
NAME

PURPOSE

ACCESS CARDS

USAGE

COMoON BLOCK
LINKAGES

PAGE 1

GENPR0-2 MNGR f,[)DULE REVIEW OUTLINE

MNGR

MNGR reads data card packets containing control information necessary

for overall processor control and for individual operation control.

ttlGR also generates files containing control information for these

individual operations end initializes and tests arrays and pointers
for the processor.

*VOLUME,NUNIT,VSN=P04290,STAGEIN=RT,CONV=TB,DS=600,
STAGEOUT=ZT

FETCH,S=NUNIT,SN=MNGR

(NC1fE: NUNIT is the logical unit number assigned to
the volume. Also, IFTRAN control cards are
required.)

CALL M'lGR

This module requires that certain .REPL cards be pre-specified.

(See DRIVER Module review outline.) In addition: .REPL/$NPAR/-··/,

the total nunt,er of parameters for this flight. The dimension of

K.IST .

• REPL/$ED1Tl/--·/, the keyword used for insert-type editing done on

the order list in the data packet for a given operation .

• REPL/$EDJT2/---/, the keyword used for replace-type editing .. .

• REPL/$EDIT3/---/. the keyword used for Delete-type editing .. .

This 110dule requires that certain .SAVE Blocks be specified. (see

DRIVER Module Review Outline.) ln addition: .SAVE OPFLWT, .SAVE

OPFLRD, .SAVE WRFIL.
•

DESCRIPTION

INTRODUCTION

OPERATIONS

CONI'ROLS

PAGE 2

As 111entioned previously, MNGR reads data card packets containing

control infonnation necessary for overall processor control and

for individual operation control. All data cards are read with a

free-form input routine.

Operations are of two types: Transformation and snapshot (T-OP and

S-OP). Transfonnation Operations actually change and store the

data processed \by them. Examples of Transformation-type Operations:

Input, Calibration, Filtering, ..• Snapshot Operations however, leave all
data unchanged. Examples of Snapshot Operations: Plotting, Print-

ing, Tape Writing, Statistics, •..

Control Information is categorized in two types: General controls

and parameter-linked controls. Parameter-linked controls are of two

types: Standard and Non-Standard.

Both the DRIVER and the OPERATION rrodules have general control data

packets. General controls specify how processing is to be done

overall. For example, General Controls might tell a rrodule: when to

begin processing data, how many cycles of data to process at a time,

how many cycles of overlap are required, whether or not this is a

transfonnation operation or a snap-shot operation, how many para-

aeters to process, .••

Only operation· 110dules require parameter-linked control data packets.

P-L controls tell the aodule how to process each parameter individ-

uaiiy.

•

DATA DECK
FORJ'il.T

PAGE 3

All parameters being processed by a given operation module have the

same nunter of standard parameter-linked controls. For example,

in an INPUT operation module some standard P-L controls might be:

where in the input frame to pick up samples for a parameter, how

to decode this parameter, ••••• However, some modules require more

infonnation about some parameters than others. For example, in a

CALIBRATION Operation, some parameters are source parameters (i.e.

parameters with input rates to this operation). And some parameters

are referred to as derived (i.e. mathematical operations are applied

to one or more source parameters. The result of this transformation

is a derived parameter.) It is necessary to specify which source

parameters are needed to derive this new parameter. Thus, additional

information is needed for derived parameters. This additional in-

formation is referred to as non-standard P-L CONTROLS.

The DRIVER module and all OPERATION modules require that certain

general controls be specified. All OPERATION modules require that

certain parameter-linked controls be specified. For a description

of the data specification requirements for a module see the review

outline for that module.

The D&.TA DECK is made u~ of several sets of data cards. Each set

of cards has a TERMIKATOR CARD. There are four such END-CARDS:

£HOGEN, ENDOP, ENDFlT, ENDPROC. Each end-card has a specific

function.

•

PAGE 4

ENDGEN - General control information for the DRIVER and for OPERATION

1Ddules is tenninated by the ENOGEN card,

ENDOP - Parameter-Linked Control infonnation for OPERATION roodules

is'terminated by the ENDOP card.

ENDFLT - The ENDFLT card follows the ENDOP card of the last operation

of flight. There may be several ENDFLT cards in a data deck if

several flights are to be processed. Each flight requires its

own DRIVER and OPERATION data packets.

ENDPROC • The ENDPROC card follows the ENDFLT card of the last

flight to be processed with this data deck. The ENDPROC card

tenninates the processor.

Some Rules:

1. The general controls for the DRIVER must be the first data

packet in a data set for every flight.

2. The OPERATION data packets must be in the order in which the

operations are to be perfonned on the data.

3. OPERATION data packets are made up of two sets of control cards:

General control cards and PARAMETER-LINKED control cards .

•

PAGE 5

SAMPLE DD.TA •Run

[l GENl • XXX DECK DRIVER Driver
CONI'ROI.S Controls &en 2 • YYY • • .

ENOGEN
6ENERAL 6EN1 • ?ZZ

CONTROLS 6EN2 • XYZ
OPl •

• OPl
CONTROLS ENDGEN

PARAMETER· (VAR1 • SPL1 , SPL2, ••• SPL N
LINKED VAR2 • SPLl, SPL2, .•. SPLN

ntGIT 1 CONTROLS •
CONTROLS OPl • .

ENOOP
• r • •

DD.TA OP2 ENDGEN
DECK CONTROLS L • • .

ENDOP
• • •
• .
•

OPN ENDGEN
CONTROLS • • .

ENOOP
ENDFLT

• • •

• • •
[NDFLT .

• •
n11m 11
COKTAOLS • • •

pconr
tNDPROC
*END

•

HTIALIZATION
~-INITIAL-

IZATION

EDITING

PAGE 6

Several items 1n the OP CGMM:lN BLOCK (see DRIVER Module outline)

need initialization fer each flight to be precessed. However,

once the first operation set has been encountered, the OP COMMON

BLOCK 1s saved en a file and any er all cf it may be used en sub-

sequent flights, (See flow diagram)

Editing is possible in the data package en the two types of order

lists: tt.IST found in the DRIVER controls, and VORDER, found in

the general control section cf an OPERATION data packet. All edit

cards must appear before the ENDGEN card. All edit cards apply

to the order list for the current data packet being processed.

An order list, when not specified for a particular operation, de-

faults back to the order list of the previous T-cperation. The

edit cards encountered apply to the appropriate order list. There

are three types cf edit cards: INS, REP, DEL.

USAGE:

INS= A, LIST

Insert LIST after item A,

REP CA, B, LIST

Replace A through B, inclusively, with LIST.

REP= A, A, LIST

Replace A with LIST.

DEL s A, B

Delete A through B, inclusively.

DEL s A, A

Delete A.

NCYrE: The Edit Keywords: INS,REP,DEL may be changed by modifying

.REPL statements in the' MNGR module. For a complete de-

acription of the edit cards, aee the sample data package.

- --~ -·- - ·-------- •

DEFAULTING Defaulting can be used within and between the operation data

packets.

(a) As was mentioned above, when an order list is not specified

in an operation data packet, the order list from the previous

T-operation is accessed. If edit cards are found in the data

packet, the edit cards apply to the order list that exists

for this operation, whether it is actually specified in the

packet, or has been arrived at through the default procedure.

PAGE 7

(b) In Transformation operation data packets, output RATE information

for each parameter nust be specified. In data packets of this

type, RATE is specified (RATE=X). All parameters following

this RATE card and preceding the next rate cards have RATE X.

Sometimes it may be desirable to use RATE information from

the previous T-OP for some or all of the parameters for this

operation. If this is desirable, let RATE=DFALT. Then, all

parameters following this card and all un-specified parameters

(i.e. parameters found in the order list for this operation

and not specifically referred to in the parameter-linked

control section are called un-specified parameters) will

take on their rate from the previous T-OP. (For an example

of how the RATE card is used, see the sample data package). The

RATE card may be used an unlimited nurrber of times and can

only be used between the ENDGEN and the ENDOP card.
(c) In every operation packet in the parameter-linked control section,

all parameters have one or in:,re controls specified for each of them.

The DFALT•LIST card is used in a similar 11111nner as the RATE card.

However, there are slight differences.

•

llEFAIA. TING

D!X•tlST

PAGE 8

The DFALT card also may be used an unlimited nunter of times be-
tween the ENDGEN card and the ENDOP card. If parameters
require the DFALT information, they will use the preceding
DFALT card. Any parameters in the order list and not specified

at all between the ENDGEN card and the ENDOP card will take on the
control list of the last DFALT card. Only standard parameter-linked

controls may use the DFALT card.
Example: DFALT • A, B, C

VARl • D, D, 1.0

VAR2 • 3, D, D

VAR3 • 5, 7.3, D

DFALT " Q, R, S

VAR4 • l, D, 9.2

The controls linked to VARl are:

VAR2

VAR3

VAR4

A, B, 1.0

3, B, C

5, 7.3, C

l,R,9.2
(NorE: Any parameters contained in the order list, VORDER, and not

found in the Parameter-Linked control section will use the

last RATE specified for their rate and the last DFALT speci-

fication for their controls. For a more complete example,

see the sample data packet,)

Many operations require additional control infonnation for some

of their parameters. This additional information is referred to
as non-standard parameter-linked control information.
EXAMPLE: DFAL T • A,B, C

DIX • NSCl, NSC2, NSC3
VARl • D, D, 1.0

•

DIX .. LIST

MGRNC

VAR2 "' 3, D, ·t>
HSC2 "' 'DEG C'

VAR3 • 5, 9, 3.0

VAR4 "'2, d, 1.0
NCS1 "'4.3, 9,2

HSC2"' 'SPEED IN MIS'

VARS"' D,O,D

NSC3"' F3.2
The controls linked to each variables are:

VARl - A, B, 1.0

VAR2 - 3, 8, C, ltSC2, Speed in M,/s

VAR3 • 5, 9, 3.0

PAGE 9

VAR4"' 2, B, 1.0 NSCl, 4.3, 9.2, NSC2, Speed in M,/s

VARS"' A, B, C, NSC3, F3.2
Non-Standard parameter-linked control names must be specified in
a DlXsLIST statement, where list is the list of non-standard param-

eter-linked control names. The OIX•LIST card 111ay be found any where

between the EflDGEN card and the ENDOP card.

MGRNC is an internal flag set by MNGR. MGRNC is initialized to

zero when llllGR 1s entered the first time. When the first ENOFLT

card is encountered, all initialization in the OP CQHlo[)N BLOCK can

be completed. The original OP CO!itON BLOCK initialization is accom-
plished partially by the user through data cards, and partially

by the ~GR 1r>dule. Once the OP COlf,ON BLOCK has been initialized,

the entire CCllll!Dn block is written out to a file and saved. MGRNC
is then set to l. For fights 2 through Nit ts up to the user whether

or not to use any or all of the previous OP COfotON BLOCK for the
next flis,it. (See flow charts and logic diagrams)

•

MGRNC

ERRORS &
DIAGNOSTICS

CO!f,!ON BLOCKS

SUBROUTINES
WITHIN THIS

MJDULE

PAGE 10

Jf the user specified elements of C0""10N OP have not been defined

in the DATA DECK, then the pre-existing values in the OP COMMON

BLOCK, as found on the file, will be used. Thus, any or all of the

OP COl+ION BLOCK of the previous flight may be used by the next

flight. Each time an ENDFLT card is encountered the OP COf'tlON BLOCK

is written out to a file.

Consistency checking of control infonnation will be accompanied

by diagnostic messages and/or error messages.

The ltlGR module uses .SAVE blocks to specify coTITT10n blocks. See

the DRIVER Module Review Outline for the coTITT10n blocks needed by MNGR.

BOOKKPR - Sets up some bookkeeping arrays for the OPERATION control

files.
CYCSET - Sets negative nurrbers found in the arrays: NCYCSV, NCYCST,

HCYEND to nurrbers which will cycle the data through the operation

set in an optimum manner.

DMTST - Determines under and over dimensioning conditions based on

the .REPL cards. Determines array size requirements.

DLT2 - Deletes information from a list.
ffiCHI · - Locates an item in a list by testing every word in the list.

fETCHZ - Locates an item in a list by testing only the array header

l'!lffleS wit~in the~ list •.. (Note: FETCHl and FETCH2 are utility 'l'Ou-

tines available to the Operation modules to find specific items on

their respective control files.)

CETNUM - A routine fn the READLX package. Decodes hollerith strings

into numeric tnfonnation.

,

SUBROUTINES
NOT CON-

TAINED IN
THIS KHX.ILE

INITIO - An 1n1t1al1zat1on routine. l'AGE 11

INSRTZ - Inserts information into an existing list.

LEXCARD - Part of the READLX package. Reads and prints each card.

LEXCON - Part of the READLX package. Sets up the tables for REAOLX

. so that when data 1s encountered, READLX wil 1 know where to put

it, bumping the appropriate counters and pointers.

MNGR - Reads in the data card packets. Sets up preliminary file

information. Some initialization.

llANFIL - Generates the control random files for each operation.

READLX - A free-format input routine.

RP2 - Replaces existing information in a list with new information.

SEA~CH - Sets up old and new rate and order information, and old index
information for the control random files.

TESTLX - Part of the READLX package. Tests whether or not to read

a new card.

BRANRD, BRANWT, BRANCK - System library routines implemented

through .SAVE blocks. (See DRIVER Module Revie'</ Outline).

OUTPUTC, EXIT - System Resident Routines.

MOVEC(AR1,AR2,NUM) - An ASCENT routine which moves memory contents

from one apace to another.

Access

'
ARl • Data 1s ll'DYed from this location.

AR.2. Data 1, ar:>ved to this location.

11\JM - The nunt>er of points to IIWJYe.

~SCENT, S•ULlB, N=t:JJVE

•

INPIJT/01.TTPUT
JNPUT DATA

PACKAGE
OUTPUT

MULTIPLE
ENTRY

CAPABILITY
& RAMIFI-

CATIONS

METHOD

TIMING

TEST REQUIRE-
MENTS

SPECIAL
CONDITIONS
OR RESTRlCTIOKS

REC()lti!ENDATIOHS

PAGE 12

See attached sample data package listing end description.

All input data is printed out es it is encountered on unit KCHECK.

DIAGNOSTIC & ERROR MESSAGES - When there ere missing controls or
control incompatibilities, diagnostic end/or error 111essages ~ill

be. printed out on unit KERR.

RANDOM FILES - (see attached random file description and list-

ing). All operations will have en associated random file

containing 111 control infonnation for that operation. These
files will be accessed using the .SAVE blocks, WRFIL and RDFIL.

Tlic control file for each operation is printed out on unit KCHECK.

The ~GR ll'Odule may be re-entered an unlimited nurrber of times.

The end card ENDPROC terminates the processor. Until the

[NDPROC card is encountered, en unlimited nurrber of flights may
be processed.

See the attached flow diagram.

Test for c»ntrol consistency and completeness. Test initial-

ization/re-initialization procedures.

Machine Dependence

O.S. Dependence
Portability

MOVEC, BRANRD, BRANWT

yes

An,y defaulting other then RATE defaulting on parameter-linked
control defaulting (DFALT•) be implemented in the operation

mdule itself.
Tabular 11st of controls be output by each operation IIOdule .

•

LOGIC FLOW
DIAGRAM IN
6RAMKO.TIC
FORM

1. Some Initialization

MGRNC=O (Data Statement)
KNTOP=-1 :!

2. MGRNC=l?_Y:..:E"'"S---+
i NO

Restore COMfrJN/OP ; .. 3.

3. CALLiREADLX - Read a Data Packet
4. Test on ENDFLAG

a.

1
ENDFLAG=ENDGEN?_N""O'-" b.
Yes

l'AGE 13

Test the flags on the LEXCON variables to make sure
they have been defined.
!
Locate VORDER in CATCHALL. If not found, use VORDER

~rom the previous T-OP.

[dit VORDER if requested.
Save CATCHALL

3.
b. ENDFLAGEENOOP? _ __.:N.:.:::0 __ _

! Yes

c.

•

!NTOPsKNTOP+ l

Scan parameter-linked controls

DFALT controls when requested
L
Generate Rate Array

PAGE 14

DrALT to previous T-OP Rate info if requested.

Store all Control Information
!

Set NVARS (KNTOP)

1
3.

c. ENDFLAG=ENDFLT? __ N_o __ d.

1 Yes
All control infonnation for this flight has been read in.

t
NOPS=KNTOP

t
KNTOP=O
!

___ .,. KNTOP=KNTOP+l

CALL RANFIL
~

CALL lEARCH I
CALL BOOKKPR)

Define:

NOR (KNTOP)

NINCY (KNTOP)

l
•

Set up small work arrays in
workspace.

Generate:

RATE IN ()

INDEX IN ()

RATE OUT()
INDEX OUT ()

.•. PAGE 1 o

6enerate a File Skeleton

i
Fill in Control lnfonnation

i
Write the Control File

!
Define: NWDFL(KNTOP)

NO KNIOPcNOPS?

Define MXCON

t
CALL CYCSET if any elements of these arrays has

not been defined:

NCYCSV ()

NCYST()

NCYEND

i
CALL INITIO

Initialize some COMMON arrays:

LPII()

LPIO()

LPPRMS ()

LPRI ()

LPRO()

LPVORD()

ICY()

NCALL()
NCYAM()
IIXTTOP()

•

TIM()

! VARIND()

CALL DMTST

. , ..

Check for Dirrension Integrity

l
RETURN

D. ENDFLAG=ENDPROC? l Yes
STOP

•

PAGE 16

A DESCRIPTION
OF HOW TO USE
DATA PACKAGE
FOR GENPR02

PAGE 17

BRIEF DESCRIPTION OF DATA PACKAGE
With the exception of the DRIVER, all modules are divided into

(1) a GENERAL CONTROL SECTION and (2) a PARAMETER-LINKBo
CONTROL SECTION. Each of these modules is called a CONTROL
PACKET. Examples of CONTROL PACKETS are INPlJT CONTROLS,

CALIB CONTROLS and PLOT CONTROLS, etc.

HOW CONTROL PACKETS ARE FLAGGED
Four end flags are used.

-ENDGEN- indicates the end of general controls
The DRIVER is flagged by ENDGEN.
The GENERAL CONTROL SECTION in each CONTROL PACKET is
fl egged by ENDGEN.

•ENDOP- indicates the end of the PARAMETER LINKED CONTROL

SECTION in each CONTROL PACKET.
-ENDFLT- indicates the end of control data card packets for a

particular flight.

-ENDPROC- indicates end of run.

EDITING CAPABILITIES

Order list 111ay be edited. The editing capabilities are insert,
replace and delete. (Keywords: INS, REP,DEL) These editing
keywords 111ay be changed by modifying the Hollerith fields
on the .REPL cards for $EDIT1, $EDIT2, and $EDIT3 i, W.Kb\R .

•

PAGE 18

To insert into a list:
INS~ A,LlST implies insert the item or items in LIST after

item A in the order list.

To replace in a list:

REP= FWA,LWA,LIST implies replace FWA through LWA inclusive

in the order list with the item or items in LIST.

To delete in a list:
DEL= FWA,LWA implies delete inclusively the items from F'wA

to LWA in the order list.

OTHER FEATURES IN THE DATA PACK.AGE

The following controls NCYCSV(}, NCYCST(), AND NCYEND() may

be specified by the user, or they may be without specification,

in which case CYCSET will determine optimum values for these

arrays.
lf TSTRT, TEND, and VORDER() are not specified then the program

uses the times end the order list from the previous T-operation.

RATE is used by the MANAGER.
RATE is set equal to the nurrber of samples per DELVI unit.

After each RATE (There may be aDre than one rate) are the

parameters which are to be processed at that rate.

There is a default parameter, DFALT.

The last DFALT applies to parameters not listed in the

PARAMETER LINKED CONTROL SECTION but found in the order list .

• ·- ·-----··-.. ----- ..

All DFALT's apply to any parameters which follow that par-

ticular default parameter.

If a PARAMETER-LINKED control is set equal to D, then the D

implies default and the local default value replaces the O.

PAGE 19

On the data cards, all array names appearing on the left side

of the equal sign with a set of empty parenthesis just after

the array name are special general controls which need to be

specified in the general control section of every operation data

packet. (exception arrays: NCYCSV(), NCYST(), NCYENO()).

The empty brackets tell READLX to put the value just to the right

of the equal sign into the next available location in this general

control array:

Sample data card: NAMEOP() =CALIB

If CALIB is the second operation encountered in the

data deck, then NAMEOP(2)=CAL1B

READLX will automatically bump the index pointer in the arrays

defined using the empty set of parenthesis each time the array name

is encountered.

To detennine which arrays are to be specified in this manner, consult

the corrrnent cards which accompany each data packet. Currently, the

arrays to be defined in this way are:

ITYPOP()

NAMEOP()

NCYCST()

NCYCSV()

NCYENO()

•

PAGE 20

SOME GENERAL INFORMATION ABOUT THE DA.TA PACKET

_A slash (/) indicates a comment. A slash may appear anywhere on the card.

Each control to be specified in the data packet should be commented,

Some controls are specified using () parentheses. Comment cards will

indicate which controls are to be defined in this manner,

A comment card of the form: CONTROL/COMMON BLOCK NAME/ , indicates this

control resides in a COMMON BLOCK.

Each control is followed by an equal sign(=), followed by a list. A

list may contain more than one item. A list may be made up of Integers,

Floating Point Numbers, or Hollerith information. A list may use more

than one card.

Blanks are ignored on all data cards, unless they make up a Hollerith

string.

Hollerith strings containing more than 10 (8) characters must be en-

closed within quotes. Hollerith strings containing 10 (8) characters

or less need not be enclosed within quotes unless these strings con-

tain special characters, i.e.,$, , ' . ' b lanll, (,) , / •

Commas and colons are used as delimiters

The dollar sign{$) implies a new card.

CONTROLS WHICH MUST BE SPECIFIED

DRIVER:

AFILE - file name for the DRIVER module (PLIB). . _ . -NT t/Ai!IABL€
!!.1.)\/i,Jl, - l)P TO 3 C.OiJclE.~:sio.v f'/lCiO,b hlt!Y 8Ef t:£F1i.Ji:t, ;::o.e, 'Tli/: i,Jbe:Pt;,Jbi:;

1

DELVI - independent variable increment,

IFUJSH - if IFLUSHcl, flush DR() storage areas of all operations before

ending. · ,g -
~vi tJb - l)P TO 3 Ult.Ee:~ MM SE l,ffi'veb Fof. ,,H; ItJf>f:/>icaJbe.vT v,v., ti Lt:
MLIST - the master variable list.

TEND - time to end processing (HR,MIN,SEC),

TS'i'RT - time to begin processing (HR,MIN,SEC) •

•

CONTROLS WHICH MUST BE SPECIFIED (cont'd)

OPERATICl<S:

ITYPOP{) - Operation type, ITYPOP{) • 0

ITYPOP() = 1

'NAMEOP() - Operation name,

Snapshot Operation

Transformation Operation

NCYCSV() - the number of cycles to save for this Operation,

NCYEND() - the number of cycles of overlap for the following T-Op,

NCYST() - the number of the cycle on which to start"processing.

PFILE - the file name for this Operation module (PLIB),

VORDER - the variable order list for this Operation,

SOME GENERAL INFORMATION ABOUT THE CONTROLS

PAGE 21

_ Transformation Operations (T-Op) require that rate information be spec-

ified in the Parameter-Linked (P-L) Control section. RATE= X, If

RATE is not specified, rate information from the previous T-Op will be

used.

If P-L Controls are to be defaulted, a default sust be specified.

DFALT = LIST.

_Any parameters found in the order list (VORDER), but not specified in

the P-L control section, take on the P-L controls of the last DFALT to

be specified, and the last RATE to have been specified for that opera-

tion.

lf it is desirable for an unspecified parameter in the P-L control sec-

tion to take on rate inf~rmation from the previous T-Op, then specify

RATE• DFALT,

_ If a parameter is INPUT twice, it must be INPUT with two different names,

All names in the order list (VORDER) must be unique.

Allorder list,; (VORDER) must be subsets of the previous T-Op's order list,

unless the order list is that of a CREATE Operation.

All control names found in the P-L control section must have been specified

'

FLOW DIAGRAMS FOR THE
MAJOR ROUTINES OF THE
MNr:R MODULE

•

PAGE 23

" t

,.
r
!
t

!>

f
i.
=' C

;
f

" ~
~

f-
" J;
•

~
F ..
C

~ • •

.. r
t ' • • !; f

i f V:
~ [: t
' '' • •

~

G ~
' r • i :,i n· ••

~E J fr i •

i

' ,.
~

1 r i i
!

·-----·-'---··· -- --

~ J E ") L

;o '
e
~ ~ ' <.

f £ ~ ~ l = ,.
! 't !: i

3
<':.
s ,..,
I

t6. '~ i ,. T I
0 •• J r) =~ ,: ... " • r .. t,1.E. •• f'ir-8 . ~ ' .. • ~ J L •.. I ; or"" • : !- , J l ,. l ~ ~ t ~ r O O E - .. & ~ t ~ { . .

"' !

•

I l,J,T;.,, &.Af,
:I.• 0

"'°vf< -TE
ca.o• nt\.\
n ~-.,1. ... u

.,.OC.~TE c,PllJ
C.":>IJT20\..~

~-- ~aoc, ...
'41t,..:i" ~lU

\.

·14"' ,.JtFi'-
,wjt. ~E
.... °"'Vt~

•

PAGE 25

PAr:E 26

i='113\> fu~ic,,)S
'T-Ot> ,;-
~

J,

l'fl,/1\2." IJl/llt~(~

I
F1.:i1> PlEvit>.J~
,~f> Qltbi ~

1-i 'f>T ~ ,._vJ. i..,,,
i:l.:X...coo~W• ~II"<

J,
~iwt:> C...JU.~,rr
c,t:1:>Ell Lin t
...,..ov~ '&JTO

6~°'-1'.E:e..l>1tJ, a,UJII

I.
Fl,Jb Pi:tJl"J...,1 S

i-OP ;tmi ...,.".:.
"'" ...rt.

,....,,, ,:,

\ ?:Xie ••• "" N.l .. "(

J
""oJE ;>.t, ;;oJl

i::r..J t, E ..._ o.r. ..i;. _,

i..:)To t\oo-.ce f')-
,..., (., PIH.._'<

L

•

. U\l,\t, .., ... ~1.1.)
;
• "-atr..; . t>.,;tJ"ti,
·'T': w1...,a,r,· :t..io:,

Z:t:t;:;,.
C\..b 1it11.,1. L'

Z.E:a>:::; h,n.:,
,Cf' \..._t1,,.#W\tt··

,..,i...,,jt "'-Lii.ut,) ~.

~~.,\. ta,vio..x
,.OP*

IC.

•

r '~"'
1>l~••

\~ "t&,-,ot.AiL"\

PAGE 27

•

PAGE 28

SAMPLE DATA PACl(Ar.E

•

I
I
I
I
I
I
I
I
I
I
I
I
I
I

DRIVE Ii CONTRCLS

AFILE - DRIVE~ PLIB FILES
CELVI/CYTIH/ - INCEPENDENT VARIABLE INCREMENT
IFLUSH/OP/ - FLUSH FLAG, IF IFLUSH=1, FLUSH DR STORAGE

OPERAJICi~S l:lFFORE.. ENDING_ ____________ _
MLIST - HASTER VARIAeLE LIST
TSTRT/CYCTIH/ - TI~E TO START PROCESSING (HR,HIN,SECl
TENO/CYCTlH/ - TIME TO ENO PRCCESSING (HR,HIN,SECJ

NLIST = PSF,PSFC,TAS,TEMP,TIHE
AFILE = #GNPR20R,,Ot
IFLUSH = 0
OELVI = 1,
TSTRT = 17.,11,,~Q,
TENO= 17,,11,,50,
CNV IN O = 36 CO , , 6 0 , , 1 ,
LBVINO ~ ~~,HIN 1 SEC
IVFLAG.: C
£HOGEN
I
I
I INPUT CO~TRCLS
/ GENERAL CONTROL SECT ICN FOR I t\PL T
I
I
I
I
I
I
I

ITYPOPIJ/OP/ - OPERATION TYPE
KIN - LOGICAL UNIT NUM~ER FOR l~P~T __
KOOE - DECOCI~.; FLA'jS

IF KO~E=O, DIGITAL WORC

I KPRNT -
I

IF KCDE=1, ANALOG WORD
PF.INT OPTICN FOR INPUT CATA
IF KPRNT=1, pQINT FIRST RFCORC ONLY , IF ~PRNT=2, PRINT EVERY DECODED RECORD

I IF KPRINT=3, PRINT EVERY ORIGINAL RECORD
I HODEIN - MODE OF INPUT TAPE
I IF HCDEIN=~, BCD INPUT
/ IF HODEU,=1, 3INARY INPUT
I NAHEOP(l/OP/ - OPERATION NAME
I NCYCST< l/OP/ - NUH~~I< OF CYCLE.. TO STAR.T._f>ROCESS!Nt:.

PAGE 29

AREAS OF ALL

I NCYCSV(l/OP/ - NUHEER OF CYCLES OF DATA TO SAVE FOR THIS OPERATION
/ NCYEND(l/OP/ - NUMBER OF CYCLES OF CVERLAP NEEDED FOR FOLLOWING TOP
/ NTYPIN - KEAD CONTqQL
/ IF NTYPIN=2, ATTfHPT PA~ITY ~E-REAO
/ IF NTYPIN=~, SKIP RECORDS
, PFILE - oeERATION PLIE ~ILE_ •
/ VORCER - VA~IA3LE O~DER LIST FOR THIS OPERATION
I
NAHEOPll=INPUT
tTYPOP(): 1
PF ILE = ARI SN
KPRNT = Z
HOOEIN = 1
NTYPIN = Z
KIN = 3
KOOE = 1,1,1,1,o,1,o,1,1,1,1,1,o,1,o,1,1,1,1,1,01-h1L1,1,1,_1,1,o,1,o,1,1,1,1,1,
o,1,0,1,1,1,1,1,~,1,~.1,1,1,1,1,o,1,o,1,1,1,1,1,o,1,o,1

•

VORDER = TlHE 9PSF,TEHP
NCYCSVI l =Z
!IICYENO(l=f'
NCYST () =1
EN OGEN
I
I
I
I VARIAdLE CO~TROL ~ECTICN FCR I~PUT
I
/ FORH OF PARAHETEII-LINt<l:0 CONTROL CA~OS NA"4E = LOC
I
/ NAl1E - VARIA2LE NAME
/ LOC - LOCATIO~ IN CATA RECO~O OF FIRST SAMPLE OF THIS VARlAELE
I
I
I ~ATE - THE OLTPUT ~ATE FOR EACH PA"A~ETER (SAMPLES/DELVII
I
I
~ATE= 8
DFALT = -qqgq
TI ME = o ~ ,r:, /; . J.. (11 __ .c·· ·,· __ TEMP = 1& .en-' - -" I L) /
RATE: ~2
PSF: 22
ENOOP
I
/ CALIS CONT~OLS
I
I
/ GENIER AL CONTROL SECTION FOR CALI 9
I
I
I ITYPOPO/OP/ - OPE~ATION :YPE
/ NAHEOPO/OP/ - OPERATION NAME
I NCYCST(I/OP/ - NU"48ER OF CYCLF TO START PROCESSING
/ NCYCSV()/OP/ - NUM3ER OF CYCLES OF DATA TO SAVE FOR THIS OPERATION
/ NCYENO(J/OP/ - NUH!ER OF CYCLES OF CVERLAP NEEDED FO" FOLLJWINb TOP
/ .~FILE -- QPE~ATit~ FLIS FILE . .
/ VORCER - VARIABLE CROfR LIST FOR TrlIS OPERATION
I
I
NAHEOP() = CAL13
ITYPOPO = 1
PFILE • t~Li.QRT
INS= PSF,TAS,PSFC
NCYCSV I l = lo
NCYENO() = 0
NCYSTt I = 1
ENOGEN
I
I
/ VARIA&LE CONTRCL SECTION FOR CALIE
I
I
/ FORH OF PARAHETER-Ll~KEu CONTROL CARO NAME~ ICALC
I

•

l'AGE 30

VARIABLE 1',Al'E I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

NAME
ICALC FLAG TO INCICATE HOW VARIAELE IS CALCULATED

IF ICALC = 1, THF.N iARIAdLE IS UNCHANGED FROH INPUT
IF ICALC = 2, THEN VARIABLE IS JERIVED FROM SOURCE
IF ICALC .LTo C, THEN A8S(ICALC) = ~UMBER OF COEFFICIENTS

IN CALIORATIO~ E~UATION

RATE - THE OLTPUT RATE FOR EACH FARA~ETER (SAHPLES/DELVIJ

A CIX LIST IS NEECED FOR THIS CPERATION
DIX= co~FF, SOURCE

COEFF - THE CALie"ATION EQUATION COEFFICIENTS
COEFF: A1,X2,X3

X1 - CCNSTANT
X2 - CCEFFICIE~T OF THE X TERH
X3 - COEFFICIENT OF THE x••z TERM

SOURCE - VARIABLES NEEDED TO DERI~E THE PRECEDING PARAMETER

DIX= CGEFF,SOURCE
RAT': = JFAL,
OF ALT = 1
PSF: -3
COEFF = 663.23;;2, .3€.~~P1, 2.2t.E-e,
TEHP = -3
COEFF = -21.&62, 6,~571E-2, 2,2E-E
RATE= 16
PSFC: 2
SOUQCE = PSF
TAS = 2
SOURCE= PSF,TEHP
C:N iJOP
I
I
I P~INTER CONT~OLS
I
I GENERAL CONTROL SECTION FOR PRINTER
I

' , ITYPOP(l/OP/ - OPEn4TIDN TYPE
KUNIT LOGICAL UNIT NUH~ER FOR PRINTER

NAHEOP()/OP/ - OPE1ATION l',A~E
I
I
I
I
I
I
I
I

NCYCSV(J/OP/ - NUHEER OF CYCLES OF CATA TO SAVE FOR THIS OPERATION
1',GVENC(J/OP/ - NUH:ER OF CYCLES OF OVERLAP NEEDED FOR FOLLOWIN~ TOP
NCYCST(I/CP/ - NUH8~R Of CYCLE TO STA~T PROCESSl~G

PFILE DPE~ATION FLI3 FILE
V~RDE~ - VARIASL[C~CER LIST FOR THIS OPERATION

NAH':OPI > : PRl~TER
ITYPOPI) : n
PFILE = QD-PRNTR
KUNIT = I+
VORDER = TIHE,TEHP,PSF,TAS,PSFC,XXX
DEL= XXX,XXX
NC'l'CSV I l = 4
NCYEND(l = 0
NCYST ll = 1
ENOGEN

•

?AGE 31

I

VARIAeLE CONTROL SECTION FOR FRIIITER
I
I
I
I
I
I
I
I
I

FORM OF THE PARA~ETE~-LINKED CONTROL CARO NAME= UNIT,FORMAT
NAME
UNIT
FORMAT

VAR UBL E
PHYSICAL

FC~MAT

OF ALT = on:,F1. 2
TIME= SEC,C
PSFC = Ma,o
TAS=tH/St,D
ENDOP
ENDFLT
ENDPRoc

IIAME
t:NITS IN WHICH
DESIGNATOR fCR

VARIAeLE IS OUTPUT
VARIABLE

•

PAGE 32

RANDOM FILE INFORMATION

Note· The SAMPLE RANDOM FILES listed have been generated from the SAMPLE
DATA PACl<Ar.E. All General Control information that is stored in
COMM0N is not stored on the Random File .

•

'RANDOM FILE
DESCRIPTION

l'AGE 33

All random files have a basic atructure. An array called DIX
will bead up each file. DIX will contain all control array
names found on the file and the location of the beginning of
each of these arrays. DIX is followed by the control arrays
that it points to. The general form of each file is: an array
name, followed by the length of this array, followed by the
contents of the array, the next array name, followed by the
length of this array, followed by the contents of the array •••

WORD NUMBER

1

2
3

4

•

5

6

7

8

9

10

11

12

13

14

15
16
17
18
19
20

CONI'ENI'S
~

~-The
is

12 - The
VORDER -

header word for the DIX array. DIX
a pointer array for the control file.
length of the array DIX,
The order list for this operation.
This example assumes three parameters
to be processed by this operation,

15 - The location of the header word for the
VORDER control array •

Any other special operation general controls
would go here. This example assumes none.
For a more detailed example, see the SAMPLE
RAND(),! FILES.

PARAMS - The Parameter-Linked control section
of the file. This example assumes two
P-L controls for each parameter and no
non-standard P-L controls.

20 - The location of the header word for the
PARAMS control array.

RATEIN - The input rate information for this
operation,

34 • The location of the header word for the
RATEIN control array,

INDEXIN - The input index information for this
operation. This array tells the pro-
cessor where to locate each input par-
ameter to be processed,

39 • The location of the header word for the
INDEXIN control array.

IATEOUT - The output rate information for this
operation.

44 • The location· of the header word for this
RATEOUT control array.

INDEXCXJT - The output index information for this
operation. Thi• array telle the pro-
ce11or where to put each parameter af-
ter it ha• been proce11ed.

49 • The location of the header word for the
INDEXCXJT control array.

VORDER
3
PARl
PAR2
l'AR3
l'A!Wl5

•

lANDOM !'ILE
DESCRIPTION

(cont'd)

PAGE 34
WORD 1'U:{BER CONTENTS

21 12
22 PARl
23 2
24 P•Ll
25 P·L2
26 PAR2
27 2
28 P•Ll
29 P·L2
30 PAR3
31 2
32 P·Ll
33 P·L2
34 RATEIN
35 3
36 Input rate for PARl
37 Input rate for PAR2
38 Input rate for PAR3
39 INDEXIN
40 3
41 Input index for PARl
42 Input index for PAR2
43 Input index for PAR3
44 RATEOUT
45 3
46 Output rate info for PARl
47 Output rate for PAR2
48 Output rate for PAR3
49 INDEXcur
50 3
51 Output index for PARl
52 Output index for PAR2
53 Output index for PAR3

The arrays RATEIN, INDEXIN, RATECXJT, INDEX(XJT, and P.ARAMS are
ordered as VORDER ia defined.

'When a parameter appears in an order list (VORDER) for the first
time in any operation, information about this parameter in the
RATEIN and INDEXIN arrays is aet to &ero.

'When a parameter appears in an order Hat (VORDER) in one or
more operations, but ia not found in the order lists of aub-
aequent operations, RATEOUT and INDEXcur information for this
parameter in the last operation to acce1s thi1 parameter is
aet to &ero.

Rate information apecified in an operation data packet i• de-
fined a, output rate information (RATEoirrj for that operation.

The information in the INDEXIN and INDEXCXJT arrays refers to
locations in the DR array in BLANK COMMON .

•

SAMPLE 1IANDOM
Fn.ES

OP 1 RANDCl1 YILE

WORD NOMBER

1
2
3
4
5
6
7
8
9

10
11
12
13
14

* l-6
-»
~
-i-9- IS
-iB- \1-
tt 11
~l'l!
a 1,
24- Z.t>
2-5- 'Z.. \

~ '"' 2-r 2.'
2-&- Z"'l
-2-9 '2.. 5
3-0 Zi-
M 21
~ '2.8
a-3 2. 9
94 ~"'

.a-5 l I
3f, 3 2.
3-1 33
!! '.H
3-'r JS
l,e 3w
-4-1 :i.,
4-2- '3~
,43 3J
44- -to
4$ ~\ u
~ 4")
4-8 <\~
4-9 <\ ';
•
•

WORD

-MJi: 1,1 ;:P-t,&--
~ z.t
VORDER
~ ZS"
KPRNI'
~ ~r,
MODEIN
a.'/ 3"3
lm'PIN
~ 31>
KIN
43- 39
KODE
Im" ,<\ 2
'Ml'la-
m
"HME2
HT
PARA!-!S
-H4- ~ \O~
RATEIN
-14-5-~ \V:l
INDEX IN
~.iv vz.4.
RATEOUT
1-57 1-U \'2.9
lNDEXOOT
~ ~ \:!<\
VORDER
3
TIME
PSF
TEMP
KPRNT
1
2
MODEIN
1
1
tn'YPIN
1
2
l:IN
1
3
KODE
64
1
1
•

• •

,,, \JI.

m ,ai, +-
•

PAGE 35

SAMPLE RANDC!I WORD 'NUMBER !Q.!!Q PAGE 36

l'ILES (cont'd)
H-4 -tt
-l-1-5-- -H-
~ ,4Q.
-1-H- tt
m t5
•

m--- -'l'iffl:2
-1*- -9-
.-tt5-- -H--
m IT
.Hi ~

•

,U4 t,;,5 PARAMS
l3"5 '"9 9
.1U \ \o TIME
1-9-7 1
l-3'8 -9999
-1-3-9 PSF
'1-4-B- 1

-t41 22
-1-4-Z TEMP
m 1
-144 16
~]19 RATEIN
t4"tr 3
!-47 ' 0
-tta- 0
t¢<j 0
YD I '-"\ INDEX IN
-1-5-i 3
,B2" 0
l-5-3 0

..1$4 0
~\2.9 RATEOUT
1$ 3
157 . 8
i-5-8" 32
~ 8
-i6il" l 31 INDEXOOT
..ttt 3
-tt1 1
-lB- 17
l64 V3 &' 81

•

SAMPLE V.NDCJ-l OP 2 RANDOM l"ILE PAGE 37
FILES (cont'd)

VORD NUMBER ~

l ~ t1EJ>,bt.~
2 12
3 VORDER
4 15
5 PAR.AMS
6 22
7 RATEIN
B 56
9 lNDO:IN

10 63
11 RATEOUT
12 70
13 tNDo:cm
14 77
15 VORDER
16 5
17 TD1E
18 PSF
19 TAS
20 PSFC
21 TEMP
22 PAJWt;
23 32
24 TIME
25 l
26 l
27 PSF
28 6
29 -3
30 COEFF
31 3
32 663.24
33 .37
34 2.24E-6
35 TAS
36 s
37 2
38 SOURCE
39 2
40 PSF
41 TEMP
42 PSFC
43 4
44 2
45 SClJRCE
46 1
47 PSF
48 TEMP
49 ,

" 50 -3
51 com
52 3
53 •21,68
54 ,06
55 2,2!-6
56 IAT!IN
57 " ~

•

\

SAMPLE RANDCM
l"ILES (cont'd)

WORD NUMBER

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
BO
Bl
82
83

WORD -
B
32
0
0
B
INDEKIN
5
1
17
0
0
Bl
RATEOUT
5
B
0
16
16
B
INDEX OUT
5
98
0
130
194
258

1

OP 3 RANDctl FILE

-MX -II e.i..1:>E.i':-

2
3
4
-S-9
...fi le:>
.,,.. \ l

-8-11..
-9-13
w l,
H \S

H- lb
~ 1,

14 ,i
» 19
-1:6 lo
i-1-2. I
U z.._
1-9 -Z 3
-28 2"\
.1l 2. 5
H- 2.1,.,

ff. ~ 31
24 1'!
25--- 19
26--"\ 17
ff-A. \
28 4.).
.t-9 "\)

-14-1i
VORDER
* ~,.. ,..,..-ilf)l~'i!l-ijl. ~ ~
r:m.n
-a-.--?7
PARAMS
~--40
RATEIN
44-4-4-c;; ~
INDEXIN '--
-5-0 ~ .. "I I.,~
RATEOUT
S6- VI:>' ~ 11"'
INDEXOOT
~ "'!-<= ~ 1 \.'
VORDER
4
TIME
TEMP
TAS
PS FC~-:::.'?
mNIT
1
4
PARAK;
16
TIME
2

•

PAGE 38

5" "I\ M:b'L
2. "3

<o ,iME2.

7 zg
8

21 ,iM\: i
"5

2r n.
2.9 I\.

30 -4,D

i I ,;rAE'-
?2. 3
~3 \1,

J "I \I,

3s So .
l 1.

SAMPLE lANDOM
1'ILES (cont'd)

WORD NUMBER

-,a. ~i
.al -4. s
:»- "\c
33" 1
.34 '\ I'
3-5-
..3-6
3-r
~
~
lre-
4r
-4-r
~
-44 I. b'
"15
'¢6"""
'¢1 .
lrs-
4")
-5-9- I.~
-,r
"'2 ~.
-54- .
-5-5
%~0
-5-'1-
-&&
~
-6-e
-61:
:- '7io

-64 ·.
6-5
~
6-t- "51

~

SEC
F7.2
TEMP
2
DEG
F7.2
TAS
2
M/5
F7.2
PSFC
2
MB
F7.2
RATEIN
4
8
8
16
16
INDEXIN
4
98
258
130
194
RATEotrr
4
0
0
0
0
INDEXcm
4
0
0
0
0

PAGE 39

•

PAGE 40

READLX Documentation

•

.. PAGE 41

Description of the file READLX, created for Bonnie Gacnik on June 3, 1977

INTRODUCTI ON
lhe FORTRAN programs in the PLIB file READLX provide the user a free-format
card-input ·facility. There are five routines in the file: READ~X (!EliD),
LEXCON (DAT,KEY,tlUM), LXCARD, TESTLX(ID), and GETNUM (B). Only the first
two of these are of interest to the user.

THE READLX DICTIONARY

The labeled common block LEXCOM, which appears in each of the five routines
in the file READLX, contains, 11mon~ other things, a dictionary of user
program variables (initially empty). The pertinent variables are as fol101,s:

MLEX The current number of dictionary entries.

NLEX ·• The maximum number of entries which can be made in the

KEYS(SO)

LOATS (SO)

LNUMS {SO)

dictionary, set to 50 by a data statement in the routine
LEXCON.

Each KEYS(!), l<J<MLEX, is a Hollerith (left-justified,
blank-filled) "external name" of a user program variable
into which values are to be read from cards.

Each LOATS(!), l<J<MLEX, is the machine address (between
0 end 6SS35 1,)of the user program variable whose external
name is specified by KEYS(!).

Each LNUMS(I), 1<1< MLEX, is the machine address (between
0 end 65535 10) of a "counter cell" in which READLX stores
the largest subscript k for which DAT(k) has been set,
where DAT is the user program variable specified by KEYS(!)
and LOATS (I) .

Obviously, if the user dechres the labeled conmon block LEXCOM in his pro-
gram, he may make dictionary entries at will. The routine LEXCON (DAT,KEY,
NUM) is provided to perfonn this function, however. The FORTRAN statements

CALL LEXCON (A,6HARRAYA,NA)
CALL LEXCON (B ,6HARRAYB ,tlB)

cause two dictionary entries to be made. MLEX is increrrented by 2 (unless
1t wou1d then txceed NLEX. 1n which case execution terminates w1th 1n error
111essa~e). The names 'ARRAYA' end 'ARRAYB' are placed in the KEYS array,
LOC(A) and LOC(B) are placed in the LOATS array, and LOC(NA) and LOC(NB) are

'

PAGE 42

placed in the LNUMS array. In addition, NA and NB are initialized to zero
to say that no data have so far been entered in the arrays A and B. (The
latter may have undesirable effects for some users.)

FORM OF INPUT

lhe routine ·READLX is called by the FORTRAN statement

CALL READLX (IEND)

(nonnally after one or more entries have been made in the dictionary). It
reads cards from unit 5; these cards are assumed to contain statements of
the general form

keyword [c((subscri ptJil [i1 ~datum11 [[datuml] l (datum1) ...] *

(The brackets denote optionally-included items.) Blanks may be used as
desired to improye readability, except within a keyword, a subscript, or
a datum. The keyword may be one of a set reserved by READLX and having
special meaning (see "Reserved Keywords" below) or an external name from the
dictionary (KEYS(!), for some I such that l<I<MLEX). The subscript, if
present, is usually required to be a decimaTTnteger (for an exception,see
the »reserved keyword" "CORELOADER", below). Each datum may be a decimal
integer, an octal integer (suffixed by "B"), a real number (written in any
acceptable FORTRAN form), a Hollerith string of the form nHc 1c2c3 ... cn• a
Hollerith string of the form •c1c2c3 ... c~, or a Hollerith string of the form
c1c2 .•• cn where c1 is an alphabetic character and n~lO. (Note. that Hollerith
strings of the form nHc 1c2c3 .•• cn or •c1c2 ..• cn' may have n>lO, in effect
specifying (n+9)/10 single-word data.) A datum may also have the form k * d,
where k is a "repetition fac.tor" and d is a datum of one of the tvoes defined
previously; the effect is as if one had repeated d k times in the list of data.
~ote that k*d must be punched without internal blanks. If a datum is omitted
(resulting in a statement like "A=,l" or "A=l.,2", but not "A=l,2,"), no value
1s assigned to it; it causes an element in the array in which the data are
being placed to be skipped.

A statement may begin anywhere on a card (columns 1-80 are used) and may
continue over more than one card; column l of a "continuation card" is con-
sidered to follow column 80 of the previous card. More than one statement
aay be punched on a given card; llllltiple statements on a single card are
separated by dollar signs.

Assuming that the current dictionary contains definitions of ·ARRAYA" and
•ARRAYB", as shown in the examples in the previous section, the following
are possible statements to be read by READLX:

-..oTE: A colon (a 2/B punch on a card, printed as a":") may be used in
place of a corrrna to separate two data.

•

Statement

ARRAYA 1.

ARRA YB c 1. ,2.

ARRAYA(3)=-1, -2

ARRAYB(3)=77B, ,-77B

ARRAYB() c 136.E14

ARP.AVA C ABCD

ARRAYB = 14HABCDtFGHJJKLMN

ARRAYA = 100* 'HOLLERITH'

ARRAYA = 10* -1

RESERVED KEYWORDS

PAGE 43

Effect

Stores 1. in A(1). Equals sign may be omitted,
but blank must then separate keyword and datum.
Leaves NA=1.
Stores 1. in 8(1) and 2. in 8(2). Leaves
NB=2.
Stores -1 in A(3) and -2 in A(4). Leaves
NA=4.
Stores 778 in 8(3) and -778 in 8(5). B(4) is
skipped. Leaves NB=5.
Stores 136 x 1014 in B(6). Note that if the
subscript is omitted, NB+l is used. Leaves
NB=S.
Stores 10HABCD in A(l). Leaves NA=_i.
(A(4) was previously set.)
Stores 10HABCDEFGHJ) in B(l) and lDHKLM:,
in B(2). Leaves NB=6. (B(6) was previously
set.)
Stores lOHHDLLERJTH in A(l) through A(lDD).
Leaves NA=1DD.
Stores -1 in A(l) through A(lD). Leaves
NA= l 00.

The following keywords are reserved for the exclusive use of READLX and may
not be entered as external names in the dictionary: "COMMENT", "ENDOFREAD",
•[NDOFCASE", "ENDDFDATA", "CLEAR! NPUT", "CORELOADER", and "MODI FYSKI P".
These are described as follows:

COMMENT (or r")

ENDOFREAD
ENOOFCASE
[NDOFDATA
CLEARINPUT

The remainder of the card is ignored. Note
that there must be at least one blank following
•cOMMENT" I or "J").

Cause READLX to execute a "return", with
JEND-1 ,2, or 3
Causes READLX to clear (zero) all data entered
1n arrays defined in the current dictionary
and the "counter cells" for those arrays.

(subscript)• (d~tumJ [.[datum)](.tdatumj) ... ,
where the subscript 1s an octal constant,not
suffixed u a "B", causes IDDCx to transfer
the given data Tnto core, starting at the
location specified by the subscript .

•

MODIFYSKIP " n

SPECIAL FEATURES (MOD1FYSKIP)

PAGE 44

where n is an integer, causes the value
of n to be stored as the value of the variable
NSKlP in the comr.ion block LEXCOM. (See
"Special Features", below.)

In 111 of the above discussion, it was assumed that READLX stored lists
of data in consecutive core locations in the associated array. This is not
strictly true. The variable NSKIP, in the labeled colTITlon block LEXCOM, which
is set by a data statement in READLX to 1, actually controls the increment
from one datum store to the next. One may set NSKIP to a va1ue other than
l, either by accessing it directly in the labeled co!Tl!lon b1ock or by an input
card statement "MODIFYSKIP=n". This is usefu1 to input data to a doub1y-
dimensional array by now, rather than by column. Consider the following
example:

DIMENSIO~l A(3 ,3)
• •

CALL LEXCON (A, 6HARRAYA, NA)
CALL READLX (IEND)

Now, if A represents the matrix

1. 2. 3.
4. 5. 6.

1. ·a. 9.
one could use the input statement

A= 1. , 4. , 7. , 2. , 5. , 8. , 3. , 6. , 9.
but it may be desirable to use the statements

MODI FYSKI P= 3
A(1) " 1. ,2. ,3.
A(2) • 4. ~5. ,6.
A(3) • 7. ,8. ,9.

(sets "A(l)'',"A(4)'', and "A(7)"; NA•7)
(sets "A(2)","A(S)", and "A(B)"; NA=B)
(sets "A(3)","A(7)", and "A(9)"; NA=9)

instead. Note that the notation "A()" really means "A(NA+NSKIP)",
rather than "A(NA+l)", as was stated in a previous example.

SPECIAL FEATURES (CATCHALL)

Nonnally, ;f READLX finds a ket-wurd that it does not recognize, it issues an
error inessage and (eventually) terminates execution. If, however, KEYS(l)
contains the name 'CATCHALL', it will instead make a dictionary entry for the

•

.. PAGE 45

unrecognized keyword and assign it space in the array associated with
CATCHALL by the dictionary. An example will make the use of this feature
clear, I think. The statement

CALL LEXCON (CATCH, BHCATCHALL, NCATCH)
CALL LEXCON (A, 6HARRAYA, NA)

·. CALL READLX (I END)

with the data statements

ARRAYA " 1. ,2.
ARRAYS = 3. ,4.
ARRAYC = 5. ,6.
ARRAYA()=7. ,B.

will store A(l)=l., A(2)=2., A(3)=7., A(4)=8., and NA=4, as always. In
addition, however, NCATCH will be set to 8 and (CATCH(!), I=l,8) will con-
tain the fol lowi_pg information:

CATCH(l) " lOHARRAYB ,CATCH(2) = 2 , CATCH(3) = 3.,
and CATCH(4) = 4.)no. of entries)

CATCH(S) = lOHARRAYC ,CATCH(6) "2, CATCH(7) = 5., and

CATCH(B) " 6.

This feature allows one to use the READLX scanner to read arrays whose names
are not known before card-read time and get them back in a useful form.

Note that, if KEYS(l)"BHCATCHALL when READLX is called, it zeroes the "counter
cell" for the associated array ("NCATCH" in the example). Note also that
entries made in the dictionary for arrays sent to CATCHALL are cleared before
READLX returns control to the caller; the length of the dictionary is not
pennanently increased.

Qie warning: If n arrays have been sent to CATCHALL, no data statement
may attempt to increase the length of any one of the first n-1 sent there;
the nth may be added to at will. (Only one dictionary slot is used for such
arrays; 11 second reference to one of the first n-1 acts as if that array
were never seen before.)

ADDITIONAL NOTES

the same array 1111y be given two different "external names" but, if two
different "counter ceiis" are associated with these names, the notation "key-
word()" 1111y have surprising results.

If the •counter cells" for a given set of arrays are not of interest, 11
corrmon counter cell tnaY be used for all of them. In this case, however, the
f!Otation "keyword ()" should not be used and the statement "CLEARINPUT"
should not be used.

Signed, sealed, and delivered by

D. Kennison
'

• PAGE 46

P.S. (Fonn of an "external name" and a keyword)

Ari •exte.ma1 name" in the dictionary is limited to ten or fewer characters
1n length. A keyword on a data card may be longer than ten characters;
1n this case, only the first ten are actually used in searching the dic-
tionary. For example, the LEXCON call

CALL LEXCON (X, 16HDATA-FOR-ARRAY-X,NX)

would place the single word 10HDATA-FOR-A in the dictionary. The following
data-card statements would then be equivalent:

(ten characters us~d)
DATA-FOR-ARRAY-X c 1.,2.
DATA-FOR-ARRAY-Y: 1.,2.
DATA-FOR-A c 1. ,2.
DATA-FOR-ARRANGEMENT-OF-FLOWERS: 1. ,2.

Note that an "external narre" or a keyword may contain any characters other
than a blank, an.equals sign, or a left parenthesis, any of which tenninate
the keyword scan, activating a scan for the next non-blank, the first datum,
or a subscript, respectively.

P.P.S. ·(Conments on data cards)

There are several ways to put conrnents on data cards. First, if a statement
. begins with the keyword "COMMENT" or the keyword "l", the rest of the card
is ignored and scanning resumes with a search for a keyword on the next card.
Thus, one could use all of the following:

A=l. $ 8=2. $ C=3. $ CO!INENT SET A, B, AND C

A=l. $ 8=2. $ Cc3, $/SET A, 8, AND C

/ THIS ENTIRE CARD IS A COMMENT.

Another alternative is to simply punch the corrrnent fllowing the last state-
ment on a card (with at least one intervening blank). For example:

SET A,8,C

R£ADLX picks up the •s 11 of •stT" while looking for a comna (to signal the
presence of another datum for entry in C) or a dollar sign (to signal the
presence of another statement on the card). Instead of treating this as an
error, it simply reads up the next card and begins scanning for the keyword
of; new statement. Note that this prevents the final statement on the
current card from being continued on.the new card. To handle this case,
a third option is provided: If a slash is encountered while scanning a
statement, the rest of the card is ignored and scanning resumes on the
next card. For example:

'

•
•

A=1. $ 8=2. $ C=3. / SET A, B, and C

D"' 1., 2., 3., 4., 5., / SET (D(l),I:1,5)

6., 7., 8., 9., 10. / SET (D(l),1=6,10)

,11., 12., 13., 14., 15. / SET (D(l),I=ll,15)

E(l)"' / SET E ARRAY BELOW

Al, A2., A3, A4, AS / END OF EXAMPLE

PAGE 47

There is one restriction; the subscript and/or the equals sign (if any)
of a keyword must appear on the same card as the keyword. Note that the
slashes on the first and fourth data cards in th above example could be
omitted; I prefer to use them - for the sake of consistency and to pre-
vent errors caused by mistakenly omitting a needed slash . ..

•

