
PECIAL EDITION

,' s-

e7 W t'),

nouce

On December 20, 1982 a small group of staff members clustered on the Damon
Room balcony to observe the delivery of NCAR's second CRAY-1 computer. Those
in the group held their breath as the crane tipped when lifting the five-ton
computer from the moving van. According to one onlooker, the rear of the
crane rose a good two feet off the ground as it hoisted the CRAY-1's central
processing unit. But the crane held its ground and safely lowered the com-
puter into the air-intake tunnel of the SCD.

"Due to the coordination efforts of Physical Facilities Services, it was one
of the smoothest moves we've ever had with a computer," said Robert Nif-
fenegger (SCD manager of Operations). "Without their help, this move would
not have been nearly as smooth or timely. The only problem was that the side
road next to the High Altitude Observatory (HAO) addition was barely wide
enough to accommodate the moving van. We spent some time filling in and grad-
ing the road," Bob said, "and as the van made the turn we all took some deep
breaths, and hoped it wouldn't topple over into HAO's sunken telescope area."
Thanks to the capable van driver, all went well, and there were about five or
six inches of clearance. Before situating the second CRAY-l, several new
holes had to be cut in the floor for the mechanical and power connections, and
24 extra steel pedestals were added beneath the floor for support. The new
CRAY-1 now rests securely in the first basement of the Mesa Laboratory next to
the old one.

The CRAY-l is actually a used one--it belonged formerly to the Lawrence Liver-
more National Laboratory in California. However, it has been completely
refurbished at CRAY headquarters in Chippewa Falls, Wisconsin, and has new
refrigeration-condensor and motor-generator units. (Although plugged in
directly to the Public Service power the CRAY-1 uses additional motor genera-
tors to convert the 60 Hz of Public Service power to the required 400 Hz. SCD
will eventually have an uninterruptable power-supply system provided by a new
storage battery unit. The batteries will supply 15 minutes of additional
power to the IBM 4341 and the communications systems for a controlled shutdown
should the Public Service power stop. The extra power provides enough time to
alert users to log off gracefully and save their work before the system goes
down.)

Except for its more subtle colors--sun gold and caramel--the new CRAY-1 is
identical to the old one, with the same disk and memory capacity and speed.
"We purchased the second CRAY-1 because we simply couldn't satisfy the demands
of the users with the one we had," said SCD director Walter Macintyre. "We
were turning people away, and some users were having difficulty completing
their programs--we had reached an impossible load. This is an interim, short-
term solution to our load problem," continued Walter. "We are asking for a
next generation machine to be supplied sometime in the next two or three
years. This future machine will have ten times the capacity of a CRAY-1."

SCD has had to do a lot of rearranging to accommodate the second CRAY-1 and
its 16 disk drives, and will be busy for the next several months with rewiring
and software production. The second CRAY-1 should be operational by the end
of May. The National Science Foundation officially approved the additional
CRAY-1 purchase shortly after Christmas, insuring a happier New Year for SCD
and its computer users.

(Reprinted in part from Staff Notes, Vol. 18, No. 2).

VECTOR FORTRAN for NUMERICAL
PROBLEMS ON CRAY-I

W. P. Petersen

31 March 1982

This document has been reproduced with the author's permission

CONTENTS

1 .INTR ODDCUNTI.ON.......... .0 09 00 0. e 1

1.1 Segmentation and unrolling loops 1

1.2 Identical and independent operations m I

2. CRAY1ECTORHADWARE............ 00. 2

2.1 Chaining and functional unit overlap 4

2.2ZMemory access and timing 4

2.3 Reduction operations 5

3. PROGRAMMING THE LOOPS 6

3.1 Increments, dimensions - how to index the arrays..............7

3.2 Conditional statements- IF and GOTO . a..10

3.3 Compiler directives 11

4. CHOOSING YOUR ALGORITHM................ 12

4.1 Outer products - a linear digital filter..................12

4.2 Inner products, a symmetric Toeplitz matrix 13

4.3 Floyd's algorithm - removing the IF statements 13

4.4 An FFT -maximizing the inner vector length 13

4.5SGetting around dependencies 19

4.5.1 Gauss-Seidel Relaxation 19

4.5.2 A red/black ordering 20
4.5.3 Tridiagonal systems 21

4.6 Sparse matrices - nonlinear indexing................ . . . 22

-i1

Bell Laboratories

VECTOR FORTRAN for NUMERICAL
PROBLEMS ON CRAY-I

W. P. Petersen

31 March 1982

1. INTRODUCTION

Computations in vector mode on CRAY-I can be an order of magnitude faster than in scalar mode.
The present paper deals with the basics: vector hardware operations and how the CFT (Cray
FORTRAN) compiler makes use of them. A little understanding of the vector hardware is useful
because some operations on CRAY-i are more efficient than others. Despite the hardware
motivation, a modular 'each block does a vector computation' method usually works very well on any
large computer.

1I Segmintaiom and -opliq Loops

To CRAYI, vectors are regularly spaced arrays of data that can be processed by segments.
Regularly spaced data means that each element is the same number of memory locations from its
predecessor. For example, the elements (A(N -1), A(N -3), A(N -5), A(N -7),...) are regularly
spaced, while (A(l), A(2), A(4), A(S),... , are not.

In Cray FORTRAN the principal engines of vector operations are DO-loops. If there are n
repetitions of the loop, executing as many as 64 at a time gives

n -rsl+64q

where rsl (64 is the number in the residual segment, which is processed first, and q the number of
additional segments of length 64. Machine instructions generated by CFT for vector DO-loops
calculate q and rsl to 'unroll' the loop into segments of length (64. A vector length register VL
(ref. i) is set to the number per segment. All unrolling of loops is transparent to the user, with CFT
doing all segmenting and appropriate addressing.

LI Idtlea and Idepmiint .at I

In writing vetorized coes, it is important to understand that vector elements really must be
independent of one another, but treated identically. Vectorized conditional alculations have
superfluous operations. Consider the summationi of N elements in an array A which skips the
addition of null values, a shown in Figure 1.

Vecor registers having 64 wrds inch ae diacuuu(in Section 2.
t Sinsmc~ta4nd 4.

SUN , 0

DO 1 I - 1,N

IF(A(I).EQ.0)GOTO 1
SUM s SUN + A(I)

I CONTINUE
Figure 1

No.-Vector Sammatlo

Plucking out the IF statement allows CFT to compile vector hardware instructions. Addition of zero
elements may be superfluous, but do it anyway. The idea is that each A(I) must be treated exactly
like every other. Conditional statements IF and computed GOTO imply that some data are very
different than others and treated accordingly. Branching, which includes IF, GOTO and CALL
statements, inhibits the use of the CRAY-1 vector hardware.

Furthermore, CFT considers an array to be a vector only if it is clear that no element of that array
depends upon the previous computation of another. For example, in Figure 2, the natural order of I
- 2, 3, 4, ... requires that A(I-1) has been replaced by A(I-2) for A(I) to be properly set.

DO I I * 2,N
A(I) * A(I-1)

2 CONTINUE
Figure 2

Nom.Vector Depeedeecy Case

Thus, the A(I)'s in Figure 2 must be set one at a time rather than by segments.

Indexing arrays so that CFT compiles vector machine instructions is generally straightforward, but
there are subtleties. Section 3 of this document and the CFT reference manual (ref. 2, part 3,
section 2) deal with indexing in some detail.

2. CRAY-1 VECTOR HARDWARE

Only about one fourth of the CRAY-1 machine instructions use vector registers. The following
notation will be used

VI - SI +Vo

to describe machine instructions. Here, the content of scalar register SI is added element by element
to the contents of vector register VO and the results stored in vector register V1.

SI

0 + 0

63 i 63

V1 VO

Figure 3
Register St Added to VO

Figure 3 is a pictorial representation of this instruction. Paths to each register are represented by
arrows. The end of each path is a pointer indicating only one element at a time. Once this
instruction is issued and addition begins, the pointer in V0 is incremented each clock period
(12.5x10 -9 seconds), until the the operands are exhausted. A similar pointer in result VI is
incremented when results begin to emerge from the adder, three clock periods later in this case.

The integer adder which may contain three separate pairs of operands concurrently in distinct stages
of processing, is called a pipelined functional unit. It has some analogy to a short piece of pipe into
which marbles are being pushed; until the pipe is full, no marbles emerge from the other end. Even
though the first result does not emerge from the pipe until several clock periods later, successive
results arrive one clock period apart. One 64-bit integer addition takes three clock cycles, but
pushing a segment of 64 additions through only takes 67. Effectively, this is only slightly more than
one cycle per addition - a factor of three faster than one at a time. Longer pipelines show even
greater improvements - typically six or seven fold for floating point operations. Further, with
chaining and overlap, described in the next section, several operations may run concurrently.

Machine instructions generated by CFT to execute a vectorized DO-loop control the segmentation
(sec. 1.1), and involve some of eight vector registers VO, VI, ..., V7 of 64 words each. Scalar
registers SO, SI, ..., S7 may also be used as operands in some vector operations, as in Figure 3 for
example. Vector merging, that is, selecting vector elements word-by-word is implemented by a
correspondence between the 64 bits of the S and VM registers and the 64 words of the V registers
(see section 3.2). Operations may run concurrently if certain independence criteria are satisfied. In
particular, each of seven functional units may run independently to perform the operations shown in
TABLE I.

VECTOR FUNCTIONAL UNITS
unit operations purpose

memory load load register from memory
store store to memory from register

* *F f.p. (truncated) multiply
*R f.p. (rounded) multiply
*I f.p. (iterative) multiply1

/ /H reciprocal approximation
+ +F f.p. add

-F f.p. subtract

logical & logical .and.
! logical .or.

\ I exclusive .or.
VM form vector mask

merge vector merge

+ + integer add
integer - integer subtract

shift > right shift
< left shift

TABLE 1

Each vector functional unit is independent and results from one unit may be fed into another as

operands - hence, operations may chain together.

NOTICE that there are vector hardware provisions only for processing of data, not for creation. In
particular, the vector hardware will not create an array of integers. This means that arrays may not
be generated directly from DO-loop index variables in vector mode: A(1) - FLOAT(I), for
example.

I Division uses a 30 bit reciprocal approximation and one Newton iteration, (ref. 3, pp. 5-53)

®3-

-4.

2.1 Chalala ad functional unit overlap

If successive operations use different functional units, they may run concurrently. Division using a
Newton iteration is an interesting example; we want a1/b,, and use the operations from TABLE 1 in
Figure 4.

B
- /HVO

V2 - VOIV 1

•- VI*RV2
- A

VS - V4*RV3

bi's
half precision 1/b1

2.0 - b,/Hb,

full precision 1/b
ai's

a /b 's

Figre 4
Diviiom by Reciprocal Approximtioe

In a sense, there are only four separate operations in division, with the first pair linking together to
form a chain, and instructions four and five overlapping. Briefly, separation occurs as follows:

1. Memory access is independent of reciprocal approximation; so, as soon as the first b1 arrives in
VO the second instruction is issued. As the bi's are stored into VO, they are immediately
copied by the reciprocal unit and start through that pipe, eventually emerging to be stored into
V I. This linking to form a short chain is shown in Figure 5.

2. Although multiplication is independent of reciprocal approximation, the pointer in VO has
moved down before the first result arrives in VI. Thus, VO is 'busy' as an operand and the
third instruction must wait until the first pair are finished.

3. Instruction four uses the same functional unit (multiply) as the third. This unit is busy until
the third is finished. Instruction five (load A) may issue after four begins, and will run
concurrently. Operations begun by the issue of instructions four and five do not chain together,
but 'overlap' and run concurrently.

4. Instruction six must wait until four (running concurrently with five) is finished because it uses
the multiply unit again.

Mo

O *

63

VO

63 Figure 5
V1 Chaining Pictorial

2.2 Memory access and timing

With some exceptions (division for example), the number of sequences which run concurrently is
approximately the number of memory access instructions. Since there is only one port to memory,
and in FORTRAN all symbols are in memory, this is usually the critical resource. A lower bound

VO
Vi

V3
V4

.5O

on any loop timing (in seconds) is

T) (12.5 x 10--) x . x (number of memory references),

where 8/7 accounts for pipeline overhead. Indexing - that is, segment counting, array offsets,
setting VL, etc. - is independent of vector operations and runs concurrently with the last store into
memory from the loop. Indexing by segments adds little to loop overhead, and is transparent to the
CFT user. If there are no function calls, the bound is a reasonable timing approximation - roughly
within a factor of two.

Memory is also the critical resource in INPUT/OUTPUT requests. Loading vector registers locks
up memory. In principle, I/O runs concurrently with computation, but vector loading keeps memory
pretty busy. Thus, for a particular user job, overlapping I/O with vector loops is not as helpful as
might be expected. To make things more complicated, unless your job is running by itself, the
operating system (COS - Cray Operating System) will start up another job while waiting for your.
I/O request to finish. However, a few things will help.

1. Avoid FORMATted records wherever possible. FORMAT statements are executed in an
interpretative manner character-by-character, and are very slow.

2. Use of BUFFER IN and BUFFER OUT to transfer datasets will let you overlap your I/O
with your computation, which may help sometimes.

3. Usually, sequential I/O using READ and WRITE statements works best because it's very
simple and lets the operating system take care of all the concurrency headaches. Try to use
long fixed-length records - somewhere around 500 words. Every data-set transfer involves at
least one sector of 512 words, which includes some block and record control words. Also, try to
avoid array references having multiple-of-eight increments which cause memory bank-
conflicts.

Sequential array elements are stored in sequential banks of memory. There are 16 banks, each with
a cycle time of four clock periods (see ref. 1, section 6-21). Fetching or storing by multiple-of-eight
increments conflicts with this cycle. Memory bank conflicts also break chaining with independent
operations. These are important considerations for FFT's and Cyclic Reduction, which are discussed
in sections 4.4 and 4.5.3.

2.3 Redction operatosm

Operations with a result vector having the same number of elements as the operands are usually
more efficient than, say, dot-products - which reduce dimensionality. Consider a DO-loop which
computes the product of N elements of array A:

PROD * 1.0
DO 1 I=1,N

PROD * PROD*A(I)
1 CONTINUE

Figwe 6
Product of Vector Elemets

Result PROD is of dimension unity, but A is an N-dimensional operand. Reductions use a curious
property of the vector hardware.

To do reductions like this, three steps are necessary. For simplicity, let N - 64q, and divide A into
q segments - each of length 64. In the first step, the following accumulation happens. Segment one
and two are multiplied together, element-by-element, to yield a 64 element result. That result is now
multiplied by the third - still a 64 element result, then the fourth, and so on until all q segments are
used.

A second step reduces this 64-element partial result by a recursive hardware operation (ref. 1, pp3-
14) similar to the following, if VO contains the 64-element partial result,

VI - V*RVO

where the first element of VI is set to 1.0. Result register VI is also an operand. In this case, the
pointer in VI cannot advance until functional unit time + 2 clock periods (7 +2 - 9) later, when
the first result is ready. When completed, the last nine elements of VI are the product of the first
element of VO and every ninth element of VO. Use of identical registers for operands and results is
deliberate and recursive, producing a useful reduction of the 64 products. An example of this
recursive mechanism is shown in reference 1, but is too involved to reproduce here.

Finally, in the last of three steps, f.u. time + 2 elements in VI must be pulled out and the reduction
completed. This remaining step, which uses the S-registers, can be scheduled to take about 45 clock
periods, somewhat less than a vector segment operation on 64 elements. Such a macro is invoked by
CFT to do reductions of sums and products only. If N is large, two additional steps after the initial
accumulation add little extra time since each is executed only once. Compared to the q
accumulation operations in the first step, the last two become unimportant. However, for
moderate-length vectors (less than 100), reductions are less efficient than vector " vector
operations. Sections 4.1 and 4.2 give examples which illustrate the point.

3. PROGRAMMING THE LOOPS

The appearance of

VECTOR BLOCK BEGINS AT SEQ. NO. n, P. addr

at the end of a listing of a compiled subprogram means that CFT has generated a vector DO-loop in
a particular block of code. A block is a basic unit of code which is locally optimized by CFT and is
demarcated by register usage. Subroutine or user-defined function calls, GOTO statements, and
inner DO-loops force blocking. CFT only vectorizes inner loops! Since blocking doesn't usually start
exactly at the DO statement, to identify the vectorized loops in a compiled listing look for the first
inner loop following the sequence number beginning the vector block. This will be the vectorized
loop.

Many CFT intrinsic functions, SIN, EXP, SQRT for example, are vector mode (computation done
in vector registers) and are used in DO-loops. Others, like ATAN, may be used in vector loops but
are not really vector mode. These pseudo-vector functions pass segments of arguments in-register
(VI, or VI and V2), but process them element-by-element in scalar registers. Frankly, pseudo-
vector (see ref. 2, Appendix B) routines exist because nobody has rewritten them. They do permit
CFT to vectorize the rest of a loop, however. TABLE 2 summarizes the intrinsic CFT operations
and functions which are vector-mode.

Neither DOUBLE PRECISION nor CHARACTER data computations are done in vector registers.
The CRAY-1 has no double precision hardware. Data transfer and I/O for double precision does
use vector register memory access, however. INTEGER type addition (subtraction) is 64 bit in
vector mode, but multiplication is done by floating point hardware. Integer multiplication has only
48 bits of precision.

7 a

CFT VECTOR OPERATIONS AND FUNCTIONS BY DATA TYPE
SINGLE COMPLEX INTEGER DOUBLE BOOLEAN

" * CAND.

___ _ + _ .OR.

S/.XOR.
logical logical

SQRT

EXP, '
COS/SIN CSIN/CCOS

ALOG/ALOG 10

ABS CABS LABS DABS
DIM IDIM_

INT AINT IDINT

AMOD

SIGN ISIGN DSIGN

RANF

MAXI/AMAXI _ __ MAXO/AMAXO DMAX1 _

MINI/AMIN 1 MINO/AMINO DMIN 1

CONJG

IFIX FLOAT SNGL

CMPLXIDBLE REAL/AIMAG _ __ _

SIGN ISIGN DSIGN

TABLE 2

3.1 Imcrits~iumaom b ho to bix the arrays

Although many operations on regularly spaced data in memory can be done in vector mode, CFT
doesn't recognize them all. Figure 7 shows several examples of array subscripts which CFT
recognizes as vector indices. Two concepts are important here: invariants within the loop, and
constant increment integers. Loop invariants are quantities unmodified by changes in the DO -
variable (I in this case). Constant increment integers (ClI's) 'follow the DO - variable' in that each
time I is changed, the CII is incremented by a constant amount. In Figure 7, the variables 11, 13,
14, 15, 16, 18, 19, 110, 111, 112, 115, 117, 119, 120, 122, and X3(013), IA(114) are invariants.
Variables 12, 17, 116, 118, 121, are constant increment integers (CHI's).

$ Positive difference function DIM gives X - DIM(Y.Z) - Y - Z if Y > Z, X - 0 otherwise.

DO I I s IL,IU,IS

C
C CONSTANT INCREMENT INTEGER - 12

YI(I II) - XI(12)
12 s 12 + 13

C REGULAR STEPS (15,18), WITH CII (17)
Y2(14 + 1+15) X2(16 - 17*18)

17 s 17 + 19 +110
C REGULAR STEP (112), INVARIANTS (X3, IA)

Y311 - 1+112) a X3(113).X4(IA(114) - I)

C RECURSIVE SUMMATION OF ARRAY X6
Y4(I15) * Y4(15) + X6(116)
116 a 116 +117

C RECURSIVELY FORMING PRODUCT OF X6 ELEMENTS
Y5(117) Y5(117).X6(118)

118 a 118 +119
C SETTING ELEMENTS IN ROW OF Y6

Y6(120,121) X7(I)
121 u 121 + 122

C
1 CONTINUE

Figure7
tlde-iug of Vector Loop

We have the following rules.

_______ RULES FOR VECTOR SUBSCRIPTS ________

1. The subscripts of a vector in an array may appear in only one dimension of that
array. In Figure 7 only 121 varies in Y8.

2. These subscripts must be expressed as functions of the DO-loop variable or of
constant increment integers. Cli's are computed in the loop by

C11 o - CI ±constant increment.

The constant increment can be only an invariant integer or a sum of invariant
integers. Expressions for Cli's cannot contain parentheses, nor any operation but
addition (subtraction). In Figure 7, index variables 12, 17, 116, 118, 121 are Cli's, and
13, 19+110, 117, 119, and 122 are the constant increments.

3. Subscripts must be one of the forms

inv ± Ilistep

or

inv ± CII*istep

where inv is any invariant expression not containing a function reference (inv may
be null) and istep must be a simple integer invariant. Step istep can be of either
sign (see Y2(14 + 115) and Y3(111 - 1®112) in Figure 7).

A: the rimte of this wriing, if istep - 0, results may be erroneous. Be creful.

I---- - - II- - - - --- -~- - C -- - - II --~ I C -

.9.

As a final example, Figure 8 illustrates array references which will not vectorize, even as self-
contained loops.

DO I I " 1,N
C (1)

T1(I) " X1(I1 + I.(12.13))

C (2)
22(14) Z2(IFCNCX) + I)
14 " 14 + 2+I5

C (3)
Y3(16 + I) a ATAN(X3C1))
Y3(17 I) ICNCX3(I))

C (4)
T4(1) a X4(I + 1.19)
YS(I) - Y4(18 + I)

C (5)
110 INDEX(I)

T6(I10) *FLOAT(I)
C

I CONTINUE
FIgwe 5

No Vectrs Here

The reasons CFT will not vectorize these expressions are:

1. The spacing computations in Yl and Xl are too complicated for CFT: a diagonal in Yl (two
dimensions - see rule 1), and the spacing (12°13) is not a simple invariant integer variable
without parenthesis. Both these subscript expressions are easily changed:

a. Set LD1 - LD + 1, where LD is the leading dimension of Yl (LD,.), then Yl (ILDI -
LD) satisfies rule 3, making LDl a Idop invariant. Of course, LDl must be calculated
outside the loop.

b. Call 123 = 12° 3, then XlI(Ii + 123) satisfies rule 3.

2. The increment 2°15 is not a sum of simple invariants (see rule 2), and the subscript expression
for X2 contains a function reference:

a. Changing 2°15 to 15 + 15 fixes up the CII calculation of 14.

b. Pulling the expression IFNX m IFCN(X) out of the loop permits X2(IFNX + I), with
a valid subscript.

3. Reference to array Y3 represents a subtle dependency case if 17) 16 and the storage
overlaps. At compile time, this seems to be a dependency which would yield incorrect results;
hence CFT will not attempt to use vector hardware for this calculation. See sections 1.2, 3.4,
and 4.5. The reference to ATAN is really a pseudo-vector function (see TABLE 2). Unless
FCN is declared by a VFUNCTION directive (see section 3.5), CFT does not recognize it as
a vector function.

a. Insertion of an IVDEP directive prior to the loop will permit the vector-mode access to
Y, at the user's riskr if 17) 16.

b. Although ATAN is a peud-vector function, it still may be used in a vector loop.

c. A CALCoded (Cray Assembly Language) FCN with call-byvalue linage would have
to be provided (ee section .5)

4. References Y4 seem to CT to be a dependency because if 18 is negative, Y5 requires an
element Y4(18 +1) which is computed at the same step. See sections 1.2, 3.4' and 4.5. In X4
the subscript is not of the form given in rule 3.

- 10 -

5. Array Y6 is referenced in a non-linear way indirectly through the set of pointers INDEX (see
section 4.5). FLOAT(I) is a direct calculation on the DO - variable I (see section 2.0).

3.2 Conditiomal statemeats IF and GOTO

At this time, CFT (version 1.09) permits no conditional statements IF or GOTO in vector inner
loops. Because CRAY-I is a simple machine, with relatively few instructions, superfluous
calculations occur in processing conditionals. For example, if for each I we want

A (I) - expl
A (I) - exp2

if cond (1) - .false.
if cond (I) - .true.

then both expl and exp2 are evaluated and the resulting vector A is selected from expl or exp 2 on
the basis of cond - false/true respectively. This procedure contrasts sharply with sequential
machines where exp 2 may not be evaluated unless cond is determined to be true. The hardware
operations can be sketched (ref. 1, pp4-51 and pp4-71):

V0
VM

cond
VO,M

set VO to logical conditions
set vector mask if true

VI - expt

V2 - exp 2

V3 - V2!V 1 & VM

evaluate exPI

evaluate exp2

select result

with the first two operations chaining together. Figures 9 and 10 illustrate the operations of setting
the vector mask and merging. An element of V3 is selected from V2 if the vector mask (VM) bit
corresponding to that element is set, from VI otherwise.

VO
V3

VM

Figure 9
Set Mask

Figure 10
Merge Result

Macros which generate these instructions are invoked by MAX, MIN (see TABLE 2) and CVMG
(see Figure 11) functions. The complex vector merge functions summarized in Figure 11 are not
portable. Future versions of CFT will probably generate the same instruction sequences for IF
statements which perform the same operations.

DO I I s 1,3
C CVNGP selects Xl if TEST 0 , 12 otherwise

YI(I) CVNGP(XI(I),X2C1),TEsTCI))
C CVNGX selects Z I if TEST .< 0, 12 otherwise

T2(I) CVnGn(XI(I),X2(I),TEST(I))
C CVnGZ likes 1 if TEST iO,1 2 otherwise

Y3(I) * CVNGZ(XI(I),X2(I),TEST(z))
C CVNGN prefers 11 if TEST 9d 0, X2 otherwise

Y4(I) CVNGN(XI(I),X2(1),TEST(I))
C CVNGT elects 11I if LTEST is truthful

Y5(I) CVnGT(XI(I) 2(I) ,TEST(I))
C selection for each CVMG is element by element

I CONTINUE

CvMG Fm ctor

Despite their non-portability, these functions are attractive because their arguments can be any
expression, vector or scalar.

Many conditionals can be expressed by AMAX I, AMIN I etc. functions which use the mask/merge
hardware instructions. Where applicable, the MAX/MIN conditionals are preferable to the CVMG
functions because they are ANSII standard FORTRAN. An illustration of this can be seen in
Floyd's algorithm in section 4.3.

3.3 Compier diredtr.s

Figure 2 and Figure 8 have examples showing dependencies amoung array elements inhibiting the
generation of vector instructions. A progammer who is wiser than the compiler may wish vector
instructions to be generated anyway. Several 'comment line' directives exist for CFT to control
vector compilation. Beginning with a 'C' in columti 1, these directives are treated as comment lines
by other Fortran compilers.

CDIRS IVDEP tells CFT to ignore the apparent vector dependency in the next
inner DO-loop.

CDIRS NOVECTOR = n turns off generation of vector code for all loops with
iteration counts less than n +1 if n is known at compile time. NOVECTOR is a
switch and applies to all successive code compiled until this switch is toggled. If n is
not specified, all vector code is suppressed. A variable n is not allowed.

CDIRS VECTOR toggles NOVECTOR and NORECURRENCE (see below)
directives, and causes resumption of vector code generation.

CDIRS VFUNCTION fname instructs CFT that there exists a 'call-by-value'
external vector function fname written in CAL with conventional linkage. See ref.
2, pp. (3)1-18 and Appendix F. Function fname is then used like any intrinsic (e.g.
SIN, EXP).

CDIRS NORECURRENCE - n switches off vectorized reduction operations for
DOloops with iteration counts less than n +1 if n is known at compile time.
NORECURRENCE is a switch and applies to all successive compilation until
toggled by a VECTOR directive.

CDIRS NEXTSCALAR switches off vectorization for the Inet DOloop only.

Compiler directives are not enabled unless the ON - E option is used in the CFT control statement
(ref. 2, p. (3)1-1). This option is default at Murray Hill Computer Center. An example of IVDEP
usage is illustrated in section 4...

o11 r

- 12 -

4. CHOOSING YOUR ALGORITHM

In this section are a number of examples to illustrate the material discussed earlier. Unfortunately,
the examples are microscopic and do not indicate global strategies for attacking large problems. A
modular approach to larger calculations still demands attention to detail at the subroutine level,
however. Some very useful timing information at a global level can be obtained using the
FLOWTRACE option of CFT (ref. 2, pp. (3)1-5 and pp. (3)1-20,23). The total time spent in each
subroutine, the percentage of the total time, and some overhead information is computed and printed
by FLOWTRACE. The subroutines presented here frequently represent important kernels:

1. Section 4.1: Outer products versus inner products - a linear digital filter.

2. Section 4.2: Inner product formulations, discussed in 2.3 - a Toeplitz matrix solver.

3. Section 4.3: Conditional statements discussed in section 3.2, with an example of Floyd's
minimum path algorithm.

4. Section 4.4: Maximizing the inner vector length to make the most efficient use of the vector
capabilities - a sample Fast Fourier Transform.

5. Section 4.5: Eliminating vector dependencies, noted in Figure 2, and examples 3 and 4 of
Figure 8.

a. A Gauss-Seidel relaxation step.
b. A Red-Black relaxation.
c. A multiple tridiagonal solver.

6. Section 4.6: Indirect addressing noted in example 5 of Figure 8 - the problem with sparse
matrices.

4.1 Outer products - a linear digital filter

A simple non-recursive digital filter is a convolution of time series data (d) with a small number of
filter coefficients (a). Seismic data, for example, typically has about 2000 points per trace and
requires 50 to 100 filter coefficients. Output f is

fi - akdj+k-1
k-i

where 1 j n-m, I<j+k4n. Data d has n+1 points while the output f, containing less
information, has n-m+l points. There are two ways to go here: (1) for each point j sum the k
elements, or (2) for each new k add all the j's from all the previous k's. Figure 12 and Figure 13
represent the dot-product method and outer-product method respectively.

DO I J , 1,N-M+1
F(J) O0

DO I K 1,M
F(J) F(J) + A(K)*D(J+K-1)

1 CONTINUE
Figure 12

Dot-Product Method

DO 1 J - 1,N-M+1
1 F(J) = 0

DO 2 K * 1,M
DO 2 J = 1,N-M+1

F(J) = F(J) + A(K)*D(J+K-1)
2 CONTINUE

Figure 13
Outer-Product Method

- 13 -

In the above example, or that of matrix multiplication (ref.4), or Gaussian elimination (ref. 5) outer
product procedures are generally more efficient. On the Murray Hill CRAY-I (for N-2000,
M -100), Figure 13 runs in half the time of Figure 12, precisely for the reasons given in section 2.3.
Both examples compile to vector object code.

If the number of elements to be processed by an outer product method gives a short vector length
while a dot product procedure gives a much longer one, the differences may be slight or the converse
of the above argument may be true. Clearly, a dot-product is not efficiently done as an outer-
product of length one. Some procedures are dominantly reduction operations as the next example
shows.

4.2 ILer products, a symetric Teplitz matrix

An n xn symmetric Toeplitz matrix T with n independent elements has T~j- ti'-A+, for
I (iJ n. Each element of linear array t is used to form a pair of symmetric diagonals. The
following solution (Figure 14) of the linear system Tx - y is due to Levinson (ref. 6) and requires
an operation count a n2. The method is similar to conjugate gradient and uses a work space (C) of
dimension 2n.

In Figure 14 the bulk of computation is in dot-product operations computing local variables CIN,
CID and XN, XD. In subroutines CSOLV and XSOLV, re-labeling variables C(1) as CI and
-X(M +2) as SX eliminates apparent dependencies. The vector length of each loop increases each
iteration I m n. Segment overhead (see section 2.2) is constant, and for short segments
becomes appreciable. In this example there is no know way to avoid functional unit overhead for
short segments. In the example of an FFT in section 4.4, an increasing or decreasing vector length
can be dealt with effectively, but not in the present case. Nevertheless, this O(n2) algorithm is very
efficient because every loop is in vector mode. It inverts a 256 dimensional system in 17
milliseconds, but requires 77 milliseconds in scalar mode (i.e. OFF--V option of CFT, see ref. 2, p.
(3)1-1).

4.3 Floyd's algorithm, remomng the IF statemeats

The following shortest path through a network algorithm is due to Floyd (ref. 7). In Figure 15, the
inner-loop IF and CVMG statements are 'commented out' to give alternate calculations of m),k
shown by the 'C - ' lines. Initially, mjA is the length of a direct link from point j of a network to
point k. If no direct link exists, mj,k is assumed to be initially 1010 - c. On exit, mJ, contains the
length of the shortest path from j to k. In Figure 15 the array M is of positive integers, but this is
not essential - substituting AMIN1 for MINO deals with positive reals. It turns out that the
introduction of the integer, variable T is necessary. If M(J,I) were used instead of T, the compiler
would flag the inner loop as a dependency situation - M (J,I) might be overwrittent when K - I in
the J-th column - and the new M (J,I) would be used for K > I. This will not happen as a result of
the semantics, not the syntax; namely, the positive array element M (J,I) will not be overwritten by
M(J,I) + M(I,J) - 2*M(J,I). The CVMGM function is equivalent to MINO, and vectorizes. Use
of the IF-test replacement in lieu of CVMGM or MINO for N > 10 gives a non-vectorizing
subroutine taking 5 times longer.

4.4 Au FFT - maximiziag the aer vector le.gth

In their original paper, Cooley and Tukey (ref. 8) noted that their decimated procedure for
computing discrete Fourier transform is a parallel algorithm. The following variant of a power-of-
two transform on complex data is due to Temperton (ref. 9). It is ordered, requiring no bit-reversal
because of decimation. The price paid for ordering is a work space the same length .as the input
array. A pipelined computer permits only a bit-reversed algorithm for in-place computation. A
careful examination of the following signal flow diagram (Figure 17) shows that only simultaneous,
distinct from asynchronous, storage of output at each of the log 2n steps would permit an ordered out
algorithm to be done in place. A bit-reversed eight point output vector has elements numbered 0, 4,
2, 6, I, 5, 3, 7 - easily seen by writing out the three bit numbers.

e 14 "

SUBROUTINE TOEPLITZ(N,X,Y,C,T)
REAL CC2*N),TCN),XCN),YCN)

C
XCI) a YC1)/TCI)
CI) * T(2)/T(I)

C
C NEXT N-1 RECURSIVE STEPS INCREASE THE VECTOR LENGTH
C

DO I 14 * O,N-2
IPF (N.AND . I) . EQ . 1)THEN

CALL CSOLV(M,CCN+1) ,C(1) ,T)
CALL XSOLV(N,X,Y,C(N+~1),T)

ELSE
CALL CSOLVCI4,C(I),C(N.I) ,T)
CALL XSOLVCI4,X,Y,C(I) ,T)

ENDIF
I CONTINUE
RETURN
END

SUBROUTINE CSOLV(14,C,CC,T)
REAL C(1) ,CC(1) ,T(1)
IF(14.LE. O)RETURN
CIN a T(14.e2)
CID a T(I)
DO I I a 144

CIN a CIN - CC(I).'r(I+I)

CID a CID - CCCI)*T(M+2-I)
1 CONTINUE
CI) a CIN/CID
CI a C(1)

DO 2 I s 2,1
CCI) a CC(I-I) - C1.CC(M+2-I)

2 CONTINUE
RETURN
END

SUBROUTINE XSOLVCM,X,Y,C,T)
REAL CCI) ,T(I) ,X(I),YC(1)
XN a Y(M+2)
XD a T(I)
DO 1 I a 1,14+1

XN a XN - XCI).TC14+3-I)
I CONTINUE
XCM+2) a XN/XD
SX '-X(M+e2)

DO 2 I a 1,14+1
XCI) a X(I) + SX*C(I)

-15.

SUBROUTINE FLOYD(K,K)
INTEGER K(N,N),S,T

C IMF IS EFFECTIVELY INFINITE BUT DOESN'T OVERFLOW

IN! " 10+".10
C

DO I I " 1,N
DO 1 7J*"1,N

T N(J,I)
IF((T.LT.INF).AND.(I.NE.J))THEN

DO 2 K IN ,
S T + (I,1)

C ------------ IF(S.LT.N(J,K)) K(J,K) " S

C ------------ K(J,K) u CVNGKCS,K(J,X),S-K(J,K))
K(J,K) u INOCS,M(J,K))

2 CONTINUE
ENDIF

I CONTINUE
RETURN
END

F u . 15
Mimi...r P~th

a C

d

STEP I STEP 2 STEP 3

Fire 16
Comutattiom Box

Each box in Figure 17 calculates complex numbers c
For a box labeled k, the arithmetic is

Figure 17
Sipal Flow Diagram

and d from inputs a and b as in Figure 16.

c-a+b
d - wk(a - b)

(cqn. 1)
(eqn. 2)

where w is the n-th root of unity. In fact, examination of Figure 17 shows there are two possibilities
for vector computation of eqn. I and 2. The first can be seen at step one " the column of boxes to
the left. Reading the elements wk from memory as a complex vector gives

-16-

C -A + B (eqn. 3)
D - W (A - B) (eqn. 4)

where W contains n/2 elements (wk, k - 0,1,2,3 in the eight point example above). Vectors A and
B are vectors of a's and b's respectively, C and D similarly. Vector multiplication in eqn. 4 is
element-by-element. At step two, these vectors are now of half-length, with W containing every
other wk ((wo, w2) in Figure 17), but eqns. 3 and 4 are executed twice. Boxes one and three are
computed first, then boxes two and four using the same W. At step three, the lengths of the vectors
are halved again with eqns. 3 and 4 executed four times (vector length 1, W - (w °), in Figure 17)
and so forth if n is larger.

An alternate method is to read the wk elements as complex scalars

C - A + B (eqn. 5)
D - wk'(A - B) (eqn. 6)

which scale the vector A - B. At the first step, vector equations 5 and 6 are executed n/2 times
(once for each k - 0,1,2,3 in Figure 17); while on the second step the length of the vectors is
doubled but only executed n/4 times. Thus, using equations 3 and 4 the vectors start with length
n/2 and shrink by half at each step to length one; while using equations 5 and 6 the vector length is
initially one and doubles at each step to n/2 at the last. The last step can be done in-place. A mixed
procedure using equations 3 and 4 for the first few steps, and 5 and 6 for the last steps maximizes
the inner vector length (ref. 10).

The computation in Figure 18 uses equations 5 and 6 to set

Y - exp (j'-1)(k-1) xk

k-1

for 1 4 j (n. Driver CFFT toggles between arrays X and Y. Complex vector W contains the n/2
elements (exp (2rik/n) for k - 0,1,2,...,n/2-1), which must be pre-computed. Using the vector SIN
and COS functions, the calculation of W adds about 40% to the computation time.

Turning the DO 1 and DO 2 loops inside-out in STEP, with appropriate provisions for the
increments 12 and 13, computes the transform using the eqns. 3 and 4. This alternate version of
STEP is given in Figure 19. Notice here that W is read as a vector by steps of 12 in the inner loop.
In this mode, when 12 is a multiple of 8, memory bank conflicts start to slow access (see section
2.2). Despite this technical difficulty, using the alternate form of STEP (Figure 19) for the first
four steps of the transform improves the performance, as shown in Figure 20. This plot shows the
execution time for a 1024-point complex FFT vs. the last step for which Figure 19 replaces STEP in
Figure 18. That is, in Figure 20 IBREAK is the last step (of log2 n) for which eqns. 3 and 4 are
used, with eqns. 5 and 6 used for the remainder. For transforms longer that 1024, IBREAK - 4 is
still used. The 5 millisecond improvement shown in Figure 20 does not change for longer transforms.

To conclude this section, several remarks are appropriate concerning multiple FFT's and general
radix transforms. Frequently one is interested in multiple transforms of the same length. For
example, solving Poisson's equation on a square might involve calculating 128 independent
transforms of length 128. This is easier to vectorize than the single transform case. Indeed, Figure
21 shows a variant of STEP for computing NT repetitions of step I +1 for NT transforms of length
N. The important thing to notice is that the inner loop has a fixed repetition count - namely NT.
The importance of this concept - using the inner loop to run over the independent cases - cannot be
overstated for vector computing.

In Figure 21, the subscripts ranged by L treat the rows of X(NT,N) as independent. Similarly, to
transform the columns independently, turn the (L,J)'s into (J,L)'s everywhere. Padding the leading
dimensions of X and Y by one row will avoid memory-bank conflicts when the leading dimension of
X and Y is a multiple of 8.

" 17-

Although we have only discussed radix 2 transforms (N is a power of 2), it turns out that otherradix transforms have some advantages. In part due to memory-bank conflicts, binary radixtransforms are less efficient than those of radix 3 or 5 (see ref. 10), which in some cases have nearly
twice the processing rates.

SUBROUTINE CIT (N, X,TY,VW)
COMPLEX X(N) ,Y(N) ,V(N/2)
LOGICAL ITGLE

C N is LOG2(N), computed using the leading zero count
M " 63 - LEADZCN)
U2 " 1
ITGLE *"OTRUE.

C
CALL STEP(N,12,K(I) ,X(N/2+1) ,Y(1) ,Y(12+1) ,W)

DO I I " I,M-2
U2 " 2+"I

ICITGLE)TNEN
CALL STEP(N,12,Y(1) ,Y(N/2+1) ,X(1) ,X(12+1) ,W)
ITGLE " F1ALSE.

ELSE
CALL STEP(N,I2,X(I) ,X(N/2+1) ,Y(1) ,Y(12+1) ,W)
ITGLE " .TRUE.

ENDIF
I CONTINUE

C
12 " N/2

I (ITGLE)THEN
CALL STEP(N,I2,Y~t),Y(N/2+I),Y(I),Y(12+I),W)

ELSE
CALL STEP(N,I2,X(I),X(N/2+I),Y(I),Y(12+1),W)

ENDIF
C

RETURN
END

SUBROUTINE STEP(N,12,A,B,C,D,W)
COMPLEX A(1),B(I),C(I),D(1),W(I)

C
13 a 2+I2
M12 a N/13
DO I J m O,N12-1

JW " I + J+I2

JA a JW
JB " JA
JC a I1+J.13
JD a JC

C
DO 2 K * 0,12-I1

m 18

SUBROUTINE STEP(N,I2,A,BC,DW)
COMPLEX APB,AM3,A(1) ,B(1.),C(1) ,D(1) ,W(1I)

13 a 2+*12
f12 *afN113

DO 2 K a 1912

DO 1 3 a
APB s
AND s
CCX +
DCX +

CONTINUE

2 CONTINUE
RETURN
END

z

Ow

z. 3
0&.

J2

WO
0

O MI 2 -1
ACM + J12)
AC K + 3*12)
J.13) s APB
J+I3) * WCX

+ B(K + 3.12)
B (1 + 3;12)

+ J.12).AMB

Figure 19
Alterate Version of STEP

0 9 0

0 1 2 3 '4 5 6 7 8 9 10
CROSS-OVER STEP FOR INVERTED

LOOP (IBREAK)-.a

Figure 20
Execution Tim vs. Crossover

m19-

SUBROUTINE STEP(NTN,12,A,B,C,D,W)
COMPLEX A(NT,1),B(NT,1),C(NT,1),D(NT,1),W(1)

C
13 2.12
3112 " 3/13

C
DO 1 J 0,M12-1

J2 * J.12
J3 " 2.J2
W * 1 2 J2

C
DO 2 KX 1,12

C
DO 3 L s 1,NT

C(L,J3 + K) " A(L,J2 + K) + (L,J2 + K)
D(L,J3 + K) " W(JW).(A(L,J2 + K) - B(L,J2 + K))

3 CONTINUE
C

2 CONTINUE
C

1 CONTINUE
RETURN
END

Fure21
STEP for NT Trainfors of L ob N

45 Gettiug arosud depeedescies

When an updated element of an array is required for the subsequent calculation of an element in
the same array, the elements may not be treated independently. In CRAY-i documentation (ref.2),
this situation is regarded as a 'dependency'. In fact, because of the register architecture, two types
of dependencies exist. In Figure 22 both types are illustrated.

DO 1 I s IL,IU
C DEPENDENCE ON A PREVIOUS ELEMENT

A(I) * A(I - 10)
C OVERLAPPING STORAGE DEPENDENCY

3(1 + I) - 1.
B(12 + I) * 2.

1 CONTINUE
Fire 22

No..Vector Depedeocies

In the top example, if 10 > 0, then A(I) requires the previous value A(i - 10) to have been reset, as
in Figure 2. Hence, there is a mandatory ordering and A cannot be regarded as a vector with
independent elements. At compile time CFT cannot determine whether 10 is negative and inhibits
generation of vector hardware instructions.

Storage of B in the second part of Figure 22 may overlap if II < 12. This kind of dependency is
somwat more subtle, a result of the register architture of CRAY-. For example, try setting 11
- 0, 12 I , IL -I, ~IU - 3. The storage of a segment (B(2), B(), B(4)) - 12., 2., 2.) over the

segment fB(), B(2), B(3)) - (., ., I.) would give B - (1., 2., 2., 2.), which is not the same as
the desired B - (1., 1., 1., 2.). At compile time, if II and 12 are not knrown, CFT flags this as a
dependency case. in the following, examples are given which illustrate some ways to side-stp these
non-vectorizing dependencies.

4.5.1 Gauss-Seidel Relaxation Sometimes it is possible to find directions or subsets of multiply
dimensioned arrays in which all the elements along those rays may be treated as independent. All
the elements in one column can be regarded as independent of elements in other columns, for
example. A simple relaxation step on the interior points of a rectangular grid is shown in Figure 23.

-20

SUBROUTINE GS(U,M,N)

REAL U(M,N)

DO I I = 2,M-1

DO 1 J = 2,N-1

U(I,J) = .25e(U(I~,J) + U(I+1,J) +

& U(I,J-1) + U(I,J+i1))
I CONTINUE
RETURN
END

Figure 23
Gaus.Seidel Relaxation Step

In this figure, computation of the J th element in row I depends on the updated value of the (J -1)
th element, inhibiting vectorization. Just drawing a picture of the grid of I,J elements shows that
diagonals depend only on the updated elements of previous (lower) diagonals. Each of these
diagonals may be treated as independent, as in Figure 24.

SUBROUTINE VGS(U,M,N)
REAL U(M-1,1)
DO I I = 4,M+N-2

L * I-M
DO 1 K = MAXO(2,I-M+1)+1,MIN0(N-1,I-2)+1

U(L,K) = .25.(U(L-1,K) + U(L+1,K) +
& U(L-M,K) + U(L+M,K))

1 CONTINUE
RETURN
END

Figure 24
Vector Gauss-Seidel Relaxatio. Step

Scanning by diagonals has the disadvantage that the vector length in the inner loop keeps changing.
For very small iteration counts (1 or 2), the overhead to fill the functional unit pipelines is
appreciable. Nevertheless, Figure 24 runs five times faster than Figure 23 if N,M > 100.

4.5.2 A red/black ordering A method asymptotically equivalent to the above is a red-black
ordering. Figure 25 illustrates a simple red/black relaxation step, which has two additional features:
use of the IVDEP directive, and parsing to minimize memory fetches. Within the DO 2 and DO 4
inner loops, the last pair of points in each equation is shared, eliminating two additional fetches.
This example runs at 70 million floating point operations/second. A relatively easy modification of
Figure 25 for Poisson's equation (not Laplace's equation, as above) performs floating point
operations faster than the 80 megaHertz clock. This modification requires a relaxation parameter
o ;# and a 'source' term. Because of the additional computations, the operation rate actually goes
up.

-21-

SUBROUTINE RB(U,N,N)
REAL UCNN)

C --- RED POINTS ---

CDIR$ IVDEP:
DO I J 2,N-32,2

C
DO 2 * a2,N-2,2

UCK ,J;) * .25.(UCK-1,J) +(UC ,J-1)+
& (UCK+1,J) + U(K ,J+1))))

U(K.1,J+1) u .25.CU(K+2,J+1) +(U(K+1,J+2)+
& (U(K+1,J) UK ,J+1))))

2 CONTINUE
C

1 CONTINUE
C ---- SLACK POINTS
CDIRS IVDEP

DO 3 J 2,N-2,2
C

DO 4 K n 3,N-1,2

U(X ,J) * .25.(U(K ,J-1) .eU(K+1,J)+

& (U(K-1,J) + UCK ,J+1))))
U(K-1,J+1) * .25.CUCK-2,J+1) (U(K-1,J+2)+

& (U(K-1,J) + U(K ,J+1))))
4 CONTINUE

C
3 CONTINUE

C
RETURN
END

FIgure 25
Red-Black Relaxation

4.5.3 Tridiagonal systems In both the forward elimination and back-substitution steps in the
solution of a tridiagonal linear system, each element depends on its predecessors. To solve a single
tridiagonal linear system by a parallel or vector algorithm represents a problem of some difficulty.
There are several approaches: Buneman's variant of cyclic reduction (ref. 13), Stone's recursive
doubling (ref. 14), and a parallel Cramer's rule method by Swarztrauber (ref. 15). The fastest of
these methods on CRAY-I is cyclic reduction (ref. 16). Unfortunately, each method relies on a
recursive doubling of step size in memory, while halving the vector length of each operation, and
vice-versa. Because of overhead introduced by short vectors, and memory-bank conflicts inherent at
each stage, even cyclic reduction runs only twice as fast as a simpler scalar method (ref. 17) for
very large problems. In fact, a'simple scalar.tridiagonal solver is faster than cyclic reduction for
solution vectors of length less than 63. Since this not a delightful result, let's sidestep the issue and
do another problem.

Multiple tridiagonal systems are'much more tractable. Block tridiagonal equations, many line-
relaxation methods,- and three dimensional problems usually need solutions to many totally
independent (unrelated) tridigonal systems. So, the more the rmerrier - now the inner loops can be
made to range over each unrelated system in turn.

-22-

SUBROUTINE MANYSOL(M.N,L,D,U,Y,X)

REAL L(N-1),D(N),U(N-1),Y(M,N),X(M,N)

C
C SOLVES M SYSTEMS OF TRIDIAGONAL EQUATIONS
C
C A*X uY
C
C WHERE COMMON TRIDIAGONAL MATRIX A OF THE EQUATIONS
C HAS LOWER DIAGONAL L, UPPER DIAGONAL U, AND
C MAIN DIAGONAL D. MATRIX A IS N BY N. D AND Y
C ARE MODIFIED.
C

DO I I - 2,N
T * L(I)/D(I-1)
D(I) * D(I) - T*U(I-1)

C
DO 2 J * 1,M

Y(J,I) * Y(J,I) - T*Y(J,I-I)
2 CONTINUE

C
I CONTINUE

C
DO 3 J a 1,M

X(J,N) * Y(J,N)/D(N)
3 CONTINUE

C
DO 4 I s N-1,1,-1

C
DO 5 J * 1,M

X(J,I) -s (Y(J,I) - U(I)*X(J,I+I))/D(I)
5 CONTINUE

C
4 CONTINUE

C
RETURN

END
Figure 26

Mauy System Tridiagoal Solver

Once again, it must be emphasized that using inner loops to range over identical operations on
independent data or systems is the key to successful vector processing. Indeed, using the above
procedure to solve 100 tridiagonal systems of length 100 is 13 times faster than solving. 100 one at a
time. If each system has a different matrix, Figure 26 is easily modified for this purpose.

4.6 Sparse matrices - nonlinear indexing

Most general-purpose sparse matrix solvers (ref. 18) keep pointers to non-zero elements. Allocating
storage only for non-zero elements and potential fill-in minimizes both memory requirements and
the number of null operations. All six (ref. 19) forms of Gaussian elimination require a compression
and decompression of rows or columns into indexed lists as the elimination proceeds. For example,
the most efficient form of elimination (ref. 20) has the following reduction step on the working row.

DO 1 I * IL,IU
Y(INDEX(I)) * AeX(I) + Y(INDEX(I))

1 CONTINUE
Figure 27

Sparsey :- ax + y Operatio

Here, Y is the working row, X is any lower packed row with INDEX an array of pointers to the
positions of X in its expanded form. For an arbitrary sparse matrix, INDEX will not point to
regularly spaced elements.

23.0

This is a difficult problem with no vector hardware solution. At present, only CAL-Coded modules
can manage to approach vector-mode floating point operation rates. The following operations are
available for sparse matrices on CRAY-i with the 1.10 CFT software release.

DO I I "1,13

C SCATTER OPERATION
T(INDEX(I)) " X(I)

C GATHER OPERATION
(II) " X(INDEX(I))

C SPAXPY OPERATION
Y(INDEX(I)) " A.X(I) + Y(INDEX(I))

C SPARSE DOT-PRODUCT
SPDOT SPDOT + Y(INDEX(CI))X(I)

I CONTINUE
Figure 28

Sparse O-eradowa

Respectively, the calling sequences for these modules are as follows.
CALL SCATTER(N,Y,INDEX,X)
CALL GATHER(N,Y,X,INDEX)
CALL SPAXPY(N,A,X,TINDEX)
DOT * SPDOTN,Y,INDEX ,X)

FiXure 29
CAL Spane Opriom

For N > 5, all these subprograms are more efficient than in-line Fortran. For large N these
modules give a factor of 3 timing improvement.

W . 3e.? can
MH-45231-WPP-wpp W. P. Petersen

Atts.
Attachment 1 - List of References
Attachment 2 - Index

- 24

LIST OF REFERENCES

1. Cray Hardware Reference Manual, Cray Res. Publ. 2240004.

2. Cray Fortran (CFT) Reference Manual, CRI publ. SR-0009 version 1.10, revision H (ANSII
standard).

3. CAL Assembler Reference Manual, CRI publ. SR-0000. (Cray Assembly Language)

4. W. Petersen, "MXM - unit spaced fast matrix multiply," CRI technical note SN-0213, Dec.
1980.

5. K. Fong and T. L. Jordan, "Some linear algebraic algorithms and their performance on
CRAY-," Los Alamos Scientific Laboratory Report LA-6774 (University of California report
#UC-32), June 1977.

6. N. Levinson, Journal of Mathematics and Physics, Vol. XXV, No. 4, January 1947, pp. 261-
278.

7. Robert W. Floyd, "Shortest path," Algorithm 97 - Communications of the Association for
Computing Machinery, 5, 345(1962).

8. J. W. Cooley and J. W. Tukey, "An algorithm for machine calculation of complex Fourier
series," Math. Computation, vol. 19, pp. 297-301, April 1965.

9. Clive Temperton, "Mixed-radix fast Fourier transforms without reordering," European Centre
for Medium Range Weather Forecasts - Technical Report #3, February 1977.

10. W. Petersen, "CFFT2 - complex fast Fourier transform binary radix subroutine," Cray
Research Inc. Technical Note 2240203, March 1978.

11. Clive Temperton, "Fast Fourier transforms on CRAY-I," European Centre for Medium Range
Weather Forecasts - Technical Report #21, January 1979.

12. D. M. Young, "Iterative Solutions of Large Linear Systems," Academic Press, New York
(1971).

13. O. Buneman, "A compact non-iterative Poisson solver," Stanford Univ. Institute for Plasma
Research - Report #294, (1969).

14. H. S. Stone, "An efficient parallel algorithm for the solution of a tridiagonal system of
equations," J. Assoc. Computing Machinery, vol. 20, 1973, pp. 27-38 (1973).

15. P. N. Swarztrauber, "A parallel algorithm for solving general tridiagonal equations," Math.
Computation, vol. 33, No. 145, pp. 185-199, January 1979.

16. P.N. Swarztrauber, private communication.

17. R. Penumalli, private communication.

18. B. Dembart and K. Neves, 'Sparse triangular factorization on vector computers', in Exploring
Applications of Parallel Processing to Power System Analysis, Electric Power Research
Institute Report EL-566-SR, October 1977.

19. S.C. Eisenstat, M. H. Schultz, and A. H. Sherman, "Considerations in Design of Software for
Sparse Matrix Computation," in Sparse Matrix Computation, J. R. Bunch and D. J. Rose
editors, Academic Press, 1976.

20. D. S. Dodson and W. Petersen, "Sparse triangular factorization on CRAY-1," Cray Research
Inc. Technical Note SN-0217, June 1981.

- 25 -

INDEX

KEYWORD

ANSII standard
block
BUFFER IN/BUFFER OUT
CAL
CALL statements
CDIRS
CFT control
chaining
character data
CII
clock period
compiler directives
concurrent operations
conditional statements
constant increment integer
Cray Assembly Language
CVMG functions
cyclic reduction
dependencies
digital filter
division
DO loop
dot products
double precision
FFT
floating point
floating point functional units
FLOWTRACE
Floyd's algorithm
formatted I/O
Fourier transform
GATHER
Gauss Seidel relaxation
GOTO
IF
independent elements
independent operations
indexing
inner products
inner vector length
integer data
intrinsic functions

PAGES KEYWORD

11 I/O
6 I/O block sizes
5 IVDEP

9,11,13 loop invariant
2 loops

11,21 machine instructions
11,12,13 masks
3,4,5,10 MAX/MIN functions

6 memory access
7,8,9 merges

2,3,5,6,20,21 network
11,20 outer products
3,4,5 overlap

10,11,13,15 pipelined functional units
7,8,9 products

9,11,23 reciprocal approximation
10,11,13,15 recursive doubling

21 red black methods
2,19,20,21 reductions

12 regular spacing
4 relaxation

1,6-9,12,13,19 residual segment
5,12-14 S registers

6,7 scalar mode
12,13-19 scalar registers

3,6,20 SCATTER
3 segments

12 sparse matrices
12,13,15 SPAXPY

5 subscripts
12,13-19 sums

22,23 superfluous calculation
19,20 Toeplitz matrix

2,6,10 tridiagonal systems
2,10,13,15 unrolling loops

1-3,19 V registers
3,4,19 VECTOR BLOCK

5,7,8,9 vector length
5,6,8,12,13,14 vector mode

6,13-19 vector registers
3,6,13,15 VL register

6,7 VM register

PAGES

5
5

11,21
7-9,13

1,6-9,12,13,19
2-4,10

3,10,11,13
7,10,11,13,15

1,3-5,13,21
10,11,13,15

13,15
12

3-5
3-6

6
3,4
21

12,20,21
5,6,11,12,14

1,7
12,19-22

1
2-6

1,2,9,11,13,22,23
2-6
23

1,19
22
23

7-9,22,23
2,5,6

1,2,10-11,13,15
12-14

12,21,22
1

2-6,10

1,3,12-19
1-3

2-6,10
1

3,10

fh;

The Ie~d

Issued by the
National Center for Atmospheric Research
Scientific Ciotputing Division
P.O. Box 3000
Boulder, Colorado 80307

SOMER$ BAKBRB
Mesa Lab

iou4CAR L) (MAIL R[O)4

Non-Profit Organization
U.S. POSTAGE PAID
Boulder/Colorado
Permit No. 558

