



### Overview of HPC Computer Architecture:

A Long March Toward Exa-Scale Computing and Beyond

**August 16, 2012** 

**Guang R. Gao** 

ACM Fellow and IEEE Fellow
Distinguished Professor, Dept. of ECE
University of Delaware





### Toward A *Codelet* Based Execution Model and Its Memory Semantics

-- For Future Extreme-Scale Computing Systems

August 16, 2012

**Guang R. Gao** 

ACM Fellow and IEEE Fellow
Distinguished Professor, Dept. of ECE
University of Delaware





- Background and motivation
- Program execution models
- Evolution of codelet based execution models
  - The EARTH project (1994 2004)
  - IBM Cyclops-64 project (2004 2010+ ): The TNT Experience
  - Intel-led UHPC/Runnemede (2010 2012): The codelet concept and SWARM
- Memory semantics the codelet model
- Conclusions and Future Directions





### K ("KEI") Computer

- "K" draws upon the Japanese word "Kei" for 10<sup>16</sup>
- 3 times faster than Chinese Tianhe 1A
- 8.162 Pflops Rmax, 8.777 Pflops Rpeak
- 80,000 8-core 2GHz SPARC64 VIIIfx to deliver a total of more than 640,000 processing cores
- 1 PB memory
- 4<sup>th</sup> most energy-efficient system in the 500, with a performance-per-watt rating of 825 megaflops per Watt.
- Tofu: A 6D Mesh/Torus Interconnect







### Tianhe-1A 2.566 Petaflops Rmax









# Current Big Themes in Supercomputing

- Multi-core → Many-core
  - Exa-Scale is on horizon
- Heterogeneity and Accelerators
- Data-Intensive (big-data)
- Others?





### Challenges

- Challenges:
  - Big-compute (performance demand on massively parallelism)
  - Big-data (massive, irregular, unstructured data need big analytics)
  - Big chips with architecture heterogeneity
  - Energy efficiency and resiliency





# A Fundamental Challenge Parallel Program Execution Models





- Background and motivation
- Program execution models
- Evolution of codelet based execution models
  - The EARTH project (1994 2004)
  - IBM Cyclops-64 project (2004 2010+ ): The TNT Experience
  - Intel-led UHPC/Runnemede (2010 2012): The codelet concept and SWARM
- Semantics of the codelet model
- Conclusions and Future Directions





# A Quiz: Have you heard the following terms?

Actors (dataflow)?

strand?

fiber?

codelet?





#### What is a Program Execution Model?



Curtsey: JB Dennis, PEM-2, 4/72011









Coarse-Grain thread-The family home model

Fine-Grain *non-preemptive* thread-The "hotel" model

#### Coarse-Grain vs. Fine-Grain Multithreading

[Gao: invited talk at Fran Allen's Retirement Workshop, 07/2002]







- Background and motivation
- Program execution and abstract machine models
- Codelet based execution models
  - The EARTH project (1994 2004)
  - IBM Cyclops-64 project (2004 2010+ ): The TNT Experience
  - Intel-led UHPC/Runnemede (2010 2012): The codelet concept and SWARM
- Semantics of the codelet model
- Conclusions and Future Directions







# Abstract Machine Models May Be Heterogeneous!







#### **Execution Model and Abstract Machines**





### **EARTH Architecture**







### The EARTH Multithreaded Execution Model (1993 – 200x)

Two Level of Fine-Grain Threads:

- threaded procedures
- fibers

- **fiber** within a frame
- Aync. function invocation
- A sync operation
- → Invoke a threaded func





**Fibers** 

2-level of threads





- Background and motivation
- Program execution models
- Evolution of codelet based execution models
  - The EARTH project (1994 2004)
  - IBM Cyclops-64 project (2004 2010+ ): The TNT Experience
  - Intel-led UHPC/Runnemede (2010 2012): The codelet concept and SWARM
- Semantics of the codelet model
- Conclusions and Future Directions





- Background and motivation
- Program execution models
- Evolution of codelet based execution models
  - The EARTH project (1994 2004)
  - IBM Cyclops-64 project (2004 2010+ ): The TNT Experience
  - Intel-led UHPC/Runnemede (2010 2012): The codelet concept and SWARM
- Semantics of the codelet model
- Conclusions and Future Directions





- Background and motivation
- Program execution models
- Evolution of codelet based execution models
  - The EARTH project (1994 2004)
  - IBM Cyclops-64 project (2004 2010+ ): The TNT Experience
  - Intel-led UHPC/Runnemede (2010 2012): The codelet concept and SWARM
  - DOE X-Stack (2012-2015): Continue the codelet path
- Semantics of Codelet Models
- Conclusions and Future Directions





Courtesy: Prof. Jack Dennis, 2001

## The Codelet: A Fine-Grain Piece of Computing



**Supports Massively Parallel Computation!** 





Courtesy: Prof. Jack Dennis, 2001

## The Codelet: A Fine-Grain Piece of Computing



This Looks Like Data Flow!!





### **Concept of Codelet**

(Feb. 4<sup>th</sup>, 2011)

- Codelets are the principal *scheduling quantum* under our codelet based execution model. A codelet, once allocated and scheduled, will be kept usefully busy since it is *non-preemptive*
- The underline hardware architecture and system software (e.g. compiler, etc.) are optimized to ensure such *non-preemption features* can be productively utilized.





- Background and motivation
- Program execution models
- Codelet based execution models
  - The EARTH project (1994 2004)
  - IBM Cyclops-64 project (2004 2010+ ): The TNT Experience
  - Intel-led UHPC/Runnemede (2010 2012): The codelet concept and SWARM
- Memory semantics of codelet models
- Conclusions and Future Directions





### What is A Shared Memory Execution Model?

#### Thread Model

A set of rules for creating, destroying and managing threads

Execution Model

#### **Memory Model**

Dictate the ordering of memory operations

#### Synchronization Model

Provide a set of mechanisms to protect from data races

#### The Thread Abstract Machine





# "Memory Coherence" A Basic Assumption of SC-Derived Memory Models

"...All writes to the same location are serialized in some order and are performed in that order with respect to any processor..."

[Gharacharloo Et Al 90]





# Can We Break The Memory Coherence Barrier?

No?

Yes?





### Four Key Question on Memory Models

- What happens when two (or more) concurrent load/store operations happen (arrives) at the same memory location?
- Answers?





### A Conjecture

The LC (Location Consistency) memory model belongs to the group of memory models that iss *weakest* while still do not violate the causality constraint!





- Background and motivation
- Program execution models
- Evolution of codelet based execution models
  - The EARTH project (1994 2004)
  - IBM Cyclops-64 project (2004 2010+ ): The TNT Experience
  - Intel-led UHPC/Runnemede (2010 2012): The codelet concept and SWARM
- The memory semantics of codelets
- Conclusions and Future Directions





### DOE X-Stack Project July 2012 – June 2015

#### Traleika Glacier

(Team Lead: Intel

Universities: UIUC, UD, UCSD, Rice U)

Other Industries (ETI, Reservoir)

DOE Labs: (PNNL, Sandia, ORNL, ..)





### Acknowledgements

- Our Sponsors
- Members of CAPSL
- Members of ETI
- Other Collaborators (T. Sterling, V. Sarkar, etc.)
- My Mentor Prof. Jack B. Dennis
- My Host