 x 10 8

1.27355 x 10 7

3.77659 x 10 7

1.12179 x 10 7

6.70403 x 10 7

8.57007 x 10 6

7.16259 x 10 6

3.28478 x 10 7

9.61291 x 10 6

2.54547 x 10 5

3.67335 x 10 5

5.25256 x 10 3

5.78532 x 10-1

3.90526 x 10

2.58626 x 10 1

Exact

7.67805

1.27355

3.77659

1.12179

6.70403

8.57008

7.16259

3.28478

9.61292

2.54547

3.67336

5.25263

5.78539

3.90548

2.58637 x 10-1

x

x

x

x

x

x

x

x

x

x

x

x

x

x

10-8

10 7

10-7

10-10-7

10-
10-7

10- 7

10-7

10-

10-6

10- 3

10-

10- 3
10
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a = 2i 2 N
a1 2 3 3 D3 (42a)

N 1 -E 1 2 4m + 5 4 6N1 10 x + 1400 x + 0(x)

- m 2 7m+2 2 8m4 385m 2 + 350 4

Di -m + 2 + (1 - 1 x) x )
+ m2 - 1 2 l x2 4 )

221+ 2 -5
2- 1 2 70 x + O(x)

b - i 45 - (42b)2m2 5 2 4

1- 30 +(x)

^ i m - 1 2 -1)a2 15 1 +0x (42c)
2m 2 + 3 - 2 m - 7 x2 + O(x 4 )

To be consistent, and because the amount of extra computation

is trivial, we have expanded b1 and a 2 to the same order as al,

even though neither one acquires thereby a significant real part when

Im(m) << 1, and therefore neither one significantly improves the

approximation to Qext in such cases. But we have ignored b2 and a3,

the leading terms of whose expansions contribute at the O(x4) level;

these leading terms are purely imaginary when Im(m) = 0, and there-

fore do not improve the approximation to Q ext Carrying b2 and a3

only extends the range of the approximation slightly (cf. the

Van de Hulst quote earlier in this section) and simply would not be

worthwhile.

Even though the neglect of b2 and a3 is a technical inconsistency,

the practical effect is nil. As Table 3 indicates, Eqs. (42) lead

to a dramatic improvement in accuracy over Eqs. (41) in both problem

(Im(m) << 1) and normal cases. The more accurate formulation retains
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4-5 significant digits at x = 0.2, and 2-3 significant digits even at

x = 0.5. In order to retain 6 significant digits, we selected the

rather conservative criterion that the small-particle formulae (Eqs. 40

and 42) are to be used whenever

ImI x < 0.1 
(43)

where the factor Iml was included based on the well-known fact (cf.

Kerker et al., 1978), which is also apparent in Eqs. (42), that the

approximation breaks down as |m| increases.
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5. A UP-RECURRENCE CRITERION
n

Kattawar and Plass (1967), Dave (1969a) and subsequent investi-

gators were aware that up-recurrence for A may fail, but were unclear

as to exactly when this would occur, except that Im(m) had to be

significant and x >> 1 (the latter condition ensures sufficiently

many iterations for the instability to develop).

To determine the precise regions of size parameter x and refractive

index m wherein up-recurrence is satisfactory, an extensive comparison

was made between exact Mie results and results obtained using up-

recurrence for A . Exact Mie results were generated using down-

recurrence for A , which is always stable, and a stringent convergence

criterion of £2 = 10- 10 for the Lentz method calculation of A. Up-

recurrence was regarded as failing whenever its concomitant values of

Qext' Qsca or g (Eqs. 6-8) had relative errors exceeding 10- 6 , or

its scattered intensity or degree of polarization

i1 + i2 = 1sl 2 + IS2 2
(44)

Is212_ s1 12

pol Is2 1
2 + s 2 (45)

had relative errors exceeding 10- 5 at any of 61 Lobatto quadrature

angles. (These angles are such that they cluster in the forward peak

(0 > 0°) and glory (6 < 180°) regions and are relatively more sparse

around 0 = 90°.)

In practice, it was always these angular functions which first

heralded failure; the relative errors in Qext Qca and g were always

between 10-12 and 10-8 when some angular function error reached 10- 5between 10 and 10 when some angular function error reached 10" 5
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This is because there is no cancellation in the Q t' Qsca', g series,

whereas at some angles the n < x terms in the S1, S2 series almost

cancel, leaving only the n > x terms, which are most affected by A
n

up-recurrence instability.

The calculation was structured in the form of an upward search

on mX for fixed m and x, to determine the smallest value, mirit

such that up-recurrence on A failed. (Preliminary study showed that,

when failure occurs for m. = met. , it continues to occur for allM ulm
crit critMim > m. .) The search for m.i was successively refined to

pinpoint it to 3 significant digits. Size parameter was varied in

the range 1 - x - 10,000 and m was varied from 1.05 to 2.50 in stepsre

of 0.05.

It very quickly became evident that, for fixed m , as x increased
re

the product xmri rapidly approached, from above, an asymptote. Thus

there was a function f(m ) such that
re

crit > crit fxm. - min(xm t ) ) (46)urn x urm re

and such that the inequality was, in fact, roughly an equality over

almost the entire range of x. The data for min(xm. ) as a function
x imn

of m are given in Table 4 and plotted in Fig. 1.

It is plain from Fig. 1 that f(m ) has an upward curvature. A

straight line would not give a very good fit. Therefore, we fitted a

quadratic to the data and then subtracted 1.0 from the constant term

of the quadratic in order that the fit might lie slightly under all

the data points (except for two which are obviously out-of-line).

The function so obtained is:



-I -- I I II I I I I 1 I I 1

*

* Data from Table 4

Eq. (47)
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Table 4. The smallest value of the product xm. at each value of

im
mr, where ci is the value of mn above which up-recurrence
on A fails (x < 10,000 for this study).n

critmin (xm, )x im

12.2

14.9

16.9

19.6

22.2

24.7

27.0

30.3

33.2

36.0

39.5

40.7

44.5

47.4

50.6

m
re

1.80

1.85

1.90

1.95

2.00

2.05

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.45

2.50

critmin (xm, )
X im

53.0

57.8

60.7

65.2

67.5

72.1

75.5

80.0

81.9

88.6

91.2

97.2

99.0

104.8

110.4

m
re

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75
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f(mr) = 16.35 m2 + 8.42 mr - 15.04 (47)re re re '

and it is plotted in Fig. 1 as a solid line.

From Eq. (46) we deduce that up-recurrence may be used for A if
n

f(m )
m. < (48)

im x x

but that, otherwise, down-recurrence should be used. This criterion,

since it concerns the onset of numerical instability, is obviously

precision-dependent, although probably not sensitively so. Also,

being only empirical, it may break down for values of m which are
re

much larger than 2.50, as may occur for water in the microwave region

for example.
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6. NUMBER OF TERMS IN MIE SERIES

Dave (1969a) stopped summing the Mie series at the first value

of n for which

lan
2 + |b i2 < 10-1 4

(49)

(cf. Eq. 16). He was confident that this led to 6 significant digits

in the results. We used this criterion for several years, but were

forced to abandon it in order to attain vector speed in our Mie codes.

The reason is simply that vector processing is not possible for

a loop containing a test like (49). Calculation of the entire vectors

{al,...} and {bl,...} at one stroke cannot occur if the value of each

a ,b decides whether or not to calculate an+1 bn+1

We were just as glad to abandon Dave's criterion for two other

reasons as well. First, the figure 10-14 may not be applicable to

computers of differing precision. Related to this is the fact that

the upward recurrence on , whose fall to zero for n Z x is the

primary cause of Mie series convergence, rapidly becomes unstable

near the very point where (49) must be satisfied. Eq. (49), in effect,

is asked to "head off" the mushrooming instability in the 4 calcu-
n

lation, and this seems too heavy a burden to lay upon it.

Second, even though our codes always carried the same precision

(14 digits) as Dave's, the test (49) would sporadically fail in the

middle of lengthy calculations, typically for x > 800 or so.

Examination of every such case revealed that failure was caused by

la | + b 12 falling to, but not below, some low level (e.g.,

5 x 10 ). Further examination showed that convergence was nevertheless
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satisfactory in such cases, and the test (49) merely failed to recog-

nize it.

For these reasons, the test (49) was replaced by an a priori

estimate of N, the number of terms in the various Mie series (6-10).

We first determined N for a wide range of size parameters (0.1 < x

< 20,000) and refractive indices (1.05 < m < 2.50; 0 < m. < 1)
re Im

using criterion (49) with 5 x 10' 1 4 replacing 10 1 4 . Table 5 shows

selected results for the range [N , N ] of values of N at eachmin max

size parameter.

It is immediately apparent that N exhibits only a slight dependence

on refractive index. This bears out what we said earlier about 4 and
n

Xn, which are functions of x alone, being the prime controllers of

convergence. And since P decreases rapidly for n > x, it is clearn

why N ' x is a good first approximation.

Several authors (e.g., Khare, 1976) have suggested, on theoretical

grounds, the following functional form for N:

N = x + cx1/3

We have found that the following modification of this formula fits

our data for N exceptionally well:
max

1/3 KX x + 4 3 + 1 0.02 - x - 8
Nma ~ , 1/3

max x + 4.05x + 2 8 < x < 4200 (50)
< <l x + ^4x/ 3 + 2 4200 - x < 20,000 )

This gives an almost perfect fit to 135 N values which we generated.

It is low by 1 at 8 of these data points, and high by 1 or (rarely) 2

at 35 of them; at the remainder, it is exact. We set N = Nmaxmax'
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Table 5. The range [Nmin, Nx] of the number of terms in the Mie
series, as a function of size parameter x. The range was
determined by varying Re(m) from 1.05 to 2.50 and Im(m)

from 0 to 1 in small steps.

N - N
min - Nmax

2-3

3-3

5-5

8-9

18-20

44-47

117-120

357-362

1,038-1,041

x

3,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

N . - N
min max

3,052-3,058

6,068-6,074

8,076-8,080

10,081-10,087

12,086-12,092

14,090-14,097

16,087-16,101

18,094-18,105

20,102-20,108

x

0.1

0.3

1

3

10

33

100

333

1,000
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7. MIE SCATTERING SUBROUTINES

The present section describes the two Mie scattering subroutines

MIEVO (Sec. 7.2) and MIEV1 (Sec. 7.3), which are based on the techniques

and equations given in Secs. 3-6. Why two subroutines are necessary

was explained in Sec. 2. These subroutines are listed and flowcharted

in Appendices I and II. Detailed timing studies are presented in

Sec. 7.5 and a description of testing procedures in Sec. 7.4. Sample

results from the subroutines are given in Appendix III.

An important a priori decision was whether or not to take advantage

of FORTRAN complex arithmetic. In my earlier Mie routines, I avoided

complex arithmetic entirely because it tended to be considerably slower

than real arithmetic (for example, multiplying a real by a complex

variable would compile as four floating point multiplies, instead of

two). But the loss of code readability and simplicity from separating

every expression into real and imaginary parts was drastic. In recent

years, the dramatic rise in use of complex arithmetic, primarily

because of the invention of the Fast Fourier Transform, has forced

compiler-writers to do a much better job with it. It is, therefore,

increasingly possible to write dramatically simpler Mie codes

without loss of speed, using complex arithmetic; that is the path

chosen here.

Double precision arithmetic is not used anywhere in-the subroutines,

but users whose machines carry less than roughly 11 digits in single

precision should carry out the r and A recurrences in double precision

and truncate the results back zo single precision.
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The two subroutines share a substantial amount of coding, in

particular: the small-x limit; the N formula; the A computation;a n
and the 9-loops where S-, S and S are calculated. They both rely1 2
on compiler recognition of repeated subexpressions (an increasingly

common capability).

The input and output variables used by MIEVO and MIEV1 are in
a common block (an argument list would be computationally slower)

and are thoroughly described in comment cards. The only question

which might arise is: How would one go about picking a value of

the input variable N2CUT? (The code assumes Im(m) = 0, and takes

faster branches, when |Im(m)| I N2CUT.) There is no easy answer.

It depends on the largest size of particle being considered; the

largest optical depth being considered (individual sphere absorptions
may be very small and yet add up to a substantial value in an

optically thick medium); and how small absorption must be before

one is willing to neglect it. The user must either experiment a

little with N2CUT--or set it to zero and forget about it.

7.1 VECTORIZATION

A few preliminary comments on vector processing are in order

(Johnson, 1978, gives a good introduction to the subject in relation

to the CRAY-1 computer). It should be emphasized at the outset

that the Mie codes are designed to execute perfectly well, albeit

more slowly, on ordinary "scalar" computers; but they have been

written specifically to take advantage of vector processing when

it is available.
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Vector processing is applicable to loops of a very special form,

in which entire arrays :-d} be operated on as if they were scalars.

Any so-called "vectLa de!tliLenacies5" (e.g., in the recurrences for

{o,...'N} or {A1 ,...; }), where one array element depends on one
or two previous array elements, prevents "vectorization" of the

associated loop. Such recurrences are unvectorizable in principle.

Other constructs, such as scalar temporary variables, user-defined

function or subroutine references, and certain IF statements, may

superficially prevent vectorization of a loop in which they occur; but
a redesign of the loop coding often allows vectorization. Loops in

which only some parts are unvectorizable can often be split into two

loops, the first of which isolates the unvectorizable parts and the

second of which is tully vectorizable. Some operations, like summing

the elements of an drray, which at first glance seem unvectorizable,

can be "partially v.cLoLized"; this is exactly what is done in MIEV1

to sum the ser-iez ftaxr s ea and g. These tricks, and others, are
discussed at more length by Higbie (1978). All this, of course, leads

to code which seems, it some sense, "unnatural," but one is quickly

reconciled to such unnatural code when one sees the dramatic speed

increases it produces.

In Mie caLculaLioIns there are two types of loops: over number N

of terms in the Mie series and over number Ng of angles. A third

type of loop, over size parameter x, is often used, for example, when

integrating Mie qtantities over a size distribution. This loop is

normally outside the Mie subroutine. Some advantage could be reaped

by having this loop inside the Mie subroutine. In particular,
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unvectorizable elements in MIEVO and MIEV1, like the A and S
n n

recurrences, could be vectorized by making the x-loop the innermost

one and adding an extra x-dimension to A , C , etc. However, two

disadvantages also accrue: the Mie subroutine would be much less

general-purpose, and the memory requirements could become prohibitive.

Users who wish to try this route should be warned that: (a) if N
ang

is, say, 30 or more, little speed-up will be realized, because the

N -loop dominates the execution time; (b) N depends on x, and with
ang

x-loops innermost and N-loops outside, this dependence cannot be

accounted for (taking N sufficient for the largest x could cause

the A and C up-recurrences for smaller x's to go wildly unstable).
n n

Calculating S and S2 involves one N-loop and one N -loop,
1 2 ang

nested. But only inner loops are vectorizable. In the N-loop, S

and S2 are computed by summing, which is only a partially vectorizable

operation; hence, the natural choice was to make the N -loop the
ang

inner one (it is completely vectorizable, provided several arrays are

furnished to contain temporary variables). The N -loop-innermost
ang

structure is found in both MIEVO and MIEV1.

7.2 MIEVO

MIEVO aims at minimum storage. The only significant dimensioned

array is for A . (Arrays dimensioned only by the number of angles
n

are usually short and rarely contribute significantly to the storage

burden.) It requires a storage allocation because it may have to be

precomputed by down-recurrence. The rest of the computation unfolds

naturally as an up-recurrence requiring no storage of intermediate
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results. Because of this, MIEVO appears simple and straightforward,

especially by comparison to MIEV1.

The only significant vectorization in MIEVO is of the N -loops
ang

necessary in the S1,S2 computation, as described in Sec. 7.1. But,

as the timing studies will show (Sec. 7.5), these are by far the most

important loops to vectorize if S1 and S2 are computed at any reasonable

number of angles.

By setting N - 0 in MIEVO, one can calculate Q t' Q and gang ext' sca

only, which is all one needs for simple radiative transfer approximations

like delta-Eddington (Wiscombe, 1977). But MIEVO is two to three times

slower than MIEV1 in this mode, so MIEV1 should be used for such

applications whenever possible.

The numerical coefficients needed in the various Mie series are

formed in MIEVO by the following efficient procedure:

2n + 1 = n + (n + 1) (51a)

(n + 1) (n- 1) - 1 (51b)
n n

n+ = 1
(51c)n n

2n + 1 1 d 1
n(n + 1) n n * 51d)

Only one division is actually done (1/n+l) because the value of 1/n

is saved from the previous pass through the n-loop. The coefficient

(- 1 )n+l is contained in an integer variable which is initialized

to 1 and then has its sign flipped each time through the n-loop.
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7.3 MIEV1

MIEV1 aims for the maximum amount of vectorization. It vectorizes

all those N -loops which are vectorized in MIEVO and, in addition,ang

it vectorizes several N-loops. To do so it divides computations into

separate loops which were combined into a single loop in MIEVO. Also,

MIEV1 requires 11 arrays of length N, rather than 2 as in MIEVO (a

complex array counting as 2), even though every effort has been made

to minimize storage.

Four of the 11 N-arrays in MIEV1 contain the numerical coefficients

2n + 1 n(n + 2)n, 2n + 1, n(n + 1) , and n+ (52)

It is necessary to store these in arrays in order for certain N-loops

to vectorize. Vectorization is inhibited unless all operands in an

arithmetic expression are either constants or vectors; functions of

the loop index like (52) are, as they stand, neither.

Summing of the series for Qext' Qsca and g (Eqs. 6-8) is done in

MIEV1 using a partially-vectorized subroutine. It is based on the following

conceptual rearrangement into matrix form of the linear array being summed:

X1 x Yl

.* > - * . . . .

64 J X64 Y64

Y64



45

Each successive group of 64 elements in the array is regarded as a

column of the matrix. Matrix row sums are then formed in a loop

which vectorizes:

Si = x. + Yi + ... (i 1 to 64) (53)

Then these row sums are added in an unvectorizable loop to give the

desired sum:

S = S1 .. * + S (54)

It is because this last loop is unvectorizable that we call the pro-

cedure only "partially vectorized."

The above procedure has been coded into the FORTRAN subroutine

TOTAL, listed along with MIEV1 in Appendix II. Obviously, TOTAL

offers no speed advantage when less than 65 elements are to be summed;

in that case TOTAL branches to a simple scalar loop

TOTAL = A(l)

DO 1 I = 2,N (55)

1 TOTAL = TOTAL + A(I) .

According to Johnson (1978), summing may be speeded up even more

on the CRAY-1 by doing a vector add between steps (53) and (54). This

extra step is vectorizable and results in having to sum only 8 elements,

instead of 64, in the final unvectorizable step (54). Unfortunately,

it is necessary to use assembly language coding to reap this extra

speed and this would make MIEV1 nonportable. But those who use MIEV1

on the CRAY-1 may want to avail themselves of this fast sum routine.
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Timing comparisons for sums of various lengths are presented in

Table 6 for the three summing methods: standard (Eq. 55), TOTAL, and

assembly language. For sums of more than 40 terms, assembly language

summing takes only one-third to one-sixth the time of TOTAL. Note

also that TOTAL is actually slower than the standard method for sums of

less than about 100 terms; the overhead associated with calling a

subroutine outweighs the benefits of vectorization up to this point.

But beyond 100 terms, TOTAL quickly shows its advantage on just those

sums which take the most computer time. For sums of 1000 terms and

more, it takes only one-fourth to one-fifth the computer time of the

standard method, albeit a factor of 3 to 4 more time than the assembly

language method.

7.4 TESTING

The following parts of the basic routine MIEVO were tested

extensively by themselves:

* the recurrences for n, x and A , particularly their
possible instability (Sec. 3)

* the Lentz method (Sec. 3)

* the recurrences for 7r T (Sec. 3)
n n

* the small-x limit (Sec. 4)

* the empirical function N(x) (Sec. 6)

* the A up-recurrence criterion (Sec. 5)

MIEVO was then tested as a whole for internal consistency, for stability

and for well-conditioning; its results were compared to a considerable

variety of published Mie scattering data, and to the author's previous

Mie code.
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Timing comparisons between various summing methods:

standard (Eq. 55), partially-vectorized FORTRAN (TOTAL),

and assembly language (Johnson, 1978).

Number of
terms summed

5

10

20

40

60

100

150

200

300

500

1,000

2,000

20,000

Standard method
time (millisec)

2.1 x 10- 3

3.7 x 10 3

7.0 x 10

1.3 x 102

2.0 x 102

3.3 x 10

4.9 x 102

6.6 x 10- 2

9.8 x 10i2

0.16

0.33

0.65

6.5

Ratio of TOTAL
to standard
method time

1.8

1.5

1.3

1.2

1.2

0.93

0.68

0.56

0.43

0.32

0.25

0.21

0.18

Ratio of
assembly language

to standard
method time

1.3

0.77

0.45

0.27

0.21

0.15

0.12

0,10

0.084

0.071

0.061

0.057

0.052

Table 6.
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The internal consistency checks consisted in ascertaining, in

numerous test cases, that the code results were the same to at least

6 significant digits when (a) various formulas were restructured,

(b) varying levels of precision were used, and (c) convergence flags

were varied within reasonable limits.

The stability and well-conditioning tests consisted in exercising

the code over broad ranges of x (up to 20,000) and m (real part from

1.05 to 2.50; imaginary part from 10- 7 to 1) and seeing if any over-

flows or unreasonble results turned up. No published data exist over

most of these ranges, but there are a number of checks which one can

make; e.g., that Q ext 2 and Qs and g approach well-known asymptotes

as x +> ; that these approaches should be more rapid-the larger Im(m)

is; that increasing Im(m) damps out the ripple structure--the more so

the larger x is; that rainbows and glories should occur; and so on.

Numerous graphs were made of the results and, after considerable

experience with Mie scattering data, I have found that calculational

errors are relatively easy to spot on such graphs since they cause

deviations from what is usually a fairly regular pattern. The final

form of MIEVO in Appendix I has passed all such tests.

The published data against which MIEVO was tested included both

graphs and tables in Van de Hulst (1957), Irvine (1965), Kerker (1969),

Dave (1968b), and Deirmendjian (1969); and tables in Deirmendjian (1963),

Denman et al. (1966), and Dave (1968a). Such data are restricted to

x < 1000 and, while being able to reproduce them gave considerable con-

fidence in the codes, the sorts of tests described in the last paragraph

are equally as important; for extrapolating the code to x < 20,000 might

overwhelm numerical techniques which are perfectly adequate for x < 1000.
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Of course the Mie codes were modified and improved several times after

their initial testing. Rather than rerun the tests, comparisons were made

for wide ranges of x and m between all output quantities of the new and

old versions. This enabled errors to be quickly detected and ensured that

the final versions presented here passed all the tests that their prede-

cessors did. It also was the method used to test MIEV1 (against MIEVO).

Sample results from MIEV1, rounded to 6 significant digits, are

presented in Appendix III. Users should reproduce these results before

attempting to apply MIEVO or MIEV1. There are 8 cases: x = 10, 100,

1000, and 5000; for each x, m = 1.5 and m = 1.5 - 0.1 i. Qext' Qsca'

Q abs = Qet - Qsca, g, and the time to execute each case are shown, as

well as S1 and S2 for e = 0° (5°) 180°. The intensity and degree of

polarization (Eqs. 44-45) are also shown; these were tabulated by Dave

(1968a) for our-two x = 1000 cases, and the Appendix III results agree

with his to all digits which he tabulates, except that the sign of our

degree of polarization is opposite to his (we believe his is wrong in

this respect).

Note that Dave gives execution times of 50.36 sec. (m = 1.5) and

52.32 sec. (m = 1.5-0.1 i) for his test cases. The MIEV1 times are

3300 and 2900 times faster, respectively.

7.5 TIMING

Claims of computer code timing superiority turn up frequently,

although rarely are they backed up by the sort of thorough, quantitative

study presented below for MIEVO and MIEV1. Therefore, I would like to

begin with a few general comments on the meaning and utility (or lack

thereof) of timing comparisons.
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My main observation--and this has been seasoned by years of

experience with a variety of codes and computing systems--is that

many claims of timing superiority are meaningless. They are simply

down in the noise level. I base this incredulity on several elements

of experience.

First, the comparisons are almost never thorough or comprehensive,

but rather are based on a tiny sample of cases which may. not be repre-

sentative or even important.

Second, timing on a computer is inherently a noisy operation, and

the results may not be exactly reproducible. It depends on the work-

load, the I/O burden, and many other unreckonable factors. It may

vary even among computers of the same kind, depending on the sophisti-

cation of their operating systems and compilers (which are often a

local product or an extensively modified company product). The

'perfect' timinhg study would be a pure CPU job, involving no I/O other

than printing the times at the end, and executing with no other jobs

present. These conditions are rarely met.

Third, the putatively slower code is not usually optimized. I

have seen professional 'code speeder-uppers' reorganize a code, put

the slowest or most frequently executed parts in assembly language,

etc., and improve the timing by several factors. Indeed, after such

optimization, the slower code might become the faster one.

As a result, I have come to regard, as a rough rule-of-thumb,

that only a timing factor of 4 or more between two entirely different

codes is significant. (Of course, timing improvements from modifying

similar codes on the same computer are significant at a much lower

level, possibly as low as 5-10%.)
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Another point to bear in mind is what benefit will accrue from a

timing improvement. A code executing in 1 microsecond will not bene-

fit from a speed-up unless it is called many millions of times. At.

the other end of the scale, a code requiring 100,000 hours will not

become any more feasible with a factor of 10 speed-up. It is usually

only calculations requiring times in the mid-range (seconds to hours)

which will benefit from a speed-up. Mie calculations are of such a

type.

By way of an example of a useful timing comparison, Table 7 shows

times for Dave's (1969a) Mie code, for 182 angles and x = 1, 10, 100,

1000 and 5000; and corresponding times for vectorized MIEV1. MIEV1 is

3000-4000 times faster, which divides up as follows. Our scalar-mode

CRAY-1 is roughly 100 times faster than Dave's IBM 360/50. Another

factor of roughly 5 is due to our improvements in numerical technique

and a final factor of about 7 can be ascribed to our partially-

vectorized code design.

Palmer (1977), using the same kind of computer as Dave, reported

a new numerical technique (continued fractions instead of series)

which gave factors of 9-15 improvement over Dave's times in Table 7

for x = 1, 10 and 100. The fact that both Palmer and I obtained such

large improvements from entirely different directions suggests that,

from the timing standpoint, Dave's codes were far from ideal.

We now examine the times required by three versions of our codes:

unvectorized MIEVO, vectorized MIEVO, and vectorized MIEV1. These

times, in CRAY-1 milliseconds, are presented in Tables 8-10, respec-

tively, for size parameters from 1 to 5000, for numbers of angles from

0 to 255, and for two imaginary refractive indices--O and 0.1. Each
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Table 7. Execution times for Dave (1969a) Mie code compared to
vectorized MIEV1 time. 182 angles were used for both
codes. Dave used an IBM 360/50, which is roughly

100 times slower than the CRAY-1 in its normal scalar

mode.

Dave (1969a) vectorized MIEV1 ratio
x code time (sec) code time (sec) of times

0.1 0.7 1.8 x 10- 4 3900

1 1 .1 3.6 x 10 4 3100

10 3.7 9.8 x 10- 4 3800

100 22 5.4 x I0- 3 4100

1000 194 4.56 x 10 -2 4300

5000 945 0.222 4300
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Table 8. CRAY times in milliseconds to execute the unvectorized

MIEVO code for various combinations of size parameter and

number of angles. Each time represents an average over

Re(m) = 1.1 (0.2) 2.5.

Im(m) - 0

No. of
Angles

0

3

7

15

31

63

127

255

Mie Size Parameter

1

0.081

0.13

0.16

0.23

0.38

0.66

1.2

2.4

3.3

0.11

0.18

0.24

0.35

0.58

1.0

2.0

3.8

10

0.19

0.33

0.44

0.66

1.1

2.0

3.7

7.3

33

0.41

0.72

0.98

1.5

2.5

4.5

8.6

17

100 333 1000 5000

1.0

1.8

2.4

3.7

6.3

11

22

42

3.0

5.3

7.3

11

19

34

65

127

8.4

15

21

32

54

98

186

363

Im () - 0.1

0

3

7

15

31

63

127

255

0.099

0.14

0.18

0.25

0.39

0.68

1.3

2.4

0.14

0.21

0.27

0.38

0.61

1.1

2.0

3.8

0.24

0.37

0.48

0.70

1.1

2.0

3.8

7.3

0.50

0.82

1.1

1.6

2.6

4.6

8.7

17

1.2

2.0

2.7

3.9

6.5

12

22

42

3.7

6.1

8.0

12

20

35

66

127

12

19

25

36

58

102

190

367

41

74

101

155

262

476

905

1760

53

86

113

167

274

488

918

1780
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Table 9. CRAY times in milliseconds to execute the vectorized MIEVO

code for various combinations of size parameter and number

of angles. Each time represents an average over Re(m) =

1.1 (0.2) 2.5.

Im(m) - 0

No. of
Angles

0

3

7

15

31

63

127

255

It FHlie Size Parameter

1

0.081

0.12

0.13

0.14

0.16

0.20

0.28

0.46

3.3

0.11

0.18

0.18

0.20

0.23

0.30

0.43

0.72

10

0.19

0.32

0.32

0.35

0.41

0.54

0.80

1.4

33 100 333 1000 5000

0.41

0.70

0.71

0.78

0.92

1.2

1.8

3.0

1.0

1.7

1.7

1.9

2.3

3.0

4.4

7.6

3.0

5.1

5.2

5.7

6.8

8.9

13

23

8.4

15

15

16

19

25

38

66

41

71

72

79

,94

123

182

315

Im(m) - 0.1

0.099

0.14

0.14

0.15

0.17

0.21

0.30

0.48

0.14

0.20

0.21

0.22

0.25

0.32

0.45

0.74

0.24

0.36

0.37

0.40

0.46

0.58

0.82

1.4

0.50

0.78

0.80

0.87

1.0

1.3

1.8

3.1

1.2

1.9

2.0

2.1

2.5

3.2

4.6

7.8

3.8

5.9

6.0

6.5

7.5

9.6

14

23

12

18

19

20

23

29

41

69

53

83

84

91

106

135

194

327

0

3

7

15

31

63

127

255



55

CRAY times in milliseconds to execute the vectorized MIEV1

code (the fastest one) for various combinations of size

parameter and number of angles. Each time represents an

average over Re(m) = 1.1 (0.2) 2.5.

Im (m) - 0

Mie Size Pi

33

0.19

0.50

0.51

0.58

0.72

1.0

1.6

2.8

Im (m) - 0.1

0.25

0.57

0.59

0.66

0.80

1.1

1.6

2.9

arameter

100 333 1000 5000

0.38

1.2

1.2

1.4

1.7

2.4

3.8

7.0

0.53

1.3

1.4

1.5

1.9

2.6

4.0

7.2

0.99

3.3

3.5

4.0

5.0

7.1

11

21

1.5

3.8

4.0

4.5

5.5

7.7

12

22

2.7

9.4

9.7

11

14

20

32

60

5.6

12

13

14

17

23

35

63

13

45

47

54

69

99

157

290

21

53

55

62

77

106

165

298

Table 10.

No. of
Angles

0

3

7

15

31

63

127

255

0

3

7

15

31

63

127

255

1

0.062

0.11

0.11

0.12

0.14

0.18

0.27

0.45

0.083

0.13

0.13

0.14

0.16

0.20

0.29

0.47

3.3

0.074

0.15

0.15

0.17

0.20

0.26

0.39

0.68

0.10

0.18

0.18

0.20

0.23

0.29

0.42

0.73

10

0.11

0.24

0.25

0.28

0.34

0.46

0.71

1.3

0.14

0.28

0.29

0.32

0.39

0.51

0.75

1.3

| . .
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time represents an average over eight real refractive indices from 1.1

to 2.5 in steps of 0.2.

For Im(m) = 0, up-recurrence is always used for A , as well as

faster code branches for calculating a ,b , so these times are invari-n n

ably less (typically by 5-30%) than the corresponding ones for Im(m)

= 0.1. For Im(m) = 0.1, up-recurrence for A may or may not be used,
n

depending on Eq. (48); for Re(m) = 1.1, for example, it is used only

for the x < 100 cases, while for Re(m) = 2.5 it is used for all except

the x = 5000 case. The sudden switch to down-recurrence on A thus
n

occurs somewhere between the x = 100 and x = 5000 columns of the

tables, but the elevating effect of this on the quoted times is dimin-

ished somewhat by averaging over the eight values of Re(m).

The patterns in Table 8 are typical of what one may expect on

computers without vector capabilities. For fixed x, the N -loop
ang

embedded in the N-loop increasingly dominates the computation time,

until, for Nag 31, the time is almost linear in N . For fixed

Nang' the time rises a bit less than linearly with N or, equivalently,

1/3with x + 4x / 3 (cf. Eq. 50).

For vectorized MIEVO, Table 9, the times for 0 and 3 angles are

almost identical to those for unvectorized MIEVO, Table 8; this is to

be expected, since only Na -loops have been vectorized. But for

N > 3, the times in Table 9 increase much more slowly with risingang

N than they did in Table 8. For 15 angles, there is an advantageang

of 1.8-1.9 over unvectorized MIEVO for all x; for 31 angles, 2.4-2.8;

for 63 angles, 3.5-3.9; up to 5.2-5.7 for 255 angles. This advantage

factor rises roughly logarithmically in N , increasing by about unityang'
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every time N doubles. As x increases for fixed N ang, the times in

Table 9 rise in almost the exact same way they did in Table 8 (linearly

in N); again, this is not surprising since no N-loops are vectorized.

The fastest code times are those for vectorized MIEV1, in

Table 10. Compared to Table 9, improvement over MIEVO is greatest

for 0 angles--as large as a factor of 3 and at least a factor of 2

whenever x 2 33. This shows the advantage from vectorizing N-loops

in its best light. For N - 3, on the other hand, vectorized MIEVO

never takes over 60% more time than vectorized MIEVI; vectorized MIEV1

offers the most advantage for 3 5 N < 63 and x < 100, in whichang

regime vectorized MIEVO takes 25-60% more time. (Of course, it is

just this large-x regime which requires the most computer time.) But

for 255 angles, Table 9 times are never more than 10% above those in

Table 10, reflecting the almost total dominance of the N -loops at
ang

that point.

There is a big rise, by a factor of 2-3, between the times for

N g 0 and those for N 3 in Table 10. But after this initialang ang

jump, the further rise as N increases is slow; it is necessary to

go all the way to 63 angles to double the N = 3 time. Beyond
ang

63 angles, the rise in execution time is more rapid, approaching

linearity in N ; this reflects the vector length of 64 on the CRAY-1.ang

For x < 33, the Table 10 times rise considerably more slowly than

linearly in N, reflecting the vectorization of N-loops. For x 2 100,

the times go up more nearly linearly in N, again due to the CRAY-1

vector length.

Using the assembly language sum routine (Sec. 7.3) can speed-up

vectorized MIEV1 by anywhere from 1% to 20%. Unfortunately, the larger
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speed gains are associated with the smaller values of x and N
ang'

which take less computer time anyway. For example, for x = 33, the

gain ranges from 15-18% for 0 angles to 0-2% for 255 angles; while

for x = 333 it never exceeds 7%. For maximum speed the fast sum

routine can certainly be recommended, especially for N = 0 cases,

but no dramatic improvements in timing result therefrom.

These timing studies furnish a more solid basis than has here-

tofore existed for (a) estimating how much time a particular Mie

computation will require and (b) establishing by how much, and in

what cases, future Mie codes improve on these times.
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8. SUMMARY

This document describes a number of improvements in numerical

technique for Mie scattering calculations, and incorporates them into

two well-documented and tested computer codes. These improvements

are as follows:

1. Design for vector processing (Sec. 7.1)

2. Lentz method for starting the downward recurrence

of A (Eqs. 23-35)
n

3. New criterion for down-recurrence of A (Sec. 5)

4. Better treatment of small-particle limit (Sec. 4)

5. A priori formulas for number of series terms (Sec. 6)

6. Simpler n (i), Tn(p) recurrences (Eqs. 37, 38)

7. Faster branches for no-absorption cases (Sec. 7.5)

8. S , rather than S1 S2 , calculated internally, for

greater speed (Eqs. 9-12)

9. Complex arithmetic, no double precision (Secs. 3, 7) .

The codes execute some 30 to 40 times faster than those of Dave

(1968a, 1969a) even after differences in machine speed are factored

out. While this may seem a bit like flogging a dead horse, considering

that Dave's codes may have been very inefficient to begin with (see

Sec. 7.5), the statistic is important because many people are still

using Dave's codes or slight variations thereof.

With codes such as those presented herein, Mie calculations which

were literally unthinkable only 5 to 10 years ago may now be done

routinely.
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APPENDIX I. MIEVO FLOW CHART AND LISTING

Imlx < 0.1

Imix > 0.1

Eq. 48 TRUE

I m(m I >N2CiT lTm I ,or, I T

Eq. 4E

r .r
-I .\.. - ,I ...... i% Ilkin/ I IU-kU I ual cuiate

______ I _________ |_ ______Lentz
Calcuate A,1 ... ,AN Calculate A 1,... ,AN (Eqs.

by up-recurrence by up-recurrence Calculate
for general m assuming Im(m)=O by down-r

(Eqs. 20, 21) L (Eq.

B FALSE

I

- AN(mx) by

method

23-35)

AN-1 ,...,A 1

'ecurrence

22)

Initialize: C0, C1 (Eq. 19)

n, l/n, (-1)n+l1

7o(i )' 7Tl (p ) (Eq. 39)
Zero variables used to accumulate

sums for Qext' Qsca' g, S-(), S±(-P)

\/
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LOOP: n = 1 to N

Calculate numerical coefficients (Eq. 51)

|Im(m)|>N2CUT |Im(m)|<N2CUT

Calculate a , bn for Calculate an, b assuming
general m (Eq. 16) Im(m)=O0 (Eq. 16)
Increment Qsca sum (Eq. 7) |

Increment Qext and g sums (Eqs. 6, 8)

Calculate (ab and (a)n +l 2n+l (a +b ) (Eq. 10, 12)~ . -nn n+l n

( LOOP: j=l to (Nang+l)/2

Calculate T (Eq. 38b)
Increment sums for S-(P1 .), S-(-pj) (Eqs. 10, 12)

Advance Tr recurrence (Eq. 37c)

ang=

l

(^~ END j-LOOP)

Advance cn recurrence (Eq. 17)

Update n, 1/n, (-1 )n+l

C END n-LOOP)
. I

Calculate S1 , S2 from S+(Eq. 11)
. S~~~~~~~~~~~~

6-8)

ang

i~~~~~~~~

put Qext Qsca' g in final form (Eqs.

I
I

RET N
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CRAY FORTRAN COMPILER VERSION 1.04 12/27/75
CO"PILATION DATE AND TIME 02QC9/79 - 221tZ1'30

1. SUdROUTINE MIEVO
C
C COMPUTES MIE SCATTERING AND EXTINCTION EFFICIENCIES, ASYMHIETRY
C FACTOR, AND ANGULAR SCATTERING FUNCTIONS
C
C VERSION 0-- STRUCTURED IN ORDER TO USE THE ABSOLUTE MINIMUM AMOUNT
C OF COMPJTER MEMORTY, HILE STILL VECTORIZING LOOPS
C OVER SCATTERING ANGLE (WHICd, WHEII UNVECTORIZEDO CAN
C ACCOUNT FOR THE LIONIS SHARE OF CC)MPUTING.TIME)
C
C THIS CODE IS DOCUMENTEO IN- .MIE SCATTERING CALCULATIONS--
C IMPROVEMENTS IN TECHNIQUE AND FAST, VECTOR-SPEED COMPUTER COOESl,
C 3Y WARREN J. WISCOM3E, NCAR TECH NOTE (1979)
C
C
C IN PUT VA RI A B L E S
C
C XX PIE SIZE PARAMETER (2ZPIeRADIUS/AVELEN'GTH)
C IOR COMPLEX REFRACTIVE INDEX (IMAG PART MUST BE NEGATIVE)
C NZCUT THE MAGNITUDE OF ThE IMAGINARY REFRACTIVE INOEXt BELOW
C WHICH IT IS REGARDED AS ZERO (THE COMPUTATION PROCEEDS
C FASTER FOR ZERO IMAGINARY INDEX)
C NUMANG NUM3ER OF ANGLES AT WHICH SCATTERING FUNCTIONS
C ARE TO BE EVALUATED. NUNNG.u0 SIGNALS THAT ONLY QEXT,
C QSCA, AND GFAC (SEr OUTPUT QUANTITIES BELOW) ARE TO BE
C EVALUATED. ALL POSITIVE INTEGRAL VALUES OF SvUMANG ARE
C PERMITTED, BUT IF IT S OD0 90 DE;REES MUST BE ONE OF
C THE ANGLES (IF NUMAN.G:l 90 DEGREES MUST BE.ONLY ANGLE)
C XMU(N)ItN TO NUMANG COSINES OF ANGLES AT WHICH SCATTERING
C FUNCTIONS ARE TO 3E EVALUATEO--THE AN;LES MUST 3E
C MONOTONE INCREASING AND MUST BE MIRROR
C SYMMETRIC ABOUT PI/2, SO THAT IF PI/2-A IS AN ANGLE
C THEN SO IS PI/ZAp kMERE A LIES BETWEEN ZERO AND PI /
C
C
C OUTPUT VA R! A S L E S

C QEXT EXTINCTION EFFICIENCY FACTOR, DEFINED AS
C (Z/XX-'* )*SUM( (ZNet1)RE(A4N)8B(N)) I _
C QSCA SCATTERI4C EFFICIENCY FACTOR, DEFINEO AS
C (Z/XXe*2) 'SUM( (Z1et) *(CA3S(A(Nj))e)*2,CABS(B(N))*Z2) )
C WdERE A(N) AND d(N) ARE THE USUAL MIE COEFFICIENTS
C LITTLE-A-SUB-N AND LITTLE-B-SUB-N
C GFAC ASYMMETRY FACTOR; DEFINED AS
C (b/XX*e2) SUM( (N-1/) *RE(A (N-) *COMJG (A(N) ) 3 (N-1) CONJG(B(N)) )
C *(2NI) /(N(NtX)P*RE(A(NIMCONJG(<(N))) ) / QSCA
C S1(N )SZ(N) Nl1 TO NUMANGC AT EACH AN.LE SPECIFIED BY XMU ARRAY,
C THESE ARE THE USUAL MIE ANGULAR SCATTERING FUNCTIONS
C bIG-S-SUJB-ONE AND 8JG-S-SUB-TOv, DEFINED AS
C S12SUM( (2Nt1) /(Ne1)) (A(N' *PI (N) IB(N)'TAU(N)) )
C . S2zSUM( (2N.l)/(.NtNl)f)(A(N *TAU(N) *e((N) PI(N)) )
C AND WHERL PI(N) AND ;AU(N) ARE THE USUAL MIE QUANTITIES
C LITTLE-PI-SUB-N AND LI.TTLE-TAU-SUB-N
C
C -- NOTE--THE PHASE FUNCTION, OR ANGULAR GAIN, FOR A PARTICULAR
C MIE SIZE PARAMETER IS OBTAINED BY MULTIPLYING
C I.IZ a CABS() X)**2CAbS(S2z)z2
C BY 2/XXeZ2. HOWEVER, IT IS IiI2t NOT THIS PHASE FCNt
C WHICH MUST SE INTE;RATEO OVER SIZE] WHEN A SIZE DISTRIBU-
C TION IS INVOLVED. THIS INTEGRAL MOJST THEN BE NORMALIZED
c TO GIVE THE CORRECT PHASE FUNCTION. SIMILA.RLY, IT IS THE
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C CROSS-SECTIONSS; PR3'ORTI AL' T3 '(XX'2^/2 'TIMES 4EXT AND
C QSCA, WHICt SHOULD BE 1,TEGR.ATED OVER SIZES, NOT QEXT AND
dr 1Lll I 1"uL" aL ', LillL" IL" ",:

I N T E R N A

NT1
NANGLZ

NNZ
NN

NOANGS
NOINAG

AIMIOR
REIOR
AiA , Bi

lORSQ, RATTEM
NT
NTPi
XINV
ZINV
F

FF

AKtK, DEN,OTD,
NUNLNTN, IT
MM
KOUNT
MAXIT
EPSI
EPS2
BIGA (N

CTAN

REZ
REZINV
EQBIGA

%BRINV
RIOR IV
FN
FNPL
RN
RNPi
TWONPI
COEFF
NPODN
PSIN
PSINP
CHIN,CHINP1
ZETN,ZET NP
ANMBN
ANMI t1NMl
ANP
SNP

AMPM
BNPN
PIN(J) TAUNI(J)

~a m nc n.. ·LL e :;

L V A R I A B L E 5

PARAMETER. MAX. POSSZBLE NO. OF TERr.S IN MIE SERIES.
PARAMETER. MAX. POSSIBLE NO. OF AN;LES FROM 0 TO
90 DEGREES.
NUMANG*l
NN2Z/--NO. OF ANGLES FROM'0 TO 90 OEARCES
TRUE, SKIP CALCULATION OF S1,S2
TRUE, ASSUME IMAGINARY REFRACTIVE INDEX IS ZERO AND
TAKE COMPUTATIONALLY FASTER BRANCHES IN CODE
MAGNITUDE OF IMAgINARY REFRACTIVE INDEX
REAL PART OF REFJRACTIVE INOEX
MIE COEFFICIENTS LITTLE-A-SUB-LtLITTLE-A-SUB-2,
LITTLE-8-SUB-i, wITH NUMCRATOR AND DENOMINATOR
EXPANDED IN POWERS OF XX, AND A FACTOR OF XX*3 ODIYI-
DEO OUT (USED IN SMALL-XX LIMIT)
TEMPORARY VAR;A3LFS USED IN SMALL-XX LIMIT
NO. OF TERMS IN MIE SERIES
NTe&
t/XX
1i/(IORXX)
ARITHMETIC STATEMENT FUNCTION USED IN DETERMINING
WHETHER TO USE UP- OR DOWN-RECURRENCE FOR BIGA
CONTAINS XNTERMEDIATE AND FINAL VALUES OF LENTZ
CONTINJED FRACTION FOR BIGA(NT). ALSO USED AS TEMPO-
RARY VARIABLE IN INITIALIZIMG UP-RECURRENCE FOR BIGA.
TEMPORARY VARIABLES USED IN COK UTING FF

*X AND -I ALTERNATELY. USED IN COMPUTING fF, SPS,SMS
ITERATION COUNTER FOR FF COMPUTATION
MAXIMUM ALLOWED NO. OF ITERATIONS IN FF COMPUTATION
ILL-CONDITIONIN; CRITERION FOR LENTZ CONTINUED FRACN,
CONVER;ENCE CRITERION FOR LENTZ CONTINUEO FRACTION
-N/Z * J-SU6-(N-1) OF Z/J-SUB-N OF Z WNHERE ZzIOR*XX
AND J-SUB-N IS THE NTH-OROER SPHERICAL BESSEL FUNCTN.
EXTERNAL FUNCTION FOR COMPLEX TANGENT (USED TO INI-
TIALIZE UP-RECURRENCE FOR SIGA)
REAL(IOR e*XX
L/REZ
REAL ARRAY EQUIVALENCED TO BIGA. USED TO CONTAIN
BIGA WHEN NOIMA;-TRUL, WHEN 8IGA IS PURELY REAL.
1/IOR (USED IN AN CALCULATION)
1/REALCIOR) (USED IN AN CALC NH WHEN NOIMAG=TRUE)
FLOAfiN; POINT VERSION OF LOOP INDEX N IN 500-LOOP
N*1
I/N
I/(Net)

. .2N+.)/'J.I ) ..
(MNt)/N
RICATTI-BESSEL FUNCTION PSI-SUB-(NM-) OF XX
RICATTI-BESSEL FUNCTION PSX-SUB-N OF XX
LIKE PSINWPSINPL BUT FOR FUNCTION CHI
LIKE PSINPPSINPL BUT FOR FUNCTION ZETA-PSI.ItCHI
MIE COEFFICIENTS LITTLE-A-SUB-N, LITTLE-B-SU8-N
ANtN BUT FOR (N-1) INSTEAD OF N
(ZNt)/(M(NNl))'(ANeBN)
(2Nl) / (N(NL)) (AN-BN).
(-o)W4(Nel) * ANP
(s-)"(M.I) * SNP
ANGULAR FUNCTIONS LITTLE-PI-SUB-N AND LITTLE-TAU-SUB-
N AT J4r ANGLE

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

to IA L
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C PINtI(J) LITTLE"PI-SUa- I-l)ZT JTH ANGLE
C TMP(JJ TEMPORARY ARRAY USED IN COMPUTING PIN,TAUN
C SP(J) S° * Sl1S2 FOR JTH ANGLE
C S(J) S- * S1-S2 FOR JTH ANGLE
C SPS(J) S - StSZ2 rOR (NN2-J)TH ANGLE
C SMS(J) S- * SI-S2 FOR (NN2-J)TH ANGLE
C
CUSE COkIO
C ANGULAR OINENSIONS

PARAMETER (NANGL255)
COMPLEX IOR, Sit, S2
* EAL N2CUT
COMMON/INOUT/XI tOR.N2CUT,t UANGX, U(NANGL) QEXT,QSCA,GFAC#

S. (NANGL), S2 (NAN;L)
CENO

PARAMETER (NANGL2a(NANGLl)/f2Z) .
PARAMETER (NrTL21150)
REAL NPtON
LOGICAL NOIMA;, NOANGS
COMPLEX CTAN
COMPLEX AIA2, BIORS2,RAT
COMPLEX ZINV,FFAK,OENtNUNNTNOTO, T,BIGAItORINVANeNANqlBNI4,

* ANP,BNP,ANPM,BNPM,ZET,ZETN, ZETNPltSP SMSPSSMS
DIMENSION SP(NAN^L2) SM(NANGb2), SPS(NAN;LZ),SMS(CNANGL2),

* PIN(NANGLZ) ,PINMI(NANGL2), TAUN(NANGLZ), TP(ANGLZ) ,BIGA(NTL),
* EQBIGA(NTI)

EQUIVALENCE (8IGA(t ,rQBIGAC())
EQUIVALENCE (St(1) ,PINC1) ), (St (NANGL2 ?),PINMI(1t)

* C(SZ(l),TAUN()), ( SZ(NANGL2),TMP(2)
F(REH) * -iS.I4 * REMH*a.k2 L6,35*REM)
DATA EPSl/I.E-2/, EPS2/1.E-S1
DATA MAXIT/10000/

C
C

IF(NUMANG.GT.NANGL *OR. NUMANGLT.O) STOP 1000
NN2 a NUMANGCl
NN * NN2/2
NOANGS * NUMANGEQJ1
AIHIOR a ASES(AIMAG(IOR))
REIOR a REAIt.(TOR)
NOIMAG a AIMIOR.LE.N2CUT

C
IF(CABS(IOR)KXX*.T.(.I) GO Tro

C
C SMALL-PARTICLE LIMIT
C

IORSQ * I0OR · Z
RAT * (O.,T.66666666666?67)*(IORSQ-I.0)
Al * RATO(t.0-OtXK 2'.4IORSQeSo)/I S.t(XX~))

/(IORSQZ.U,(I. O-.00.TOtSQ) (XX e · 2l -(8. IORSQ · 2Z-35S. *XOfSQ
* / l.) O0. " ( CX ! )(XX*·)(X I · 3) RAT · (.t - e§ ' 4-xx 4 2 0))

Bl a (XX*2/3S.)eRiT(I.o*(2Z^IORSQ-5.) rtO.(XX·2)).
/(l.B-(E2.]ORSQ-S .)/38 .(XX · 2))

AZ * (0,*IXXX2) *RAT( tl.-XX'23/tI,.)
* 1/(2 *IORSQ*3.-(2 *IORSQ-Y7.) /l.(XXK*2))

TEN * CABS(Al)9*2ZCABS(ai)*te<(5.,/3..9 CASS(AZ) ^2
* QSCA * 6.o(XXe} · TEH
GFAC * REAL(At9CONJ6tAZ*+l))./TEM
QEXT a QSCA
IF(AIMIOR.GT.l.E-1Z) QEXT * IXXKR.EAL(A&+Bi(S./3.) A2)

C
TEN * t. SXX'3
A2 * (5./3,.)I A2

C *·ee VECTORIZABLE LOOP *'**#
i. 00 5 J * iNN

St(J) * TEM'(Ait(tBi A2)' XMU(Jl )
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1 0 *.)-2S 2 J)-; -E (Bl Al',xU('j) *AZ'iT xMU(J' ' A)2-l* --
C ,*** VECTORIZABLE LOOP *-**-

.2. 00 6 J * i,NN
'3. SI(NN2-J) a T*EM(Al-(B0LAZ)'XMU(J)

½44. 6 S2(NNZ-J) * TEM(*pl-AOXMU(J *pAZA (.2.XMU((J).Z-l.))
k5. RETURN

C
C e
C CALCULATE NUM3ER Cf TERMS IN MIE SERIES (A LEAST UPPER BONW
C USING EMPIRICAL FORMULAS iMIC4 WERE FITTED FOR SIZE PARAMETERS
C UP TO 209000
C

46. 7 IF(XX.LE.8.0) Nf * XX*.-XX)(.I/.)l.
?7. IF(XX.(CT.a.C .ANO. xx.LT.4Z01o) N'; * XX.05OSXXxs(1.,3.,),Z

4.8 IF(Xx.SE.'2CO.) NT * XX#.49XX.O(1o/3.)#Z.
.9g. NTPI a NT-l

C MAKE SJRE ARRAY II6A WILL E '.ARGE ENOUGH
5e. fr(NTPl.LE.NTL) 60 TO 11
51. RITE (b6,S0C) NT, XX
52. 1000 FORMAT(/// ESTIMATEO LENGTH OF MIE SERIES NT-e16,

* * FOR SIZE PARtAM*FlZ.2/0 EXCEEOS 5I;A OTHENSIONS')
53. STOP 1101

C ,
C
C COMPUTE DIGA
C

54. 10 XINV * 1.0/XX
55. ZINv * XINV/IOR

C OECIOE WHETNER S[;A-N CJN BE CALCULATED Sr UP-RECURRENCE
- 56. IF(AIMIOR .LT. F(REIORJ/XX' ;O TO 100

.. C
C PREPARE FOR OOWN-RECURF:EN:E---
C COI"PUTE INITIAL 'I6;-oaROE. B1&6AN USING LENTZ METHOD
C

57. FF * NTP1eZINY
58. MM ' -1

.59. KK * 2*NT*3
b_ . AV u (MM *K· )ZINV
.61 OEN * AK
62. NUM * CN * 1.o/FF

.. 63. KOUNT * 1
C

64. 20 KOUNT * KOUNTf1
65. IF1KCUNT.GT.MAXIT) ;.0 TO 40
66. IF(CA5S(NUM/AK).;T.EPS1 .ANO. CABS(DEN/AK)G.T.tPSi) GO TO 38

C ILL-COMNOTIONE'J CASE--STRIDE TWO TERMS INSTEAO OF ONE
67. !N *. '-

-. AS. r.K * KK#2
69. AK * (MM*KK) *ZIN
T7. NTN - AK^NUM * 1.0
71. OTO AKfOEN * 1.0
72. FF * (NTN/OTO) FF
73. MM * *U

_ 74. KK * KK+2
75o AK * (<M KK*7.INV
760. NUM * AK * NUA/NTN
77. DEN * AK * Of.N/OTO
78. KOUNT * KOUNfrI
79. 60 TO 20

C
80. 30 TT * NUMOEN

- d1. FF a TTFF
C CHECK F'R CONVER;ENCE

82. TF(A8S(REAL(TT)-1.8).LT.EPS2 .ANO. ABS(AXMAG(TT)J.LT.EPS2) GOTO 50
83 . M M -MM
8'. KK * KK6Z
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85. AK * IMh*^K)D ZIN
86. NU " AK * 1.I/NUM
87 ODEN a AK * l.0/OEN
68. O TO 2Z

C
89. 4" tRITE(6, 1001) NT, XX, IORt AK, NUN,pEN, TT,FF90. O001 FORMAT(///. ONTINUED FRACTION FOR A-SU3-NT FAILEO TO CONVERGE./* * NT'.'6/' X-EZE3.8/o REFR INOEX.*ZEZ0.8/. AK*ZEZ0.o8/* * "NU.e"20.8/0 OENw02E20.8/ TTu2E1Z.i/· FFaz2E20z.4)91. STOP 1 00

C
92. 51 SIGA(NT) * FF

C
C 00DWARO RECURRENCE FOR I:GA-N

95. CO TO ZOO
C
Cr UPWARO RECURRENCE FOR IIGA-N
C

- 96. 110 IF(NOIKAGJ CO TO 140
C
C [ ENERAL CASE
C

97. FF a CTAN(IOR'XX)
98. , SIGA(1) * -Z1NV * FF/(Z2NVOFF-l.I)
99. 00 120 N * 2ZKT

100. 120 IIGA(N) * -(N*ZINV)i.0l/((N*ZINV).-BIA(N-.l)
.101. GO TO 200

C NO-ABSORPTION CASE

102. 140 REZ a RE ORXX
103. REZINV a 1.0/REZ
10. TEN a TAN(tREZ)

l05. EEQ^ZIA(^) -REZINV * TEN/(REZINV*TER-.l)
1G6. 30 160 N * ZNT
107. 1660 Q6ICA(N) a - (NOREZINV) * 1O/((NOREZINyEQ9;A(N-l.)

C
C

10.e 20 CONTINUE
169. IORIN'V a .0/IOR
110. RIORIV * 1.0/REIOR

C INITIALIZE QUANTITIES USED FOR EFFICIENT CALCULATION OFC NUMERICAL COEFFICIENTS IN NIE SERIES
11l. rN * 1 0

112. RN 1.o0
113. NN a 1

C INITIALIZE RICATTI-SESSEL FUNCTION ZETA FOR UPWARO RECURRENCE114. PSIN a SIN(xx!
115. CHIN a COS(XX)
116o PSINPi * XINV*PSIN-CNIN
117. CHINP1 * XINV*CHIN*PSIN
118. ZETN * CHPLX(PSIN,CHIN)
119. ZETNP1 a CNPLX(PSINPI1 CNINP1)

C INITIALIZE PREVIOUS COEFFICIENTS (A-SUB-N-1 lB-SUp-N-1)C FOR USE IN ASTNMETRT FACTOR SERIES
121. ANtI * (0.0,0.0)
121. INMI * (.6, O.0)

C INITIALIZE SUMS FOR EFFICIENCIES AND ASYNNETRY FACTOR122. QEXT a OO
123. QSCA a* .
124. GFAC a 0.0

C INITIALIZE AN;ULAR 1FC PIN AiO SUNS FOR S',gS- AT A ANGLESC ·** VECTORIZABLE LOOGP *****
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125. 00 250 J ,t h'N
126. SP(J) a (a.C,0.0)
12?. SMI J) a* (0.~,1.)
128. SPS(J) * (0G.,0.0)

.129. SMS(J) ( a0.0,G.O)
130. PINM1(J) * Co.
131. 250 PIN(J) * 1.0

C
132. 00 50 N X1,NT

C COMPUTE THE VARIOUS NUNERICAL COEFFIIENTS NEEDED
.133. FNPI * FN+X.O
.134. TWONP1X FNeFNPX
135. RNP1 * 1.0/FNPl
136. COEFF * RN.RNP1
137. NPION * X.Q*RN

C
C CALCULATE THE HIE SERIES COEFFICIENTS LITTLE-A AND LITTLE-8
C

138. IF(NOIMAG) 60 TO 300
C GENERAL CASE

139. AN a ((IORIhNVoBGA(N *(FN*XIq¥) )PSIMP1-PSXIN /
* ((IORINV*BIGA(M) +(FN'XkN¥V)) ZETNP1-ZETN)

14l. BN * ((4 OR'BIGA(N) *(FN'XINV))oPSINP1-PSIN)/
* (( IOR*BIGA ( * (FN*XINV ) ZETNP1-ZET*N)

C INCREMENT SERIES FOR SCATTERING EFFICIENCY
141. QSCA * QSCA * TIONP1(('KEAL(AN)).2e(AIHAG(ANn)).e2

* e*(tEAL(BMN))l2+(AIMAG(lN))2z)
42. O60 TO 356

C
143. 300 CONTINUE

C NO-ASSORPTION CASE
144. AN a ((RIORI£EQ3IGA(N)e(FKXI N¥I) PSZINPI-PSIN)/

* ( (RIORIVOEQ I^A(N) (FNeX INV) )*ZETNP1-ZETN)
145. BN * (( REIOROEQ3IGA(M) (F'NKINV))ePSINPI.PSIN)/

* (( REIOR*EQ9IiN) *( FNeI NV))Z ET;P1-ZETN)
C

146. 350 CONTINUE
C INCREMENT SERiES FOR ASYMNETRY FACTOR AND EXTINCTION EFFICIENCY

147. GFAC a 6FAC *(FM-RNtN*REAL(ANM1.*CONJG(AN) B6NH.CONJ6(SN) )
* * COEFF*REAL(ANCONJG(BN))

148. QEXT * QEXT + TNONPLOREAL(AN*BN)
.149. IF(NOANGS) GO TO 453

C
C PUT HIE SERIES COEFFICIENTS IN FORM NEEDED FOR COMPUTING S+t S-
C

150. ANP * COEFF·(AN^BN)
151. SNP * COEFFO(AN-3N)
152. ANPM * IMMANP
153. NmPN * MHNBNP

C
C *.** VECTORIZABLE LOOP ***ee

154. 00 400 J * L,NN
C AOO UP SUMS HtILE UPIARO RECURSING AN;ULAR FUNCTIONS LITTLE PI
C ANO LITTLE TIU

155. THP(J) * (XMU(J)PIN(J)) - I'[NN(J)
I56. TAU^(J) a FN4THP(J) PINNI(J)
157. SP(J) a SP(J) * ANP(P-IN(J) *TAUN(J))

-158. SMS(J) * SMS(J * BNPM (PIN(J) TAUN(J)
159. SHMJ) * Sf(J) * 3NP(PI N(J)-TAUN(J))
160. SPS(J) * SPS(JI * ANP- (PIN(J) *TAUN(J))
161. PIMNX(J) * PIN(J)
162. PIN(J) * (XMU(J)*PIN(J)) * NP10DNTHP(J)
163. 400 CONTINUE

C
C UPDATE RELEVANT QUANTITIES FOR NEXT PASS THROUGM LOOP

164. NM * - "n
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165. 4.50 FN * FNP1
166. RN a RNPI
167. AWi , AN
168. BHM1 * BN

C CALCULATE RICATTI-BESSEL FUNCTIONS BY UPWARD RECURRENCE
169. ZET * (TWONPlINV)',ZETNPl-ZET.,

T10. ZETXN ZETNPI
171. ZETNPI * ZET
172. PSIN * PSINPI
173. PSINPI * REAL(ZETNPI)
174.. 500 CONTINUE

C
C
C MULTIPLY SUMS BY APPROPRIATE FACTORS TO GET QEXT, QSCA, &FAC
C

175. QEXT * 2.f XI;Ai v*2) ' QEXT
176. QSCA * 2.'(XINV-Z2) QSCA
177. IF(NOINAG) QSCA * QEXT
178. &FAC * 4*.(XINVee2)*eFAC/QSCA
179. IF(NOA^GS) RETURN

C
C
C RECOVER SL AND S2 FRON Sf S-
C
C ** V YECTORIZABLE LoOP *----

180. .00 806 J * IINN
1ai. Si(J) a o.5(SP(J) *SM(J))
182z 800 ST(J) a I 5.5(SP(J) oS(J))

C
C **eoe VECTORIZABLE LOOP *o--

183. 00 900 J * XNN
184. S1(NN2-J) * C.5$(SPS(J)#SNS(J))
165. 918 S2(NN2-J) · 0.5*(SPS(J)-S-S(J))

C
.. 186. RETURN
-. 187. ENO
HIEVO VECTOR BLOCK BEGINS AT SEQ. NO. 37, Pe 121213C
MIEVO VECTOR 6LOCK BEGINS AT SEQ. NO. 42, Ps 121?54B
HIEYO VECTOR BLOCK BEGINS AT SEQ. NO. 105, P- 121 '6LO
MIEVO VECTOR BLOCI BEGINS AT SEQ. NO. 146t P 122150A
MIEVO VECTOR BLOCK BEGINS AT SEQ. NO. 18t P 122312C
HIEVQ' VC'TOR BLOCK BCGINS AT SEQ. NO. 183, P 122335C
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CRAV FORTRA1 CrPIL ER VERSION ..05 05/0,/?79
COMP^ATION GATE ANO TiMf _ .9/

1. COMPL E X FUNCT I ON C T AN Z) )3
_ C C.¢O"PL.X TAMGt.NT OF 2

Z. COMPLEX Z

3. TWOCX 2.REALIZ)
: ... _.. Zw EXPtZAjIMAZ() ( .

5. E4Y * EZY2
.b. .N * 1./ (2.EZT) *CCST WOAI tlsri.)
7. CrA.N - CPLX( (ZeEZY) *SIN(TuCX)'CEN , *EY-1 .)ECh)
. . RRTURN

E9.
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APPENDIX II: MIEV1 FLOW CHART AND CODE LISTING

Calculate

numerical -yes -First time through?J

coefficients no
(Eq. 52)

i i
-Imix < 0.1

Imlx > 0.1

Calculate N (Eq. 50)

Calculate o,..., 1Nby

up-recurrence (Eqs. 17, 19)
- ,_ ,

Eq. (48) TRUE Eq. (48

IIm(m) I<-N2C| 2UT>N2CUT Calculate
_I I_ I _nf_7 1

Calculate A 1,...,AN

by up-recurrence

assuming Im(m)=O

(Eqs. 20, 21)

"^^~~~~~~~~~

Calculate A1,... ,AN
by up-recurrence Cal cu

for general m
(Eqs. 20, 21)

) FALSE

AN(mx) by
mof hr4o

LiCll l4 t1! L[IUU

(Eqs. 23-35)

late AN _,...,A1 by
down-recurrence

(Eq. 22)
,.

Calculate a1 ,... ,aN b, ... ,
assuming Im(m)=O

(Eq. 16)__

N =0ang

RETURN

Calculate a ,... ,aN b ,. . ,b
for general m (Eq. 16)

Calculate series terms

for Qs
Sum for Q

'_ \-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ca (Eq.7)

sca (TOTAL)sc

Calculate series terms for Qext (Eq. 6)
Sum for Qext (TOTAL)

Calculate series terms for g (Eq. 8)

Sum for g (TOTAL)

a

T

I
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Calculate n n+l (abn), n = 1 to N

Initialize 7r (), 7rl(p) (Eq. 39)
Zero variables used to accumulate

sums for S±(p), S±(-p)

(LOOP: n 1 to N

Calculate n+l
n

Calculate (-1 l)n+l 2n+l (an+b) (Eq. 12)n(n+l) (a (Eq.1

( LOOP: j = 1 to (Nan +1 )12

Calculate STn(Eq. 38b)
Increment sums for S(pj.), S-(-pj) (Eqs. 10, 12)|

Advance 7r recurrence (Eq. 37c)

C END j-LOOP0

C END n-LOOP)

Calculate Si, S from S (Eq. 11)

|RETURN
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CRAY FORTRAN COMPILER VERSION 1.04 12/27/a8
COMPILATION DATE AND TIME 0Zf09/79 - 22114131

_ 1. SU6ROUTINE MIEVI
C
C COMPUTES MHIE SCATTERINW AND EXTINCTION EFFICIENCIES, ASYMMETRY
C FACTOR, ANO ANGULAR SCATTERING FUNCTIONS
C
C VERSION 1-- STRUCTURED TO MAXIMALLY VECTORIZE LOOPS OVER THE
C NUMBER OF HIE SERIES TERMS AND OVER SCATTERING ANGLE
C (LARGER MEMORY REQUIREMENTS THAN VERSION VO)
C
C THIS CODE IS DOCUMENTED IN-- *MIE SCATTERING CALCULATIONS--
C IMPROVEMENTS IN TECHNIQUE AND FAST, VECTOR-SPEED COMPUTER COCESt,C BY WARREN J. WISCOMBE, NCAR TECH NOTE (1979)
C
C
C INPUT VARI AB L ES
C
C XX HIE SIZE PARAMETER (2*PI*RADIUS/WAVELENGTH)
C IOR COMPLEX REFRACTIVE INDEX (IMAG PART MUST BE NEGATIVE)
C N2CUT THE MAGNITUDE OF THE IMAGINARY REFRACTIVE INOEX, BELOW
C WHICH IT IS REGARDED AS ZERO (THE COMPUTATION PROCEEDS
C FASTER FOR ZERO IMAGINARY INDEX)
C NUMANG NUMBER OF ANGLES AT WHICH SCATTERING FUNCTIONS
C ARE TO BE EVALUATED. NUMANGuI SIGNALS THAT ONLY QEXT,
_ C QSCA AND GFAC (SEE OUTPUT QUANTITIES BELOW) ARE TO BE
C . - EVALUATED. ALL POSITIVE INTEGRAL VALUES OF NUMANG ARE
C PERMITTED, BUT IF IT IS ODD, 90 DEGREES MUST BE ONE OF
C THE ANGLES (IF NUMANGu1, 90 DEGREES MUST BE ONLY ANGLE)
C XNU(N),N=i TO NUMARN COSINES OF ANGLES AT WHIC4 SCATTERING
C FUNCTIONS ARE TO BE EVALUATED--THE ANGLES MUST BE
C MONOTONE INCREASING AND MUST BE MIRROR
C _.. SYMMETRIC ABOUT PI/2, ..SO THAT IF PI/2-A IS AN ANGLE
C . THEN SO IS PI/2+A, WHERE..A LIES BJTJEEN ZERO AND PI/2
C
C
C 0 U.T P U T V A R I A 0 L E S
C
C QEXT EXTINCTION EFFICIENCY FACTOR, DEFINED AS
C (2/XX*'2)SPSUM( (2N+1)*RE(A(N)B+(N)) )
C . QSCA SCATTERING EFFICIENCY. FACTOR, DEFINED AS
C .(/XX**2)*SUM( (2N+1)*(CA3S(A(N)) ,2+CABS(B(N)) 42) )
C WHERE AM(N AND 8(N) ARE THE USUAL MIE COEFFICIENTS
C LITTLE-A-SUB-N AND LITTLE-B-SUB-N
C CFAC ASYMMETRY FACTOR, DEFINED AS
C (4(/XX**2) SUM( (N-l/N) RE(A(N-1) CONJGCA(N)) B(N. -1)CONJG(B(N)))
C (ZN+1)/(N(N*l)i RE(A(N)*CONJG(B(N))) ) / QSCA
C S1(N),S2(N),Nl1 TO NUMANG AT EACH ANGLE SPECIFIED BY XMU ARRAY,
C THESE ARE THE USUAL MIE ANGULAR SCATTERING FUNCTIONS
C BIG-S-SU3-ONE AND BIG-S-SUB-TWO, DEFINED AS
C S1«SUM( (2N+)/f((N(N+))*(A(N)9PI(N)B(N)rTAU(Ni) )
C S2uSUM( (2N+I)/U4(N(N))*(A(N) #TAU(N) *8(N) PI(N)) )
C AND WHERE PI(N) AND TAUCN) ARE THE USUAL HIE QUANTITIES
C ....... LITTLE-PI-SUB-N AND LITTLE-TAU-SUB-N
C
C -- NOTE--T HE PHASE FUNCTION, OR ANGULAR GAIN, FOR A PARTICULAR
C HIE SIZE PARAMETER IS OBTAINED BY MULTIPLYING
C ,l+I2 a CABS(Si)*2+eCABS(S2)2 -
C BY Z/XX*42. HOWEVER, IT IS It+I2, NOT THIS PHASE FCN,C WHICH MUST BE INTEGRATED OVER SIZES WHEN A SIZE DISTRIBU-
C TION IS INVOLVED. THIS INTEGRAL MUST THEN BE NORMALIZED
C TO GIVE THE CORRECT PHASE FUNCTION. SIMILARLY, IT IS THE
C CROSS-SECTIONS, PROPORTIONAL TO (XX*42/2) TIMES QEXT AND
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-.-. - - QsCAt k, ICS lSHou L UL T ZETEGtRATD OVER SIZES,' NOT QEXT AND
QSCA THEMSELVES.

INTERNAL VARIABLES

PARAMETER. MAX. POSSIBLE NO. OF TERMS IN MIE SERIES.
......... PARAMETER x 2*NT1

.2 ........ PARAMETER. MAX. POSSIBLE NO. OF ANGLES FROM 0 TO
......... 90 DEGREESo

NUMANG+l
NN2/2--NO. OF ANGLES FROM I TO 90 DEGREES

iS TRUE, SKIP CALCULATION OF Si,S2
iG TRUE, ASSUME IMAGINARY REFRACTIVE INDEX IS ZERO AND

TAKE COMPUTATIONALLY FASTER BRANCHES IN CODE
IR MAGNITUDE OF IMAGINARY REFRACTIVE INDEX

REAL PART OF REFRACTIVE INOEX
,81 MIE COEFFICIENTS LITTLE-A-SUB-1,LITTLE-A-SUB-2,

LITTLE-B-SUB-i, WITH NUMERATOR AND DENOMINATOR
EXPANDED IN POWERS OF XX, AND A FACTOR OF XX43S DIVI-
DED OUT (USED IN SMALL-XX LIMIT)

,RAT,TEM TEMPORARY VARIAOJ.ES USED IN SMALL-XX LIMIT
NO. OF TERMS IN MHI SERIES
NT-i
NTi

"i/XX '' E

AIOR*XX)
ARITHMETIC STATEMENT FUNCTION USED IN DETERMINING

HETHER TO USE UP- OR DOWN-RECURRENCE FOR 9IGA
CONTAINS INTERMEDIATE AND FINAL VALUES OF LENTZ
CONTINUED FRACTION FOR BIGA(NT). ALSO USED AS TEMPO-
RARY VARIABLE IN INITIALIZING UP-RECURRENCE FOR BIGA.

,DENOTO, TEMPORARY VARIA3LES USED IN COMPUTING FF
NUMt NTNt TT
MM
KOUNT
MAXIT
EPS1
EPS2
BIGA (N)

CTAN

REZ
REZI NV
EQBIGA

IORI NV
RIORIV
FN(N)
TNONPI (N)
COEFF N)
GCOEF(N) .

NPXDN
PSI(N)
AN(N)

BN(N)

ANPM
B NP
PIN(J) ,TAUN(i

PINN1M IJ)
TMP(J)
SP(J)

+t AND -i ALTERNATELY. USED IN COMPUTING FF, SFStSMS
ITERATION COUNTER FOR FF COMPUTATION
MAXIMUM ALLOWED NO. OF ITERATIONS IN FF COMPUTATION
ILL-COODITIONIN& CRITERION FOR LENTZ CONTINUED FRACN.
CONVERGENCE CRITERION FOR LENTZ CONTINUED FRACTION
-N/Z + J-SUB-(N-1) OF Z/J-SUB-N OF Z, WHERE Z=IOR*XX
AND J-SU3-N IS THE NTH-ORDER SPrERICAL BESSEL FUNCTN.
EXTERNAL FUNCTION FOR COMPLEX TANGENT (USED TO INI-
TIALIZE UP-RECURRENCE FOR BIGA)
REAL(IOR) *XX
I/REZ
REAL ARRAY EQUIVALENCED TO BIGA. USED TO CONTAIN
BIGA W4EN NOIMAGSTRUE, WHEN BIGA IS PURELY REAL.
1/IOR (USED IN AN CALCULATION)
I/REAL(IOR) (USED IN AN CALCN. WHEN NOIMAGaTRUE)
N (FLOATED)
2N+t (FLOATED)
(2N+1)/(N(N+1) . . . .
N(N2) / (N*1)
(Nel)/N
RICATTI-BESSEL FUNCTION PSI-SUB-(N-I) OF XX
HIE COEFFICIENT LITTLE-A-SUB-N, LATER USED TO STORE
(2N1X) /(N(N+)) (AN^B+N)
FIRST USED FOR RICCATI-BESSEL FUNCTION -ZETA-SU3-(N-.)
OF XXt THEN FOR HIE COEFFICIENT LITTLE_-J-SU8-N,
FINALLY FOR (ZN+l)/(N(N 1)) (AN-BN)
(-l) "(N+l) * AN(N), NHERE AN(N) IS IN FINAL FORM
(-l)#(N+t) * BN(N), NHERE BN(N) IS IN FINAL FORM

I) ANGULAR FUNCTIONS LITTLE-PI-SUD-N AND LITTLE-TAU-SUB-
N AT JTH ANGLE
LITTLE-PI-SUB-(N-I) AT JTH ANGLE
TEMPORARY ARRAY USED IN COMPUTING PINTAUN
S+ a S1*S2 FOR JTH ANGLE

NT1
NT12
NANGL

NN2
NN
NOANG
NOIMA

AIMIO
REIOR
A ,A2

IORSQ
NT
NTM1
NTPI
XINV
ZINV
F

FF

AKKK

.CC

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CC
C
C



A15

C SM( J) S- - S-t'Z FO J N'LET'A' NLE .:
C SPS J) S, a Si+S2 FOR (NN2-J} TH AIGLE
C SMS(J) S- * SL-S2 FOR (NN2-J)TH ANGLE
C
CUSE COMIO
C ANGULAR DIMENSIONS

2. PARAMETER (NANGLz255)
3. COMPLEX IOR, Sit, S
4. REAL N2CUT
5. COMMON/INOUTIXXt ORN2CUT, NUAN ,XMU(NANGL) QEXT,QSCA,6FAC,

Si (NANGL) S2 (NAN;L)
CENO

6. PARAMETER (NAM&L2=(NANGL+i)/Z)
7. PARAMETER (NT1s5CO -
8. PARAMETER (NTi2z2*NTl)
9. COMMON/WJWV/FN(NT1) ,TWONPL(T1) ,bOEFF(NTi) ,COEF(NTl

10. REAL NP1ON
11. LOGICAL NOIMAG
12. COMPLEX CTAN !
13. COMPLEX AltA2,6t,IORSQ,RAT i
14. COMPLEX SP,SM,SPS,SMSANPM,8NPHMANBNBI GCAZETAt

· IORINVAKNUMOENFFZINVNTNOTOTT
15. ODIMENSION SP(NANGL2) SM(NANL2) ,SPS(NANGL2) SMS(NANGL2)

PIN(NANGL2),PINML(NANGL2) TAUN(NANGL2) TMP(NANGL2), AN(NTl)
N 8NNT1) BIGA(NTI) EQBIGA(NT2),PSI(NT1)

16. EQUIVALENCE (BlSAEQBIGA)
17T. EQUIVALENCE (Si I) PIN(l) ), (Sl (NANGLZ) PINN i(l) I

· }(S2() ,TAUN(1)),(S2(NANGL2) TP(1))
18. F(REM) a -15.14 * REM* (f.42+L6.35*REM)
19. DATA EPSI/i.E-2/, EPS2/1.E-6!
20. DATA MAXIT/10100/
21. DATA ZPASS/C/

C
22. IF(IPASS.NE.l) GO TO 2
.23. IPASS V 1

C
C CALCULATE NECESSARY NUMERICAL COEFFICIENTS FOR MIE SERIES
C

24. DO I N * 1eNT1
25. FN(N) · N
26. TMONPI(N) NM+(N*L)
27. COEFF(N) · TWONP(N) ; (Ne(N+1))

.28. COEF(N) · (N+i)-1.0/(N+l)
.. 29. 1 CONTINUE

C
30. 2 IF(NUMANG.GT.NANGL .OR. NUKANQ.LT.0) STOP 1100
31. NN2 * NUMANG1 .

32. NN = NN2/2
-'33. AIMIOR · ABS(AINAG(IOR))

34. REIOR a REALCIOR)
35. NOIMAG a AIMIOR.LE.N2CUT

C
36. IF(CABS(IOR) XX.GT.0.l) GO TO 7

C
C SMALL-PARTICLE LIMIT
C

3T. IORSQ * IORe42
38. RAT (O.,0.6666666666666)66666 IORSQ-1.0)
39. At I. RAT(II.-O.l^XXee2+(4.*IORSQ+5.)/14OO.*(XX*ek))

*. /(IORSQ*2.0+(O1.0-O.TIORSQ)»(XXee2)-(8.oIORSQe2-385.ZIORSQ
· S+35. /100 . (XX4) + (XK's3) RAT ( .o0-0. lXX* e) )

40. 31 a (XXe2 /$O.) RAT .O + (2. IORSQ-5. 9)f (XXOZ))
/(1 .0 -( 2.IORSQ-5 .)/30. · ( XX2))

41. A2 a (l.1IeXXeIZ)» RATe(1.O-XXe2/14o.)
* /(2.'IORSQ +3.-(2. 9 IORSQ-7.)/14,*(XX»*2))

42. TEM a CABS(AI)»e2+CABS(81)·Z+((5./3.a)CABS(A2)·I2
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'43. QSGA , 6.¢(Xx0',IT -El-
44. GFAC a REAL(Al#CONJG&(A2+L))/TEH
45. QEXT a QSCA
46. IF(AIMIOR.GT.1.E-12) QEXT u 6$.XX#REAL(A1+81+(5./3.)#A2)

C
47. TEN - 1.5XX"*3
48. A2 = (5./3.)^A2

C *4*,4 VECTORIZA3LE LOOP 4*e»e
49. 00 5 J · 1,NN
50. SI(J) = TEM*(AI+(BleAZ)#XMU(J))
51. 5 S2(J) z TEMC(Bl+AlXMU(CJ)+A2*(2.,XmU(j)ZU 2-1.)}C e*4*e VECTORIZABLE LOOP e 1.))
52. DO 6 J a 1,NN
53. S1(NN2-J) TEM(Al-(Bl+A2)KXNU(j))
54. 6 S2(NN2-J) a TEN ( 8 -IAtl XNU(J+A^2^(2.*XMU(J).2-i.))
55. RETURN

C
C
C CALCULATE NUMBER OF TERMS IN MIE SERIES (A LEAST UPPER BOUND)C USING EMPIRICAL FORMULAS WHICH WERE FITTED FOR SIZE PARAMETERSC UP TO 20,090
C

56. 7 [F(XX.LE.8.c) NT = XX+4.eXX(l./3.)+l.
57. IF(XX.GT.8.0 .AND. XX.LT.4200.) NT a XX+½.Q5#XX*(1./3.)+2.
58. IF(XX.GE.4209.) NTr XX3 4.eXX*e(. /3°j*2.
59. NTP1 a NT+1
60. NTMI1 NT-1

C MAKE SURE ARRAYS ANBNETC. WILL BE LAR 6 E ENOUGH61. IF(NTP1.LE.NTi) GO TD 10
62. WRITE(6,800C) NT, XX
63. }000 FORMAT(///y ESTIMATED LENGTH OF MIE SERIES NTz=I6,

* . FOR SIZE PARAMzF1±2.2/. EXCEEDS ARRAY DIMENSIONS.)
-.. 64. STOP 1001

C
C CALCULATE RICATTI-BESSEL FUNCTIONS BY UPWARO RECURRENCE
C

65. 10 XINV 'l./XX
66. SX a SIN(XX)
67. C'.' COS(XX)
68. BN(1) · CMPLX(SXCX)
69. BN(2) a CHPLX(XINVSX-CXXINV¥CX+SX)
70. 00 15 N a 1,NTM1
71. 15 BN(N+2) * (TWONPl(Ni)XINV)BX(N+1) - BN(N)

C e*e*" VECTORIZABLE LOOP *e4^*4ee
72. 00 16 N a 1,NTPI
73. 16 PSI(N) a REAL(BN(N))

C
C
C COMPUTE BIGA
C .

74. ZINV * XINV/IOR
C DECIDE WHETHER 9B;A-N CAN BE CALCULATED BT UP-RECURRENCE75. IF(AIMIOR .LT. F(REIOR)/XX) CO TO 100

C PREPARE FOR DOWN-RECURRENCE-.- . -
C COMPUTE INITIAL .NIH-OROE BSIGAN USING LECTZ METHOD
C

76. FF a NTP1lZIN2
77. NMM -1
78. KK a 2*NT+3
79. AK a K MM*KK)IZINV
80 . DEN * AK
81. MNUM DEN + 1.0/FF
82. KOUNT a 1

C
83. 20 KOUNT a KOUNT+l
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8 4. lF(KOUNT.GTMAXIT) GO TO 40..
85. IF(CABS(NUM/AK).GT.EPSI .ANO. CA.S(OEN/AK).GT.EPS1). GO TO 30

C ILL-CONDITIONED CASE--STRIDE TWO TERMS INSTEAD OF ONE
86. MM a -Mm
87. KK ' KK+2
88. AK a (MM#KK)'ZINV
89. NTN a AK*NUM * 1.0
90. OTO · AK·DEN * 1.0
91. FF a (NTN/DOTJ) · FF
92. MM a -MNM
93. KK a KK+2
94. AK a ("MM#KK)ZINV
95. NUM · AK + NUM/NTN
96. DEN z AK + OEN/DTO
97. KOUNT a KOUNT·+
98. GO TO 20

C
99. 30 TT a NtM/DEN

100. FF ·TT#FF
C CHECK FOR CONVER.ENCE

101. IF(ABS(REAL(TT)-.C) .. LT.EPSZ .ANDO ABS(AIMAG(TT).) .LT.EPS2) GOTO 50
._102. MM * -M

103. KK z KK+2
104. AK a (<M*KK)'ZINV
105o NUH , AK + 1.0/NUM
106. DEN a AK + 1.0/DEN
107. CO TO 20

C
108. 40 WRITE(6,8001) NTr XX, OR, AKNUMDENTTFF
109. 8001 FORMAT(///· CONTINUED FRACTION FOR A-SU3-NT FAILED TO CONVERGE*/

* NT*I6/ Kz'E20.8/· REFR INDEXc=2E20*8/e AKz*2E20.8/
* * NUMz*2E21.8/* DEN2E23EO.8/v TT2'ZE28.8/» FFZE£20G.8)

110. STOP 1002
C

111. 50 BIGA(NT) z FF
C
IC DOWNWARD RECURRENCE FOR BIGA-N
C

112. 00 70 N * NT,2,-L
113. 70 BIGA(N-1) z (FN(N)*rINV) - 1.o/((FN(N)eZINV)+BIGA(N))
114. GO TO 180

C
C UPWARD RECURRENCE FOR BI&A-N
C

115. 100 IF(NOIMAG) GO TO 14l
C
C GENERAL CASE
C

.116. FF x CTAN(IOR*XX)
117. BIGA(1) : -ZINV * FF/(ZINV*FF-1.0)
.118. 00 120 N - 2,NT
119. 120 BIGA(N) * -(N'ZIMV)1.Q/((NeINV)-BIGA(N-))
120. GO TO 180

C
C NO-ABSORPTION CASE
C

121. 140 REZ s REIOR#XX
122. REZINV 1.0O/REZ
123. TEMN TAN(REZ)
124. EQBIGA(l) a -REZINWV TEM/(REZINVeTEM-i.)I
125. 00 160 N a 2,NT
126. 163 EQBIGA(N) a - (Fo(N' REZINV) + 1.O/((FN(N)REZZINV)-EQBIGA(N-l))

C
C CALCULATE THE MIE SERIES COEFFICIENTS LITTLE-A AND LITTLE-B
C FOR THE NO-ABSORPTION CASE
C
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127. RIORIV z 1.C/REIOR
C **'e, VECTORIZABLE LOOP »»»*

128. 00 170 N a 1,NT
.129. ANLN)s((RIORIVfEQ8I GA(N) +(XIMV*FN(N)))9PSI (N+) - PSI(N))

. ,e, /((RIORIV'EQSIGACN)+(XINV.FN(N)))* BN(N+I) - BN(N))
130. BN(N)z(( REIOR'EQBIGA(N) (XINV*FN(N))) PSI(N+1) - PSIN))

* //( REIDReEQBI6A(N)*(XINV'FN(N))) BN(N+I) - BN(N))
131. 170 CONTINUE
132. GO TO 200

C
C CALCULATE THE HIE SERIES COEFFICIENTS LITTLE-A AND LITTLE-B
C FOR THE GENERAL CASE
C

133. 180 CONTINUE
134. IORINV a 1.0/IOR

C 04*», VECTORIZA3LE LOOP e-e'
135. DO 190 N a 1,NT

_.136. AN(N)( (IORINVBIGA((N) +(XINV#FN(N))) PSI(N+) -PSI(N))
* / ((IORINV'BIGA(N)+(XINV'FN(N))) m BN(N+i)- 3N(N)' '

137. 3N(N)(( IOR*BIGA(N) +(XINVFN(N)))pSI(N +1) -PSI(N))
/(( IOR'SIGA(N)+(XINV#FN(N))) m BN(N+1)- ON(N))

138. 190 CONTINUE

C CALCULATE TERNS OF SERIES FOR SCATTERING EFFICIENCY ANO SUM

C '*** VECTORIZABLE LOOP *e*'-
139. DO 195 N ± lNT
140. 195 EQ6IGA(N) TWONP1i'N) (REALC(A(N)")92+AINHA(AN(N))..2

*+REAL(aN(N) )-2+^AIMAG(BN(N) )ee2)
C

i41. QSCA = 2.*(XINV**2)*TOTAL(NTEEOQfIGA)
C
C
C CALCULATE TERMS OF SERIES FOR EXTINCTION EFFICIENCY AND SUN
C

142. 200 CONTINUE
C e Ve ¥ECT-ORIZABLE LOOP e*,**

143. 00 360 N I 1,NT
..144. 300 EQBIGA(N). .,TWONP1(N) REAL(Ai(NBN(:; )

C
145. QEXT * .i'(XINV"2)0TOTAL(lNT,EQtBIGA)
146. ftF(OIKhrX . QSCA = QEXT

C
C CALCULATE TERMS OF SERIES FOR ASYMMETRY FACTOR AND SUN THEM
C (SET FOLLOWIN, COEFFICIENTS TO ZERO BECAUSE THEY OCCUR IN
C LAST TERN OF SERIES FOR ASYMMETRY FACTOR)

147. AN(NTPI) a (0.0,0.0)
148. 3N(NTPl) a (0.0,0.0)

C eeee VECTORIZABLE LOOP ',-*
149. 0O 400 N a 1,NT
150. 400 EQaIGA(N) . COEFF(N)'REAL(AN(N)'tONJG(8N(N)))

C * GCOEF(MN)REAL(AN(N) CpOCJG(ANN+l)) +i(M0)iCON"G(BN(N,) )
C

151. GFAC * 4.*(XINV2 Z)'TOTAL(NT p EQCIGA)^QSCA
152. IF(NUMANG.EQ.O) RETURN

C
C
C COMPUTE S+,S- OVER ANGULAR MESH
C
C
C PUT HIE COEFFICIENTS IN FORM NEEDED
C *---- VECTORIZA3LE LOOP *---

153. 00 450 N a lSNT
154. SIGA(N) ·AN(N)
155. AN(N) = COEFF(N)C(AN(N)+BN(N))
156. 450 8N(N) z COEFF(NI'(BIGA(N)-8N(N))
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c
C INITIALIZE SUMS (S+,S-) AND ANGULAR FUNCTIONS (LITTLE PI)
C ~*'' VECTORIZABLE LOOP '*~,e

157. DO 500 J z 1,NN
158. SP(J) z (O.G,0.0)
159. SM(J) = ( .C, .O)
160. SPS(J) = (0.0,0.0)
161. SMS(J) a (0.0,0.0)
162. PINNI(J) tC.O
163. 500 PIN(J) a 1.0

C
C AOO UP SUMS WHILE UPWARD RECURSING AN;ULAR FUNCTIONS LITTLE PI
C AND LITTLE TAU

-. 164. N MM 1
165. 00 700 N * iNT
166. NP1ON · (N+1)/FLOAT(N)
167. ANPM , MMAN(N)
168. BNPNM MM·BN(N)
169. PN M - MM

C ,*e,, VECTORIZABLE LOOP eeee
.1.70. 00 600 J i, NN
J.71. TMP(J) · (XMU(J)lPINM(J)) PINMI(J)

_..-17.Z TAUN(J) · FN(N)*TMP(J) - PINNI(J)
173. SP(J) · SP(J) * AN(N) (PIN(J)+TAUN(J))
17. SMS(J) · SMS(J) * 8NPMe(PIN(J)+TAUN(J))
175. SM(J) · SM(J) + BN(N)* (PIN(J)-TAUN(J))
176. SPS(J) · SPS(J) + ANPM*(PINU.()-TA.QNJ))
177. PINMI(J) x PIN(J)
178. PIN(J) a (XMU(J)*PIN(J)) + .NPIDNTNP(J)
179. 600 CONTINUE
.180. 700 CONTINUE

C
C
IC RECOVER Si AND S2 FROM S+p -
C
C e**», VECTORIZABLE LOOP *ee'

181. 00 800 J a 1,NN
182. Sl(J) z G.5*(SP(J)+SM(J))
183. 800 S2(J) * 0.5'(SP(J)-SM(J))

C
C **e * VECTORIZABLE LOOP ,eeee

...184. 00 900 J · I,NN
185. Si(NN2-J) · 5.5*(SPSCJ)+S S(J) ' )

186. 910 SZ(NNZ-J) * 0.5*(SPS(J)-SMS(J))
C

.187. RETURN
..-188. END

NIEV£ VECTOR 6LOCK BEGINS AT SEQ NO. 47, Ps 1102360
MIEVI VECTOR BLOCK BEGINS AT SEQ. NO. 52, Ps 110277C
NIEV1 VECTOR BLOCK BEGINS AT SEQ. NO. 72, Ps 110427A
MIEV1 VECTOR BLOCK BEGINS AT SEQ. NO. 127, Ps 1110478
MIEVI VECTOR BLOCK BEGINS AT SEQ. NO. 133, Ps 1111178
HIEVI VECTOR BLOCK BEGINS AT SEQ. NO. 139, Ps 112030
MIEVI VECTOR BLOCK BEGINS AT SEQ. NO. 142, Ps 111232A
HIEV1 VECTOR BLOCK BEGINS AT SEQ. NO. 147, Ps 1112568
IMEVI VECTOR 6LOCK BEGINS AT SEQ. NO. 153, Ps 1113250

HIEVI VECTOR BLOCK BEGINS AT SEQ. NO. 157, Ps 111351C
MIEVI VECTOR BLOCK BEGINS AT SEQ. NO. 165, P 1114070
MIEV1 VECTOR BLOCK BEGINS AT SEQ. NO. 181, Ps 1114750
MIEVI VECTOR BLOCK BEGINS AT SEQ. NO. 184, Ps 1115200



A20

CRAY FORTRAN COMPILER VERSION 1.C4 12f27/78
COMPILATION DATE AND TIME 02fC9/79 - 2214132
.. 1. FUNCTION TOTAL(LENGTHt.ARRAY)

C
C PARTIALLY-VECTORIZED SUN ROUTINE
C
C IN P U T
C ARRAY VECTOR OF TERMS TO BE SUMMED
C LENGTH NUMUER OF TERMS IN *ARRAY* TO BE SUNMED
C O U T P U T
C TOTAL - SUM(ARRAY(I)), I 1i TO LENGTH
C
C NOTE--RELIES ON THE ZERO TRIP COUNT F^ATURE, WHEREBY IF A
C DO-LOOP IS ALREADY SATISFIED AS INITIO, IT IS SKIPPED
C RATHER THAN BEING EXECUTED ONCE

2.. DIMENSION ARRAY(I), HELPER(614)
C

3. IF(LENGTH.GT.64) 60 TO 5
C

4. TOTAL a ARRAY(i)
5. DO i N a 2,LENGTH
6. 1 TOTAL a TOTAL * ARRAY(N)
7. RETURN

C
8. 5 CONTINUE

C .*eee VECTORIZABLE LOOP ***e
9. 00 10 N a 1,64

10. 10 HELPER(N) a ARRAY(N)
C

11. KOUNT a (LENGTH-64)/64
12. JS = 63
13. 00 30 J a 1,KOUNT

C 'ee VECTORIZABLE LOOP ee.
14. 00 20 N' 1,64
15. 20 HELPER(N) a HELPER(N) * ARRAV(N+JS+1)
16. 30 JS z JS·64

C
17. LAST * (LENGTH-64) -64KODUNT

C *e** VECTORIZABLE LOOP *ee'
18. DO 40 N a 1,LAST
19. 40 HELPER(N) ' HELPER(N) + ARRAY(LEIGTH+1-4)

C
20. TOTAL ' HELPER(1)
21. DO 50 N * 2,64
22. 50 TOTAL a TOTAL * HELPER(N)

C
23. RETURN
24. END

DTAL VECTOR BLOCK BEGINS AT SEQ. NO. 8t PFa 43C
OTAL VECTOR BLOCK BEGINS AT SEQ. NO. 13, P" 166A
OTAL VECTOR BLOCK BEGINS AT SEQ. NO. 17t Ps 2070
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APPENDIX III: SAMPLE CODE RESULTS

1. PROGRAM MAIN
C RUN TEST CASES
CUSE COMIO
C ANGULAR DIMENSIONS

2. PARAMETER (NANGLz255)
3. COMPLEX IOR, Sit S2
4. REAL N2CUT
5. COMMON/INOUT/XX,IORN2CUT,NUMANG,XMU(NANGL),QEXTQSCA,6FAC,

S1 (NANGL) S2(NAN;L)
CENO

6. REAL It,I2,INTEN
C

7T N2CUT a L.E-T
8. PI a 2.*ASIN(1.0)
9. NUMANG a 37

10. DO I I ItNUMANG
11. I XMU(I) * COS((I-1)*PI/36.)

C
12. 00 100 NIOR a 1,2
13 IF(NIOR.EQ.t) IOR a (1.5s0.o)
14. IFCNIOR.EQ.2) IOR · (1.5t-.1l)
15. 0D 100 NXX = 14
16 IF(NXX.EQ.i) XX a 0 .
17 [IF(NXX.EQ.2) XX · 100.
18. ' IF(NXX.EQ.3) XX c 1000.
19. IF(NXX.EQ.4) XX * 5000.
20. T1 * SECONO(DUM)
21. CALL MIEV1 ,
2 2 T2 · SECONO(OUM)
23. OT * T2-T1I
24. QA6S a QEXT-QSCA
25. MRITE(6,100(;) XX, ro
26. 0D 10 I a ItNUMANG
27 ANGLE a 180./PIrACOS( XU( I)
28. I1 a (REAL(S1(I)))me2+(AIMAG(S

i (I)))»»2
29. 12 z (REAL(S2(I)))e*2+(AINAG(S2(I)) )e2

30. INTEN 8l.5(1+I2)
31. OEGPOL a (I2-I1)/(I2+I1)
32. 10 WRITE(6,1001) AN;LESt ( I) S2(1I)INTENPOEGPOL
33. WRITE(6t1002) QEXT,;SCAQABS,&FACOT
34. 110 CONTINUE

35. CALL EXIT
36. 1000 FORMAT(MIH 5X,HMIE SIZE PARkMETER z*F8.2,15X,REFRACTIVE INOEX s

* F?7.3, E1Z.3// ANLEl, 11i, S-SUB-I,2tX, tS-SUa-2, 15X,

INTENSITY~,2X,0DE& OF POLZN*)
37. 1001 FORMAT(F72,t5El4.6,Ft0.4)
38. 1002 FORNAT( /29XtEXTINCTION SCATTERING ABSORPTION*/

* 7X,EFFICIENCY FACTORSS3FI4.6/ TX,WASYMETRr FACTOR =eF9.6/

· ?X,eTIME FOR THIS CASE IN SECONDS '*E12.3)

39. END



REFRACTIVE INDEX a 1.500 O.OOOE0OO

ANGLE
0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
.40 00
o45.00
50.00
55.00
60 .00
65.00
70.00
r5.00
80.00
85.00
90.00
95.00

100 00
105.00
110.00
115.00
120.00
.125. f0
130.00.
.13 5.00
140 .0.00
145.00
150.00
155.00
160.01
165.80
iro.o0
175. 00
180.00

S-SUB-
O. 720500E+0 0.416662Ei01
0.6600s87E+02 0.515473E+01
0.502427E.02 0.*74128E.31
*.305549E,+02 . 73945?7E01

I.131942E+02 0.431603E+01
*.19864.1E+01 -0.185793E+01

-0.27?991E+01 -0.830916E+01
-0.336987E.01 -0.113351E+02
-0.253896E+01 -0.886339E+01
-0.189492EO1 -0.211735E+09
-0.158387E,01 0.492734E+01
-O *109008 E01 0.810636E+01
- *2060 48E+00 0.588826E01t

0.654093E0O 0 .322004E+00
0* 99374E+00 -0 .45637?7E+3
O.401284EO00 -0.572290E+01

-0.319419E+00 -0.309491E+01
-0 *.526668E+0 0 .786416E+00

0.785066E-01 0.306855E*01
.*106543E+01 .27?2211E+01

. 1.159302E901 0.92304E+O00
0*107665E+01 - .416668E+00

-0.333227E+00 -0.413821E+OO
-0 *182747E01 *.291170E+00
-0 249'62E+O 0. 543603EO00
- .19466CE0.I - .505382E-I2
-9.536968E00 -0.631817E+iO
* 8 9269C E + 0 -P. 528 956E +p
O* .lS83i4E+Q 9.. 772064E-i1

. 131408E9.o1 .- 9..482396E-t"
*.4883 ??E00 - . 16814E X1

-0.1664T6E+00 -0.477123E+B1
-0.539898E-01 - .665788E+01

O.954SOE50E0 - .55833TE+01
0.246609E+01 -O.160106E01
0.379589E,01 0.290427E 01
0.432164EOt 0..486827E+01

EXTINCtt ON
EFFICIENCY FACTORS 2.881999
ASYMMETRY FACTOR * 0.742913

S-SUB-2
.720500E+02

0 .644549E+02
0*455Z24E+02
0 .246826E+02
0.985638E601
0.360781E+01
0.247116E+01
O.11432E+01

-0.262818E.01
-0 .6863 88E+01
-O .765188E01
-0*3450 83E.01

* .309342E+01
O*711t54E+01
0.561094E+01

-0 .42610UE-01
-0.520331E+01
-0 .585633E601
-0 .187329E°01

*307975E+01
*.482125E+01

O.223259EO01
-0. 194258E.1
-0 .3.49331E01
-0* .136829EmOi

.*27565T7E01

.468748E+O1
0,231.52E+01

- .2770 81E+01
-0. 586876E 1
-. 3816i4E+01

1 246683E+01
O.841562E+01

.948679E+01
4.495289E+01

-0 .140003E+01
-0 .432164E+01

0 .416662E+01
0.494811E+01
O .633977E+0I

0*622358E+01
0.303822E+01

-0.272489E+01
-0 .84105EI 1
-0 .107502E+02
-0.812307rE+O
-* 1895rOE+01

.428609E+01
0.689490E+01
*.490206E+01

0.351235E+00
-9 .330362 E+0
-0 .37??49E+01
-O* 14413E+0

*.134234E+01
*.232789E+01
.110941E Ol.

-o .83492E04o
-* .8439u0EOt
-0 . 124615tE4t0
- O .55 !773E-S Q
0.583S72E 00
*.178699E 00

-0 338446E+00
9.Lf*2656E+00

*. 182343E+01
O.349851E+01
0.369067E0 ti
O.185331E+01

-l .*13156E+01
-0* .370982E+01

0* 491906E*01
-0 .500206E+O±
-0 48682?7E01

'SCAtffERIr . ABSORPTION
2881999... 0.000000

INTENSITY
0.520856E+04
0.428132E.0 4
. 234775E+04

0.818121E+03
0.149547E+0 3
0. 139195E0 2
0.768071E+02
0.128393E+03
0.789487E.02
0.293697E+02
0.518546E,02
0.63190 8E+02

. 341567EO02
0.256714E+02
0. 320167E+0 2
Q.235919E+02
.194168E+02

O. e84988Ee02
0. 917521E+01
0.9630Q5E+01
0. *36986E+02
d.'85859Espl
d.o20440E+p1
.. 853248E£01
0 .439826Ei01
*. 570995E 01
O. 113872E02
0*304142E+01
. 675713E+01

0 .242055E 02
.*159589E.02

0.161562E+02
0.58216 7E+02
0.679231E,02
0. 286866E. 02
0.249122E+02
0.423766E+02

OEG OF POLZN
-0.0000
-0.0239
-0.0963
-0.2080
-0 .2887

0.4685
0.0005

-0.0892
-0.0767
0 .7251
0.4834

-0.0592
-0 .0163
0.9793
0.3242

-0.3951
0 .5014
0.9514

-0 .0269
0. 1127
0.7525
0 .7257
0.8993
0.5987

-0.4844
0.3364
0.9396
0.6460
0.6282
0.9286
0.7664

-0 .4108
0.2385
0.5276
0.6986
0 .0 830
.00000

N,

HI IE AAETR= I



REFRACTIVE INDEX a 1.5C0 . 0OOOE+00

ANGLE S-SUB-i S-SUB-2-_ _,

0.00 *.J23$57E,04 -0.366988E+03 O.523597E+04
5.00 0.307726E+03 -0.113495E+03 0.290021E+Q.T

.. 13.00 -0.239264 E03 0 .294757E+0 -0 .2379-Z+03
....15.00 0..154487E+03 -0 .114137E+02 0.166159E+03
20.00 -0.105469E+03 0.979283E+a2 -0.117159E+03
25.00 -0.550427E+02 -0.132865E+03 -0.457175E+02
30.00 0.969291E+02 -0.860123E+02 0.831928E+02
35.00 0.622037E402 -0 .208937E.02 0. 7241C2E+02
40.00 0.250573E*02 -0 851053E+02 0.448460E+02
45.00 0.139075E+02 -0.768894E+02 -0 .385530E+01

.. 50.00 -0.406514E+02 G.356781E+31 -0.601957E+02
55.00 -0*437978E+02 0.516446E+02 -0.3Q5T44E+02
60.00 l.291750E+02 -0.613059E+01 0.493840E+02
65.00 6.137713E+02 -0.476328E402 -0*96?750E*00
70.00 -0.453812E+QJ .... 152746E+02 -0.35574lE,02
75.00 S.342630E+02 O.750377E+Oi, 0.346plT7E02
80.04 -O.654632E401 *.465091E+3t - .166931E*02
85.00 -1.106215E+02 0.143408E+32 -0.515120E*01

..90.00 0.224945E02 ... .0.396468E+00 0.162341E+02
..95.00 -. 154492E01 .68082E+0o .0 - 17.i02E.02
10000. 0.699708tl01 0.125301E+0 0.658326E+01
105.00 0.164632E+02 -.. 525655E3i.. -0.113L27E02
110.00 O.10041iE+Ci-Q9G3412E+i -0 9G34251551E01
115.00 -0.710367E01i -0.499755E401 0.717697E+01
120.00 -0.392?86E.Cl O.772458E+0i1 0.1646C3E+01
125.00 0.885824E+01 -0 .192910E+41. - .651340E+01
130.00 -. ?620315E+01 -S.433699E+I1 S.528110Ei01
135.00 9.520687E+01 *.105927E+02 -0.321579E+01

b30.QO -0.632058E+01 -0 .111092E+02 0.3436 5E OO
1A5.00 0.127481E+02 .. 769973E+01 -0.741848Eo01
150.00 -0.894i33EOi - .'-Q.2959TE+/1' 0.1427LSE.02
155.00 -0.679T76E01 -0.474332EOU O.7271449E+01
160.00 -0.*419956E+02 -0.694978E+02 0.20415?E+02
165.00 -0.210431E.02 0.209498E+02 -0.546409E+02

l7 .00 0.15?429E+01 0.195988E+02 1.686334E+02
.175.00 *17?3343E+02 0 .259438E+01 0.168315E*02
180.00 0.407669E+02 0.517546E+02 -0.407669E*02

INTENSITY
-0 .367988EeQE3 9 .275508E+08
-0. *15?1E+03 .106440 E.06
0,*527?71E02 0.586911Eo05

-O.825525E+01 p.2583?7E+05
*.773?70E+02 Q.202131E+05

-0.t2561tE+03 0.192755E+05
-0.302830E.02 0.159327E+05
-0*348754E+02 0.538269E+04
-0.863264E402 0.866?10E,04
-0.6844?6E0 2 0.540267E+04
-0 .285779E+02 0.305275E+04
0.685491E+02 0.510959E04
O*358946E01 O.1 t67021E04

-0.399266E*+2 0.202680E 84
*,200557E*02 0.960828E0 3
*.375986E+S01 O.22361E+04

-0 .211137E02 0*394465E+03
0.127718E«+2 0.254063E.03

-0.155243E+02 0.505356E403
-0.860385E00 0.50?283E&03
-0.373196E+0L O 131614E.03
-0.504378E+01 o .q.2?694E+03
0.133751E+02 09.33922E+03

-0.374958E401 0.?t5029E+02
0.154967E+0 0.4il1041E+02

-0 .074028EEll 0.100503E+03
0*150923E12i 0.167tI81E03
0.*177?39E.S2 0.232785E403
0*176605E.02 0.243533E403

-0*1392T0ES02 O.235398E+03
0.892487E01 0.186086E+03
0*112091E+02 0.121783E+04

-0.74353?E+01 0.353283E.04
0.295673E+02 .Q239888E+04

-. te188336Eo02 .,. 72592E+04
-0.256006E+02 .f.622951E403
-0.517546E+02 D.^340 04eE04

OEG OF POLZN
-0 .0000
-0 .0107

0 .0098
.07 12

-O .0Z48
-0 .0730
-0.0540

0 .2001
0.0919

-0 .1301
0 *4545
0.1026
0.4679

-* .2130
0.735?

-0.0054
O .8365

-0.2535
-0.0 016
-0 .4214
-0.5649
-0.3412
0.3830

-0.0700
-0.8726

0 .1822
0. 5235
0.4015
0.3292
0.0578
0.5225

-0 .8534
-0 .8664

0 .6181
0.8582
0.5069

-0 .0000

EXT I1CTION
EFFICIENCY FAC;ORS 2.094308
ASYMMETRY FACTOR s i.81'0246
TIME FOR THIS CASE IN SECONDS a

SCATTERING
2.094388

.1865E-02

ABSORPTION
m.010000s

HIE SIZ ARMTR 00

-- R.



REFRACTIVE INOEX * 1.500 0.000E 00

* .53486E+06
-O.160461E+04

0. *25976E+03
-0 .115541 E404
-0 .650 822 E*02
-0 .936293E+03

0.762978E+03
-0 .286335E+03
-0. 309237E+01
-0 .7678 37 E 03

*. 471775E+02
-O. 517710E+03

0.16?631E+03
-0.1220 84E403
-0. 232624E.03
-O .369643E+02
-0 730761E*02

O. 132453E+03
O.425817E+01

-1. 1958 76EG03
-. l1197 44E 03
-O. 3234 89E+02
- . S?1572 5E+03

6,539420E+02
- .*5045T1E02
0,979823E+02

-O.5455 37E00
* .571101E+02
.*472214E02

-O .874613E+02
- .410781E+02
- .563T705E02
0.435050E+03

-O .644855E+02
O.483158E+03
0.3140 86E+03
0.565233E+03

UB-1
-0 .83618ZE034
-0 .157255E+a

O .b56371E+03
-0 .590768E+33
- .111T071E 04

O.k 4525 70E +03
-0 .6195?5E+03

0.*99976E+03
-0 .938773E+0 3
-0 .479382E03
-0* 360256E+03
-*. 116119E+i3
-0 .505082E+03
-0 .96715E*13

0.338938E813
-0 .111683E+03

0.274k177E03
-0. 158605E+03
-0 .156554E#03

.208590E+02
-0 .735988E*12

0 *154T797 E03
-0 .899481E+02

0 10 4371E+03
0 .460275E+ 2
0.462180E+02
0110 604E,+ 3

-0 .10457E+03
-0* 51077E+02

O *120082E+33
0 .170411Ei03
0.*71334E+01
0 182903E+J3
0*505608E+33

-0 .696745E+03
0.363000E+)3
0 .150209E+04

S-SUB-2
*.503486E*b6 -0.1

-0.1543b9E.04 -0 .
. 843623E+03 0 .

-0 .1352C9E+,.* -0 .'
-0.15413LE+G3 -0.:
-0.907261E+03 0.

0.71026LE+ 3 -0.
-0 13651EE+03 0.

0.178?8eE+03 -0.
-0 .695461E+03 -0 .

0.105831E+G3 -0*.
-0*599T73E+03 0 o
-0* .263 °9' 5)E+Q02 -0 .!
-0.205678E+03 -g*O
-0 *269648E*03 0.

.1884169E0 3 -0.1
O.135932E+03 0.2

-0.483195E+02 I .
-0.15?766E+03 -0 .l

0.14T814E+02 -0.e
0*360609E+02 0 1

*.859902E+00 -0 .
0.786996E+02 -0.2
0*.126442E02 -0.6
0.957405E+02 -0 .2

-0.556428E+02 -0 .3
-0* 214498E01 -0. 8
-0.512866E+02 0. 7
-0.798699E.02 0.5

0.112581E+02 -0 .1
-0.520950E+02 -0.9

0.862957E+02 0.2
0.926021E+02 -0 .4
0.518586EG03 0 8
0*193765E+03 0 1

-0.1907E 9E+03 0 4.
-0*565233E+03 -0.1

8351 82E* 04
I49165E+ 0 4
2389T77E03
597893E+03
l20901E+04
603965E+03
!79209E+03
974024E+03
902471E+03

?78920E+J 3
624752E+03
$49132E+02
S31009E+0O
1i3478 E03

281929E*03
L87421E+03
?42898E+03
L27806E+03
L74914E0 2
623308E+02
L41665E#02
r39534E+02
116997E+02
$54336E+02
!15432E+02
tT7100E+02
t24758E+02
r16836E02
19025E#02
07353E+03
'43775E+02
!26274E*02
31617E+03
102089E+02
,71170E+03
i26675E+03
L50209E+04

INTENSITY
0.2535668E12
0.482785E+07
0. 8,3b54E+O b
0.163897 E+07
O. 1 36169E*0 7
0.113470E+07

.10 I 0 388 2 E +07
0. 929666E+0 6
0 .863859E+06
0 .766220E06
0.266763E+06
0.3Z4223E+0 6
0.282935E+06
0.237449E+06
0.160593E+06
0.525112E+0 5
0. ?89951E+0 5
0.306843E+05
0.248427E.05
0.214530E+05
0.106283E'05

*.152392E+0 5
O. 197453E+05
0*912219E+04
o.714740E+04
8.791914E+04
0*952024E+04,
o.109979E+05
0.666722E+04
0.168603E+05
0. 211737E)05
0*559288E+04
0*20 8814E+0 6
O.267605E+06
0. 392870E+06
0.224420E+06
0.257577E+07

DEG OF POLZN
-0.0000
-0.0455
-0.1300
-0 .0275

0 .L909
0 .0469
0 .C701
0.0406

-0.0202
-0 .0694
0.5051
0,1317r

-0.0010
-0 .1018
-0.0523

0 .3454
-0.0192
-0.3916
0.0 127

-0.8087
-0.8588
-0 6411
-0.6625
-0.5131
0.3474

00.4821
-0 .2850
-0.2910

0.3604
-0.3089
-0.4512

0.4230
-0.0666

0.0290
-0. 8299
-0.0267
-0.0000

EXTIqCTION
EFFICIENCY FACTORS 2.3L3945
ASYMMETRY FACTOR O0.827882
TIME FOR THIS CASE IN SECONDS a

ANGLE
0.00
5 .00

10 .C
15.50
20.CC0
25.00

35.30
iJ.G0O
45.00
50.00

60.00
65.00
70.00
75.00
80.00
85. 0
90.00
95.00

100.00
105.00
110.00
115.00
120 00
125.00
130.00
135.00
140.00
145.00
150.00
155.00
160 .00
165.00
170.00
175.00
a180.00

rQZ>

SCATTERING
2.013945

1.153E-01

ABSORPTION
0.000000

-..HI SIZE PARA14ETER z L0O0oOD

.

C-C1



REFRACTIVE INDEX a 1.500 0 0.0 OOE

S-SUB-1
0.125541E+08

-0 . 69634E +04
0 .43338-E+04
0.2440 22E+04

-O .435354E+04
0.3925 53E+04
0.836964E+03

-0 .19665E+04
.487725E+04

0. 399477E+04
0.150721E+04

-0 .169726E+04
-0. 150513E+04
-0 .664496E+03

0 .309361E+03
- .121856E+04

.109954E+404
0 .116 E 0 4
0.762792E+03
0 .389870 E+03
0 .597623E+03

-0.49898E+*03
-0.309067E+02

0 .868559E+03
0.5260 04E+03

-0.4320 66E+03
0.350?57E+03
0.25861CE+03

-0 553203E+02
-0 .445549E+03

0. 640398E03
-0 .6 3005E+03
-0.238426E+04
-O* .19154TE +04

0.2978t1dE03
-0 .573 95E +03
-0 .t45625E+05

-0.672294E+05
0 .427656E,)44

-0.122501E+0L4
0 .487061E+04
0 .256336E+i9

-0 .234029 E +0 4
0 .329160E+04
0 .555056E+04
0 .212349E+03

-0 .166766E4+34
-0 .833769E+03

0 .844180E+03
-0 .217288E+04

O.*766870Ea2
- .70 167E+04

0 .928778E+02
-0 .118332E404
-0 .210688E+03

O .466846E03
0.645984E+03

-O . 265265E+0 3
0O399672E+03

-0 .100399E+03
0.481G20E+02
0.898112E+02
0 .621078E+02
0.50 4302E+03
0.467868E+03
O .460415E+03

-0 .646823E 03
0.234848E 03

-o .25697E+03
.42 5 32 4E 0 4

-0 .842329E*03
0 .177086E+04

.535172E+03
-0 .507155E+04

S-SU9-2
0 .125541E*+8

-0 .464324E+04
0 .503467E+04
0 . 334939E+0 4

-0 .485714E+04
0 .397800E+04
0. 1 46476E+04

-O .163820E+04
.478911E+04
.400900E+04

0 .263199E+04
-0 .147159E04
-0. 804638E+03
-0 .202667E+04

0 .131150E+04
-O .486298E03
O.133103E+04
0. 730589E+03
0. 384561E+03

-0.253019E+03
-O.232019E+03
0.262569E 03
0.501029E+03

-0.232051E+03
-0. 422 .3E+03

O .453352E+03
-O. 2030T7bE+03
-0.246671E+03

O .205843E+03
0.301453E+03

-0 .279947E+03
O .431963E+03

- .683389E+03
0.2241.I1E+03

-O .227679E04
-O. 15982aE 04

0 .145625E+05

-0 .672294E+05
.412631E+04

0 .596146E+03
0 .518764E+04
o .843?2E+04

-0 .325349E+04e
O.i18116E+04
0 .523246E+04

-0 .277019E+03
- 0.917758E03
-O.t 89052E+O4

0.244346E+04
-0 .255927E+04

0.829233E+03
- O.122475E+04

0. 20033E+04
i .323004E+02
0.314751E+03

- .433204E+03
- .141539E03

0 .o34.359E+0 2
-0.142848E+03
- 0. 54863E 03
- .153804E0 3
-0.210007E+0:
-o .710075E+02
-0 .357369E+03
-0 .401813E+03
-0 .336589 E 03
0.1372Z5E+03

-0 .308924E+02
.21863T7E03

-0 .3718?E+04
-O .173647E+04
0.808356E+03

-0.966428E 03
0 .507155E+04

INTENSITY
0. 157609E+15
0. 394653E+0 8
0.229931E+08
0.339037E+08
0 .262577E+08
0 .236482E+0 8
0 .155814 E+08
0.323654E+068
0 .234225E+08
0. 178268E+08
0 .673414E+07
0.586469E+07
0.709207E+07
0. 262123E+07
0.310573E+07
0. 158540E+07
0.219096E+07
0. 10161 8E+07
0. 567675E+06
0 .323205E+06
0.241279E+Of
0. 249034E+06
0 .143024E+06
0 . 417106E+06
0.253470E+06
0 .199198E+0 6
0.273150E*06
0 .254040E0 6
0.185353E+0 6
0 .363299E+0 6
0.272294E+0 6
0 .256060E+06
0 130619E+0 8
0.372204E+07
0.453092E+0
0. 205242E+0 7
0 .237786E+0 9

DEG OF POLZN
0. 0000

-0 .0223
.1 i179

0.1247
0.0279
0.1168
0.2597

- .0712

-0.0512
0.5594
0.3873
0.0148
0.8293
0.0368
0 0580

-0.1909
-0.3772
-0 .4089
-0.7399
-0 .719
-0 .6412

0.9228
-0.8142
-0 .1234

0.0435
-0 .3815
-0 .1249
-0 1602
-0 .6980
-0.7087
-0 .0846
-0.8202
-0.1764

0.2883
0 .6997

-0.0000

EXTINCTION SCATTERING
EFFICIENCY FACTORS 2.008650 2.008650
ASYMMETRY FACTOR a 0.829592
TIME FOR THIS CASE IN SECONDS 3*.741E-01

ABSORPTION
0.000000

ANGLE
0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
4 0.00
4 5.00
50.00
55.00
60.00
65.00
70.00
75.10
80.00
85.00
90.00
95.00

t0 .00
105.00
110.00
115.00
120.00
125.00
130.00
135.00
140.00
145.00
150.00
155.00
160.00
165.00
170.00
175.0
180.00

n3

MIE SZE PRAMEER =500000



REFRACTIVE INOEX 1.500 -3.10OEO00

ANGLE S-SUB-1
0.00 0.614948E+02 -0.
5.00 0.548052E+02 -0.

10.00 0.3r7??90E02 0.
15.00 *O.16021E+02 o.
20.00 0.181377E+01 Oo.
25.00 -9.571781E+l 0 *;
30.00 -0 .579008E+.0 -0 .
35.00 -0.220285E+01 -0.
40.00 * 115404E+01 -0 .
45.00 *.236137E+01 -0O:
50.00 0.166733E+01 0 1
55.00 0*320851EOO0 0,;
60.00 -0 693755E+00 0.'
65.00 -0 112325E+01 0.
0.00 -0 .113609E+01 -O *

75.00 -0.859872E+0O -0 .
80.00 -0.273185E+00 -0.2
85.00 0 .568725E+00 -0 .
90.00 0.135105E+01 a.,
95.00 0.162959E+01 0.1
00.00 0.117126E+01 0 .
05.00 0.172604E+00 0.9
10.00 -0 .57020E+O0 0.8
15.00 -0 144661E+01 0.6
20.00 -0.145257E+01 0.3
?5.00 -0 .107357E+01 -0.2
30.00 -0.630302E+00 -0 8
35.00 -0.324057E+00 -0.1
»0.00 -0 .154838eE00 -6.
.5.00 -0.903410E-02 -0 9
;0.00 0.205857E+00 -0.
5.00 0.497121E00 -O.9

S0.00 0.812356F00 -0.1
i5.00 0.109483E+01 -0.9

o0.00 0.131138E+01 -041
5.00 O.144706E+01 0.6
0.00 0.149343E+01 o0a

1I
1I
12
14

1!

li
11

17
18

1 <
15
1 5

16
1C6
I17
I?
la

3ir799Ee+0
194587E 01
936674E+00
354839E+01
4 100686E+l
211751+01E
121935E+01
382223E+01
'07492E+01
190307Eo l
21208E +01

328101E+01
314952E+1I
1177046E *01
Ll7949E+O
247330 E+
219728E+aL
904841E60E
?17250E*00
L115r?7E01
L18164E+01
868C18E+00
2Z1659E+00
58103E+00
S16204E+00
!46242E+.00
24923E+00
14622E+ 01
1289?E+61
056978E+00
89334E+.00
99144E +00
10065E+01
40082E+00
69165E +00
29393E-01
96366E+00

S-SUB -2
0.614948E+02 -0.3
0.546864E+02 -0 2
0.374475E+02 -0 2
0.174032E+02 -0 .
0.215939E+01 0.2

-0 .465013E+01 0 1
-0 .A42757E.01 0 .1
-0 137449E+01 -0 .

0.740364E+00 -0 .1
0.722782E+00 -0o1

-0.309906E+00 -0.2
-0 .733757E+00 .ij
-0.281778E-01 0.1

0.100600E+01 0.9
.125557E+01 -0 .2

0.406622E+00 -0.9
-0 .830355E 00 -0.6
-0 .144283E+01 0.2
-0.102255E+01 0,
-0.424428E-01 0.5

0.658108E00 -0 .3
0.638281E+00 -0 1
0.178L23Ee00 -0 1

-0 .732856E-01 -0 .6
0.255067E+00 0.2
0.914165E+00 *,8
0.128067E+01 0. 8
0.937182E+00 0.61
1.566968E-01 0 .5

-0 .740810E+00 0 .6
0 .919354E+00 0 .9

-0 .476633E+00 I 11
0 709831E-01 0 .11
0.144218E+00 0 6!

-0 .399742E+00 0. L
-0 .11489LE+01 -0 .L
-0.149 .3E+01 -0 .2

317799E+01
Z89914E+01
ZO73i4E+01
856896E+00
;80384E4+00
r09651E+00
132155E+03
103514E+01
L84894E+01
.56099E +01
!69918E+00
11136E+01
L59291E+01
121251E+00
!41202E+00
113799E+00
i29697E+00
!20249 E+00
91253E+00
37189E+00
511746E+00
15970E+01
.27 272E+01
46108E+00
35420E+ 00
10620E +0O
77085 E+00
62859E+00
42568E+ 00
95546E+00
94698E+00
L6778E+01
0-O108E+01
53092E+00
57150 E+00
67099E+00
96366 EO C

INTENS ITY
0 .379171E+0 4
0.300320E 04
0.14l1624E+ 04
0.31301,4E+03
0. 124235E+0 2
0 .296988E+02
0.273164E+0 2
0. 112113E+02
0.109517E+02
9.607843E+01
0*220902E+01
0.632075E+01
O .646946E0 1
0.225394E+01
0.215826E. 01
0*392848E+01
0. 299433E+01
O.163623E+01
0. 183556E+01
0. 209544E6 1
0.166228E+01
0.137914E+01
0.153058E+01
0.14743lE+01
0.116521E+01
0 .135300E+01
0*174359E+0 1
0.136826E+01
0.798073E.00
0 .974236E+ 00
O.133396E+01
0 .141816E+0 1
0.148012E.0
0.126487E+01
0.106733E+01
0.172292E+01
0.231818E+01

DEG OF POLZN
0.00000
-0.0014
-0.0068
-0.0301
-0 .6183
-0.2518
-0.2817
-0.7359
-0.6378
-0.5132
-0. 9235
-0.7194
-0.6077
-0.1744
-0.2426
-0.7454
-0.6373
0.3019

-0.0893
-0.8614
-0.6653
0.2706
0.0790

-0 .7132
-0.8966

0.1033
0.3819

-0 .0370
-0.6271
0.0599
0.3753
0.1218

-0.2643
-0.6463
-0.8175
-0.2177
-0.0000

EXTINCTION SCATTERING
EFFICIENCY FACTORS . 2.459791 1.235144
ASYMMETRY FACTOR a 0.922350
TIME FOR THIS CASE IN SECONDS z 0.400E-03

ABSORPTION
1.224646

HIE SIZE PARA14EER = L0 0



REFRACTIVE INOEX z 1.500 -0.1OOE00

AN(L E S-SUB-1 S-SU3-2
0.00 0.522455E+04 -0.261694E+03 0.522455E+04 -0.261694E+03
5.00 0.305086E+03 J.181883E+02 0.298131E+G3 0.49119 E+01

10.00 -0.116407E+03 0.238768E402 -0.107378E+03 0.195841E02Z
15.00 0.447729E+02 -0.434139E+02 0.392926E+02 -0.292025E+02
20.00 0.228785E+01 0.423964E*02 -0.130945E001 0.251409E+02
25.00 -0.310537E+02 -0.211364E*02 -0.173987E+C2 -0.104328E+02
30.00 0.33679LE+02 -0.105491E*02 0.177529E+02 -0.652844E+01
35.00 -0.909879E+01 0.336759E+02 -0.5105'B2E0£ 10.t44508E+02
40.00 -0.213287E*02 -0.189674E+02 -0.713673E01 -0.812180E+01
45.00 0.220539E+02 -0.14t293E+32 0.681356E+01 -0.350465E+1
50.00 O.101882E002 0.222762E+]2 0.196302E+01 0.555878E+01
55.00 -0.206372E+02 0.987344E+01 -0.392682E+01 0.947194E+00
60.00 -O.1290 4E+02 -0 .170 185E+02 -0 .612r6CE+o0 -0.207280E+1
65.00 0.101149E+02 -0.173895E*02 0.874630E00 -O.208839E+00
70.00 0.189202E+02 -0.134859E+*1 -0.669262E+00 O.r49534E+00
T5.00 0.139393E002 0.112806E+02 -0.187769E+01 -O.736574E+00
80.00 0.615211E+01 0.t1559bE+32 -0.16137t1E01 -0.253497E+l1
85.00 O.15372bE+01 0.160982E+02 -0.893979E+00 -0.382594E+0i
90.00 0.119224E+01 0.153732E+02 -0.850854E+00 -0.466332E+01
95.00 0.476301E+01 0.139482E02 -0.21T232E+01 -0.502404E+01

100.00 0.107168E+02 0.920299E+01 -0.489459E01 -0.366998E+01
105.00 0.134863E+02 -0.154765E+01 -O.b619b9E+01 0.110542E+01
110.00 0.424798E#01 -0.123699E+02 -0.206443E+O1 0.593202E+01
115.00 -0.112976E*02 -0.565574E+O1 0.699496E+O1 0.321258E+II
120.00 -0.334094E01 0 O.li7717E02 0.20G077E+01 -0.75874E+01
125.00 9.115402E+02 -J.6831586E+0 -0.818386E+01 0.219927E+Oi
130.00 -0.102852E+02 -0.529585E00 0.788321E+01 0.388961E+01
135.00 0.74803LE01 0.845910E+01 -0.6106C5Eo01 -0.671763E001
140.00 - .715616E+01 -0 . 82059E#01 0.61119CE+01 0 4.rO053E+01
145.00 0.936308E+01 0.546682E001 -O.827119E+01 - .474255E+I1
150.00 - .105J69E002 0.182926Efgi 0.955976E#01 -0.1720i4E01
155.00 0.340806E+01 -0O994987E*01 -0.315956E+01 0.934199E+01
160.00 O.931348E+01 O.462414E+01 - .895099E+01 - .441695E*01
165.00 - .221822E+01 0.100651E32 0 .2 15464E+01 -0.984025E+01
170.00 -*.941598E+01 0.402882E01 0.931863E+G1 -1.399378E+.I
175.00 -0.100624E02 -0 .1687f64E+OI O .100372E+02 0 .168188E+O
180.00 -0.954952E+01 -0.355581E*O1 0.954952Et01 0.355581EOt1

INTENSITY
0.273645E+0 8
0.911574E+05
0.130172E+05
0 * 314304 E04
0.121824E+04
0. 91131 9E+03
0.801673E+03
0.62934 7E+03
0.465786E+03
0 .370932E+03
0.317391E+03
0. 269848 E + 0 3
0 .230451E+03
0. 22758E+03
0.180 0 1E+0 3
0. 1b2813E+03
0.14920 3E+03
0.138475E+03
0. 13011 3E+0 3
0.123599E+03
0.118559E+03
0.114659E*03
0. 111687E03
0. 10943 ?E03
0.107749E+03
0.106503E+03
0 1C5600E+03
0.104961EE0 3
0.104521E+03
0.10C4229E+0 3
0 . 1 0 40 4 E + 0 3
O. 1G 3935E+03
0.103877 E03
0. o13850E+03
0. 103840E+03
0 . I 0 3837 E 0 3
0.103837E+03

DEG CF POLZN
-0 .0000
-0.0247
-0 .0 848
-0.2375
-0.4798
-0.54 84
-0.5537
-0.6268
-0.7490
-0 .8418
-0.8905
-0.9395
-0 .9797
-0.9960
-0 .9944

-0 .9750
-0.9395
-0.8885
-0.8273
-0 . 7576
-0. 6 8 3 1
-0.6072
-0.5316
-0 .4586
-0.3897
-0.3257
-0 .2673
-0.2148
-0 .1684
-0.1278
-0.0932
-0 .0643
-0 .0409
-0.0229
-0.0101
-0.0025
-0 .0000

EXTINCTION SCATTERING
EFFICIENCY FACTORS 2.089822 1.132134
ASYMMETRY FACTOR a 0.950392
TIME FOR THIS CASE IN SECONOS a 0.200E-02

ABSORPTION
0 .957688

MI IZ ARMTE IU0



REFRACTIVE INDEX * 1.500 -0.100E+00

S-SUB-1
0.504926E+06 -0.7

I -0102968E+04 -0*.
-0.532535E,03 0.]
I-0653333E+02 0.4

1 036523E+03 0.1
-0.235384EE03 -0 .
0.229901E,03 *,.

-0.285229E+03 0.,
-0.217675E+03 -I ,
-0.246206E+03 -0.0
I -0.144982E.02 0.*
-0 .50365E+02 -0 .2

0.163394E+03 -0 ,
0.142056E+02 -0 *

-0 672031E+02 0.1
-0 178982E+03 -0.7
-0.882483E+02 0.1
0.279319E+02 -0.1
O,558595E+02 -0.1

-O .125419E+03 0*7
-0 128432E+03 -0.5
-0.897252E+01 0.1
-0.128778E+03 0.2
Os485125E+02 0.1

-0.950241t E02 0.
O.107185E+03 0*5
0.26551GE+02 0,1
0*393056E+02 -0.1
0*588332E+02 -0 .9

-O.355876E+02 0.1
0.397255E02 0 .91

-0.104967E+03 0.6!
0.325766E.02 0.91

-0 .390503E,02 0 .9!
0.4574868E+02 -0.9:

-0 115368E+02 -0 ,1
0.994571E+02 0.2;

?21499E+04
212757E+33
l79789E+03
426746E+03
162180E+02
253lO8E+03
221920E+03
922162E+02
L70529E+03
r7727IE+02
241139E.03
220 845E+3
L36432E+03
L99990E+03
L?6957E*03
r58155E+01
L45254E+03
159229E+03
L43671E+03
73792E+02
88009E+02
3544?7E03
28475E+32
16660E+03
71016E*02
12959E+02
12600E+33
05972E+03
35446E+32
02416E+03
89745E+0 2
58197E+01
87468E+02
53805E 02
16294E+02
01373E.03
21736E+02

S-SUB-2
0*504926E+06 -0.

I -096T028E+03 -0 o
-0.o450678E+03 0 .
-06135C07E02 0O.
0.247725E+03 0 .;

-0.129869E+03 -0.
O.1l09775E+03 0O1

-0.130083E+03 0.2
-0.738262E+C2 -0 .
-0 .7139CEf02 -0.3
-0.148239E+02 0O5

0.216431E+01 -0.3
0.225084E+02 -0.5
0.983168E+01 -0.5

-0.553029E,01 -0.9
O.194174E+02 -0 .
0.915704E+01 -0 .2

-0.271564E00 0.3
-0 .11630 ?7E+02 0 .4
0*436895E+02 -0.3
0.575057E+02 0.2
0.417347E+00 -0 .6
0.*0538CE+02 -01

-0 .322957E+02 -0.6
0.613435E+02 -0 .5

-0*773297E+02 -0.3
-0 .218T97Ee02 -0.8
-0*3003337E+02 0 8
-0 486957E+02 0 .
0.304963E+02 -0.9

-0 *367520E02 -0 8
0.983351E,02 - .6

-0.315295E+02 -0.9
0.380246E+02 -0.9*

-S*452265E+02 0.91
0.115246E 02 0.11

-0 994571E+02 -0 .2;

r21499E+04
l?0704E+03
47?884E+03

316835E+03
225961E+02
L56365 E+03
123213E+03
245997E+02
r34196E+02
150413E +02
560879E+02
391996E+02
556820 E+1
;22104E+01
19505?E+01
F15082E+01
901 60 E 02
9404 9E+02
60 706E+02

130736E+02
!12?38E+02
i71401E+02
60555 E02
98729E+02
30387E+02
46577E+02
51931E+02
56658E+02
95029E+02
13323E+02
99089E+02
59809E*01
47021E+02
32794E+02
07355E+02
01115E*03
21736E+02

INTENSITY
0. 255002ZE+12
0. 10 3 48 9E+0 7
0. 270449E 06
0. 145265E*06
0.101955E+06
0. 803929E+05
0. 646676E+0 5
0.528211E+05
0*436516E+05
0.364909E+05
0.308618E+0 5
0. 264252E05
0.229245E+05
0.201609E+05
0. 179799E+0 5
0.162601E+05
0.149061E+05
0. 13 8426E05
0.130097E+05
0 12360 1E+0 5
0. 118559E+0 5
0 .114671E+05
0.111696E+0 5
0.109441 E+05
0.107752E+05
0.106505E+05
O. 105601E.05 e
0.104961E+05
0. 104520E+0 5
0. 104227E+05
0.104042E+05
0.103933E+0 5
0. 10 3874E0 05
0.103846E+05
0.103836E+05
0. 10 3834E'0 5
0. 103834E+05

OEG OF POLZN
-0. 000
-0.0682
-0.1681
- 0. 2830
-0.3931
-0 .4861
-0.5789
-0.6682
-0.7517
-0.8267
-0.8909
-0.9417
-0 .9765
-0.9939
-0.9928
-0.9737
-0.9379
-0. 8878
-0.8265
-0.7571
-0.6829
-0.6069
-0.5315
-0.4586
-0.3897
-0.3258
-0.2674
-0.2149
-0.1684
-0 . 1279
-0 .0932
-0.0643
-0.0409
-0.0229
-0 .0 101
-0.0 025
-0.0000

EFFICIENCY FACTORS
ASYMMETRY FACTOR a
TIME FOR THIS CASE

EXTINCTION SCATTERING
2.019703 1.106932

0.950880
IN SECONDS x 0.179E-01

ABSORPTION
0.912770

ANGLE
0 .00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40 .00
45.00
50.00
55.00
60.00
65.00

75.00
80.00
85.00
90.00
95.00

100.00
105.00
110.00
115.00
120.00
125.00
130.00
135.00
140.00
145.00
150.00
155.00
160.00
165.00
170 .00
175.00
180 .00

ro
CO

HIE SIZE PARAMIETER a r 0.0



REFRACTIVE INDEX z 1.500 -O.100E+00

S-SUB-1
0. 125423E+08
0. 222714E+04

-0.208972 E+04
-0.198699E+04

0. 141605E+ 4
0 .365848E+03

-0 .818828E+03
-0.696859E+03
0.12079GE*04
0.377639E+03

-0.737055E+03
-0 .768225E+03
-0. 106248E+04

0.6981 64E+03
-0 .736341E+03
-0.704422E+03

0. 51Ot 98E+02
0.789722E+03
O. 54381 CE +03
O. 4600 68E+03
0.632089E+03

-0 .5211 95E+03
-0 .620403E+03

0.622942E+03
0. 5827 81E+03

-0 .5630 2 3 E + 03
0.309926E*03
0. 3966 7 E+0 3

-0 .14781 E+03
-0 .4 10444E+03

0. 51286CE+03
-O .t51483E+03

0*4292 76E+03
-0 .279973E+03

0 .101886E+03
0.307655E+02

-0 .777833 E02

-0 .666472E+65
0.190 241E +04

.798514E+33
0 .275570E+03
0.1186r0E6+4
O .167373E+04

-0 .136541E+04.
0. 130 789E 3 4
0 .670896E+03

- .123406E+01
0. 956727E +03

-0 .832129E+03
-0.625555E+32
-0. 719402E+03
- 0.5 9 638E+03
-0 .553289E+03
-0 . 48290E +03
-O .172281E+03
0.546205E+03
0.575586E+33

-0 .315106E33
.43 4773E 03

0.206778E+03
0.105012E+03
0. 186360E+03
0.189764E+03
0 .48408E+03

.40 1824 E 03
0.532403E633

-O .354151E 03
0.146039E +33

-0 .15820E +03
0 . 293303E+33

-0 .432636E+03
0.5j1838E+03

-0 .5J9210E+03
0.503522E *03

S-SUB-2
0 .125423 E 08
0 .200270E+O04
-0 .172 29L EG04
-0.14759EE+04

0.899033E603
0.1531C 3E+03

-0.365770E+03
-0. 36683E+0 3
0 .20519 E 0 3
0.171 89E+03

-0. 220330E +03
-0 .871019E.02
-0. 1010 42E+03
0. 5524446E +02
0.564372E+02
0.100 15 E + 03
0 .2791t1E.02

-0 .182738E603
-n 187405E+03
-0.190918E+03
-0 .263L96E+03
0.244271E+03
0.337167E+03

-0.381 r 48E+03
-0 .389915E603

0 .397962E+03
-0 .243028E+03
-0.323875E+03

0 .119311E+03
0.363689E+03

-0 .4679268E03
0 .470863E+03
-0.4128 CGE03
0.274284E+03

-0.101195E+03
-0.306023E+02
0. 777533E+02

-0.666472E+05
0. 169246E +04
0.620805E+03
0 . 152643E 0 3
0.830170E+03
0.996380E+03

-0 .736552E +03
0.549989E+03
0.306897E+ 3

-0 .357729E+03
. t189279E+0 3

-0.176458E+03
-0 .581135 E + 02
0.124093E+02

-0 .115428 E02
0.270281E+02
Q .149684E+03
0.738612E+02

-0.146093E+03
-O.196543E+03
0.157238E+03

-0 .230296 E 03
-0.130 982E +03
-0.490048E*02
-O. tti223E03
-0.145440 E+0 3
-0 .366541 E03
-9.317995E+03
-0 .450 626E 03

0. 308 185E 03
-0.130 004E+03

0 .146344E+03
-0.280406E+03

0.422 422E+03
-0 .496708E+03
0.507929E+03

-0.50 3522E+03

INTENSITY
0. 157315E+15
0. 77272 fE+07
0.417917 E+07
3.311291E+07
0. 2.5545E*.07
0.197572E+07
0. 160555E+07
0. 131668E+ 07
0.109011 E 07
0.911909E+06
0.771474E+06
0 .660667E+06
0.573177E+06
0.50 4CG89E+0 6
0 . 4 9 555E+06
0.436550E+06
0 .372691E+06
0.346095E+06
0.325266E+06
0.33 9020E+0 6
0 .296412E+06
0.286689E+06

.2792348E+06
0.273608E+06
0 .26938 4 E+06
0 .266266E+06
0.26400 5E 06
0. 26240 3E+06
0.261300E,06
0.260568E+06
0. 26010 5E+06
0.259832E + 06
0. 259684E.E06
0.25961 6E 06
0 .259591E+06
0.259585E+06
0.259585E+06

DEG OF POLZN
-0.0000
-0. 1103
-0 .1975
-0.2927
-0.3902
-0.4856
-0.5788
-0.6680
-0 .7513
-0.8264
-0.8906
-0 .9414
-0 . 9763
-0.9936
-0.9926
-0.9735
-0.9378
-0.8878
-0.8264
-0 .7570
-0.6829
-0.6069
-0.5315
-0 .4586
-0. 3897
-0.3258
-0.2674
-0 2149
-0 .1684
-0 .1279
-0.0932

-0.0643
-0.0409
-0.0229
-0.0101
-0.0025
-0.0000

EXTINCT ION
EFFICIENCY FACTORS 2.006775
ASYMMETRY FACTOR = 3.953650
TIME FOR THIS CASE IN SECONDS =

ANGLE
0.00
5.00

10 .00
15.00
20.00
25.00
30.00
35.00
W0 .00
5. 00

50.00
55.00
60.00
65.00
70.00
75.00
80.00

85.00
90.00
95.00

100 .00
105.00
110 .00

115.00
120.00
125.00
130 .00
135.00
1 0.00

145.00
15 .00
155.00
160.00
165.00
170o .00
175 .00
180.00

SCATTERING
1.0 99193

ABSORPTION
0.937582

0.8G6E-01

MI ESIZ PARMETR =5000 .0
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