23 December 1970

Dear Marcel:

Din has asked me to work out a few details for improving the next launch which may be of use to you. These are as follows:
o An extra inflation fitting has been put on the balloon closer to the top. (One at 45 ft from the top and one at 35 ft .)
o An end cap restraining hoop has been added to the load lines to prevent the base end from blowing out between the lines.
o A load line spreader (see sketch 1 attached) has been designed. It is intended to prevent crushing the base end cap during inflation and early ascent. It is a "do-it-yourself" model, so allow a few extra minutes in your prelaunch schedule.
8 A compact anchor block for the balloon bottom anchor has been designed (see sketch 2). It is intended to replace a bulky car and some men you required last time. You might consider using a heavy lift truck as launch collar anchor on the balloon top end. (The increased weight is comforting if the wind comes up a bit.)
o The flight train may have a different configuration than last time, but Vin will fill you in on it. I suspect a hole may have been caused by abrasion of the tow balloon against the tight load line. This could have caused a descent like the Nimbus balloon that almost hit the water last summer at Ascension Island.

If any of these ideas sound good, go ahead and use them, otherwise this letter will self-destruct in time. HYAA? If you have any questions, please contact me. Good Luck.

Sincerely,

Sig Stenlund

Enclosures

Balloon layout tr egging:

1. Lave bubble poly to makeints a ball.
2. Pase ball in cone of load lines to preerant hives form cuushim anal app. 3 Pull end cap to a print t center in , cone of h ind attachment.

Thot, GHOST Anchm brock

Plaw 1

demsity of cenent $180 \mathrm{eb}_{\mathrm{fl}} \mathrm{ft}^{3}$
μ for cement on rubber $\simeq 1$
asume homingienl forme of 500 ebi
then: wht of cenent $=\frac{500 \mathrm{lbs} \text { pore }}{1 \mu}=500 \mathrm{lhs}$
plus 50% sabty furt $=750$ ebs fre cenent
cerent reguined $\sim 4.2 \mathrm{ft}^{3}$

fanddensity $\sim 130 \mathrm{eb} / \mathrm{\mu t}^{3}$
μ for wool on cement $\simeq 0.3$
Wt of sand for 500 fore $\sim 2400 \mathrm{ebs}$. (imbluder 50% saft fuction) to 60 lbe sachs of sand.

