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ABSTRACT

An analysis of two days of in situ observations of ice particle size spectra, in convectively generated cirrus,

obtained during NASA’s Tropical Composition, Cloud, and Climate Coupling (TC4) mission is presented.

The observed spectra are examined for their fit to the exponential, gamma, and lognormal function distri-

butions. Characteristic particle size and concentration density scales are determined using two (for the ex-

ponential) or three (for the gamma and lognormal functions) moments of the spectra. It is shown that

transformed exponential, gamma, and lognormal distributions should collapse onto standard curves. An

examination of the transformed spectra, and of deviations of the transformed spectra from the standard

curves, shows that the lognormal function provides a better fit to the observed spectra.

1. Introduction

In recent years, there has been considerable interest

in the study of the size distribution of ice particles in

clouds. Study of the ice particle size distribution (IPSD)

is important for at least three reasons. First, it is of

intrinsic value for validating and advancing our un-

derstanding of the microphysical processes underlying

the production and evolution of the ice particles. Sec-

ond, it is of importance in climate studies because the

IPSD and the particle shapes affect the radiation bal-

ance of the earth–atmosphere system. Finally, knowl-

edge of the IPSD helps in remote sensing of ice water

content (IWC), mean size of ice particles, and other

parameters of the IPSD, which affect the earth’s climate.

Indeed, climate studies have been the main impetus for

the recent explosion in the study of ice in clouds.

A number of authors have presented in-depth analy-

ses of extensive in situ measurements of IPSDs (e.g.,

Heymsfield and Platt 1984; Brown and Francis 1995;

Heymsfield et al. 2002; Delanoë et al. 2005; Field et al.

2005, 2007; Tinel et al. 2005). One objective of these

studies has been to find a few parameters that are suf-

ficient to describe an entire IPSD. For this purpose,

many authors have normalized the particle size and

concentration using one or two moments of the IPSD.

Plots of normalized concentration against normalized

particle size, called normalized spectra, for a population

of IPSDs, have been found to cluster around a ‘‘univer-

sal’’ curve or distribution, irrespective of the values of

the moments of individual IPSDs. Knowledge of the

universal distribution and the moments, used for the

normalization, are then sufficient to recover an entire

distribution and calculate its properties. Field et al.

(2005, 2007) presented an analysis of this type; they

found that the universal distribution could be repre-

sented by the sum of an exponential and a gamma

function.

In this paper, we present an analysis of IPSDs observed

in tropical cirrus during the National Aeronautics and

Space Administration’s (NASA’s) Tropical Composi-

tion, Cloud, and Climate Coupling (TC4) mission (see

http://www.espo.nasa.gov/tc4/). Our aim is to find the

best functional representation of the observed IPSDs. In

section 2, we present an overview of the data and their

meteorological context. In section 3, we present methods

for transforming IPSDs that can collapse the exponential,

gamma, and lognormal function distributions onto curves
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whose equations can be predicted in advance. In section 4,

we present results of applying the transformations to our

data. We shall find that the lognormal function provides

a better fit to our data than either the exponential or the

gamma function. In section 5, we compare our method of

transforming the IPSD to methods of normalizing the

IPSD that have been presented in the literature. We con-

clude with a summary and conclusions in section 6.

2. Data used in this study

The IPSD data used in this study were taken during

NASA’s TC4 mission designed to investigate the phys-

ical properties of convectively generated cirrus clouds. It

took place from July 17 to 8 August 2007 near Costa

Rica. During TC4, two airborne radars—the ER-2

Doppler radar (EDOP; Heymsfield et al. 1996) operat-

ing at 9.7 GHz (3.1 cm wavelength) and the cloud ra-

dar system (CRS; Li et al. 2004) operating at 94 GHz

(3.2 mm wavelength) onboard the NASA ER-2 aircraft—

flew over a number of convectively generated cirrus

while an instrumented NASA DC-8 aircraft flew under

the ER-2, inside the cirrus cloud, providing coincident

in situ microphysical measurements.

The ice particle sizes were provided by a 2D cloud

imaging probe (CIP) and a precipitation imaging probe

(PIP). CIP measured particle size from about 50–100

microns to above 1 mm (Baumgardner et al. 2002), and

PIP measured particles size from about 100 microns to

6.2 mm. Particles were binned into 35 size ranges with bin

widths of 50–100 mm for CIP and 0.2 to 0.5 mm for PIP.

The ice particles are generally irregular in shape. The

particle size is specified by the true maximum dimension

of the 2D projected image. This dimension will be re-

ferred to as the particle diameter. Comparisons with

a 2D-S (stereo) probe with higher resolution and a lower

detection threshold suggest that the concentrations from

CIP are reliable only down to 100 mm. Therefore, in our

analysis we discarded particle sizes below 100 mm. The

particle probe data are averaged over 5-s intervals or

about a 1.0-km horizontal path.

In addition to the particle probes, the DC-8 carried

a counterflow virtual impactor (CVI) probe (Twohy

et al. 1997), which provided direct in situ measurements

of ice water content, coincident with the IPSD mea-

surements. The minimum particle size sensed by the

CVI is about 8 mm. The uncertainty in the IWC is about

11% at 0.2 g m23, increasing with decreasing IWC to

23% at an IWC of 0.01 g m23.

We selected for analysis two cases that had the best

coordination between ER-2 and DC-8 flights so that the

radar and microphysical measurements were collocated

in space and time.

a. Case 1: 31 July 2007

On this day, the ER-2 and DC-8 made coordinated flights

along northwest–southeast legs oriented over San Jose and

extending to near the Panamanian border. Figure 1 shows

the Geostationary Operational Environmental Satellite

(GOES) IR satellite image with ER-2 and DC-8 flight

tracks superimposed. The flight legs followed the devel-

oping anvil cirrus formed by a cell located off the Pacific

coast at about 9.58N, 858W. Parallel racetracks (24 km

offset) drifted to the west as the anvil evolved. At about

1545 UTC, the ER-2 moved further west to over fly strong

developing cells with active lightning at about 98N, 84.28W

(at about 1600 UTC), followed by an orthogonal run.

Figures 2a and 2b show the reflectivity measured by the

EDOP (X-band, 3.1 cm wavelength, 10 GHz) and the

CRS (W-band, 3.2 mm wavelength, 94 GHz) radars, along

with the DC-8 flight line between 1400 and 1409 UTC. The

cirrus cloud sampled by the ER-2 and DC-8 is associated

with a developing convective cell. The minimum detect-

able reflectivity is about 25 dBZ for EDOP and 228 dBZ

for CRS at range of 15 km from ER-2. Such high sensi-

tivities make EDOP and CRS ideal for studying this kind

of cirrus cloud. For this case, the X-band reflectivities

range between 25 and 15 dBZ and the W-band reflec-

tivities range between 228 and 8 dBZ. At relative dis-

tances less than about 150 km, near the cloud top, the

reflectivity at both radar frequencies is about the same, an

indication that the ice particles are Rayleigh scatterers.

The air temperature at DC-8 flight level was about 2408C.

The time difference between the radar and the in situ

microphysical measurements was less than 45 s and the

maximum horizontal distance between ER-2 and DC-8

was less than 0.7 km. The IWC measured by CVI is

shown in Fig. 2c. Approximately half the CVI data are

missing during this flight because of a valve that period-

ically opened the system to aircraft cabin air; however,

the remaining data were unaffected. The black line shows

the IWC calculated from the measured IPSDs, using the

Brown and Francis (1995) mass–diameter relationship

(m 5 2.939 3 1023 D1.9, with D in centimeters and m in

grams). Other relations have been suggested (see, e.g.,

Heymsfield et al. 2004), but the focus of this paper is on

the ice particle size distribution. We include the IWC

calculated from ice spectra here only for illustration

purposes. There is good agreement between the IWC

measured by CVI and that calculated from the measured

IPSDs. The vertical lines on Fig. 2c indicate four selected

locations for which IPSDs will be presented in section 4a.

b. Case 2: 8 August 2007

This is a case of decaying convection with light strat-

iform rain. The GOES IR image (Fig. 3) shows scattered
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convective cells. Figures 4a and 4b show the reflectivities

measured by EDOP and CRS radars during 1400–1409

UTC. The cloud sampled is along the edge of a decaying

convection with light precipitation. Both X-band and

W-band reflectivities are much higher compared to case 1.

At the DC-8 flight level, most of the cloud is below the

detection level of EDOP. Figure 4c shows that the IWC

calculated from IPSD is about 10% to 25% higher than

that measured by CVI.

3. Transformation of particle size distributions:
Equations

a. Functional representation of particle size
distribution

Our aim is to represent the observed IPSDs by an

analytical expression with a few parameters. In the past,

the general exponential, the gamma, and the lognormal

functions have been used to describe IPSDs and rain-

drop size distributions (RSDs). These functions are

(E)N
D

5 (E)N
0

exp(�(E)LD) (general exponential),

(1)

(G)N
D

5 (G)N
0
Dm exp(�(G)LD) (gamma), and (2)

(L)N
D

5
N

Tffiffiffiffiffiffi
2p
p

s

1

D
exp �

ln2(D/(L)D*)

2s2

� �
(lognormal).

(3)

In the above, ()NDdD represents the concentration

(m23) of particles with maximum diameter D to D 1 dD

and the left superscripts E, G, and L signify exponential,

gamma, and lognormal functions, respectively. The

general exponential has two free parameters (E)N0 and
(E)L. It has been widely used to represent raindrop and

snow size distributions (e.g., Gunn and Marshall 1958;

Waldvogel 1974). The Marshall–Palmer distribution

(Marshall and Palmer 1948) is a special case of the gen-

eral exponential distribution with only one free parame-

ter, namely (E)L, with (E)N0 being fixed at 0.08 cm24. The

three-parameter ((G)N0, m, (G)L) gamma function has

been extensively used in the study of raindrop size dis-

tributions (e.g., Ulbrich 1983). It has also been used in the

analysis of IPSDs. The lognormal distribution also has

three parameters (NT, (L)D*, s). It has been used to de-

scribe aerosol size distributions (Seinfeld and Pandis

1998, chapter 7) and occasionally raindrop size distri-

butions (Feingold and Levin 1986). Another function,

the modified gamma function, which has four parameters,

has occasionally been used to represent IPSDs (Delanoë

et al. 2005).

b. Transformation of particle size distribution

We shall answer the question: Of the distributions (1),

(2), and (3), which one best fits the observed IPSDs? For

this purpose, we can perform appropriate regressions to

determine the ‘‘best’’ fits to the observed IPSDs. For

example, for distribution (1), we could use linear least

FIG. 1. GOES IR images with ER-2 (blue) and DC-8 (red) flight tracks superimposed. The thick

black line shows the flight track for the case 1, 1423–1439 UTC 31 Jul 2007.
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squares regression of lnND versus D to determine the

best values of (E)N0 and (E)L; for lognormal distribution

(3), we could use second-degree polynomial fit of lnND

versus lnD to determine the best fit. Then we could ex-

amine the differences between the observed and fitted

distributions to determine which function provides a

better description of the data.

Here, instead of performing regressions, we devise

transformations of the particle size and concentration

such that the transformed distribution takes on a form

independent of the values of the parameters of the dis-

tribution. For example, for the general exponential dis-

tribution (1), we present transformations of the size and

concentration such that all exponential distributions,

irrespective of the values of (E)N0 and (E)L, collapse

on to a curve whose equation is predicted in advance.

We give below the transformations for each of the three

functions.

1) EXPONENTIAL DISTRIBUTION

For the exponential distribution, we use (E)ND/(E)N0

and (E)LD as the transformed concentration and size

variables. We can estimate (E)L and (E)N0 using any two

moments of the distribution. Here we use the second and

fourth moments because they are closely related to the

IWC and the radar reflectivity for Rayleigh scattering.

This is because many observational studies have found

a power-law relationship between particle mass and di-

ameter, m 5 aDb, with the exponent b ranging between

about 1.8 and 2.2 (e.g., Locatelli and Hobbs 1974; Brown

and Francis 1995; Heymsfield et al. 2004). With b 5 1.8

to 2.2, the second moment is closely proportional to the

ice water content. Further, in the Rayleigh regime, the

backscattering cross section is proportional to the square

of the particle mass; therefore, the radar reflectivity is

closely proportional to the fourth moment of the IPSD.

The second and fourth moments of the exponential

distribution are given by

(E)M
2

5

ð‘

0

D2((E)N
D

) dD 5
2!((E)N

0
)

(E)L3
, (4)

(E)M
4

5

ð‘

0

D4((E)N
D

) dD 5
4!((E)N

0
)

(E)L5
. (5)

From the above, we can derive the following:

(E)D* 5
1

(E)L
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
((E)M

4
/(E)M

2
)

12

s
, (6)

(E)N
0

5
((E)M

2
/(E)D3

*)

2
. (7)

In terms of (E)D* and (E)N0, the exponential distribution

becomes

(E)N
D

(E)N
0

5 exp � D
(E)D*

 !
. (8)

For an observed IPSD, the moments and the charac-

teristic scales, (E)D* and (E)N0, can be estimated using

the following equations:

M̂
2

5�(N
k
DD

k
)D2

k, M̂
4

5�(N
k
DD

k
)D4

k, (9)

(E)D̂* 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(M̂

4
/M̂

2
)

12

s
, (E)N̂

0
5

(M̂
2
/(E)D̂

3

*)

2
. (10)

Here the hat on top of a symbol denotes an estimate

from measurements; Nk is the measured concentra-

tion density in the kth size category; DDk is the width of

that size category and Dk is its central diameter. Using

FIG. 2. Observed radar reflectivity by (a) EDOP (X-band) and

(b) CRS (W-band) radars for case 1, 31 July 2007. The horizontal

line at about 11-km height shows the DC-8 flight line. (c) IWC

measured by CVI instrument on DC-8 (red) and IWC estimated

from measured IPSDs using the Brown-Francis (1995) mass–

diameter relationship (black). The vertical lines indicate the four

selected locations for which IPSDs are plotted in Fig. 5a.

198 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 67



y 5 N
D

/(E)N̂
0

and x 5 D/(E)D̂* as the transformed con-

centration and size, respectively, where ND is the ob-

served concentration density, exponential IPSDs should

collapse onto an exponential curve y 5 exp(2x), irre-

spective of the values of their parameters.

This scaling is essentially similar to that used by Sekhon

and Srivastava (1971) and other two-moment normali-

zations (e.g., Willis 1984); this is further discussed in

section 5, where we compare our transformations with

other normalization methods discussed in the literature.

2) GAMMA DISTRIBUTION

The gamma function distribution becomes indepen-

dent of its parameters if (G)LD and (G)ND/((G)N0Dm) are

used as the size and concentration variables. We use the

first, second, and fourth moments to determine the three

parameters, (G)L, m, and (G)N0. The reason for using

the second and fourth moments has been explained

above. The first moment has microphysical applications,

for example, in the calculation of diffusional growth.

The nth moment of the gamma distribution is given by

(G)M
n

5

ð‘

0

Dn((G)N
D

) dD

5
((G)N

0
)G(n 1 m 1 1)

(G)Ln1m11
, n .�(m 1 1). (11)

Using the above equation with n 5 1, 2, and 4, we can

derive the following:

(G)D* 5
1

(G)L
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
((G)M

2
/(G)M

1
)2

16
1

((G)M
4
/(G)M

2
)

2

s

� 3

4

� � (G)M
2

(G)M
1

 !
, (12)

m 5
(G)M

2
(G)M

1

1
(G)D*

� 2, and (13)

(G)N
0

5
[(G)M

1
/((G)D

(m12)

*
)]

G(m 1 2)
. (14)

Using y and x as the transformed concentration and size

variables, where

y 5
(G)N

D

((G)N
0
Dm)

and x 5
D

(G)D*
, (15)

any gamma function distribution transforms to

y 5 exp(�x), (16)

irrespective of the values of its parameters.

For an observed distribution, the second and fourth

moments can be estimated using Eq. (9) and a similar

equation for the first moment. The estimated values of

the parameters are then given by analogs of Eqs. (12),

(13), and (14), namely

FIG. 3. GOES IR image with ER-2 (blue) and DC-8 (red) flight tracks superimposed. The thick

black line shows the flight track for case 2, 1400–1409 UTC 8 Aug 2007.
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(G)D̂* 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(M̂

2
/M̂

1
)2

16
1

(M̂
4
/M̂

2
)

2

s
� 3

4

� �
M̂

2

M̂
1

 !
,

(17)

m̂ 5
M̂

2

M̂
1

1
(G)D̂*

� 2, and (18)

(G)N̂
0

5
[M̂

1
/((G)D̂

(m̂12)

* )]

G(m̂ 1 2)
. (19)

If we now use y 5 ND/((G)N̂0Dm̂) as the transformed

concentration density and x 5 D/(G)D̂* as the size var-

iable, a PSD conforming to the gamma function should

tend to collapse onto the exponential curve y 5 exp(2x),

irrespective of the values of its parameters.

3) LOGNORMAL DISTRIBUTION

For the lognormal distribution, we can use (L)NDDs/NT

and ln(D/(L)D*)/s as the transformed concentration and

diameter variables. The parameters of the distribution

can be expressed in terms of three of its moments. The

nth moment is given by

(L)M
n

5

ð‘

0

Dn((L)N
D

) dD 5 N
T

((L)D*)n exp
n2s2

2

� �
.

(20)

It is noteworthy that the moments consist of three fac-

tors and each factor involves only one parameter of the

distribution. This is in contrast to the gamma distribu-

tion in which the parameters (G)L and m are entangled

[see Eq. (11)].

Using the first, second, and fourth moments, we get

(L)D* 5
((L)M

2
/(L)M

1
)2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(L)M
4
/(L)M

2

q , (21)

s 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

((L)M
4
/(L)M

1
)1/3

((L)M
2
/(L)M

1
)

" #vuut , and (22)

N
T

5 (L)M
1

((L)M
4
/(L)M

1
)1/3

((L)M
2
/(L)M

1
)2

. (23)

Using the transformed concentration density and size

variables, namely

y 5
sD(L)N

D

N
T

, x 5
ln(D/(L)D*)

s
, (24)

any lognormal distribution takes on the standard Gaussian

form:

y 5
1ffiffiffiffiffiffi
2p
p
� �

exp �x2

2

� �
. (25)

For an observed distribution the moments can be es-

timated as before. Estimates of the parameters of its

lognormal representation are obtained by replacing the

analytical moments on the right-hand sides of (21), (22),

and (23) by their estimated values:

(L)D̂* 5
(M̂

2
/M̂

1
)2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̂
2
/M̂

2

q , (26)

ŝ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

(M̂
4
/M̂

1
)1/3

(M̂
2
/M̂

1
)

" #vuut , and (27)

N̂
T

5 M̂
1

(M̂
4
/M̂

1
)1/3

(M̂
2
/M̂

1
)2

. (28)

FIG. 4. As in Fig. 2, but for case 2. The vertical lines indicate four

selected locations for which IPSDs are plotted in Fig. 5b.
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Using ŝDN
D

/N̂
T

and ln(D/(G)D̂*)/ŝ as the transformed

concentration and size variables, any lognormal distri-

bution should collapse onto the standard Gaussian curve.

In all three cases, the estimated parameters differ

from their analytical or ‘‘true’’ values, even if the mea-

sured distribution is sampled from a population that is

exactly exponential, gamma, or lognormal, because of 1)

instrumental problems, 2) sampling fluctuations, 3) re-

placement of integrals by summations, and 4) truncation

of the distribution. Truncation error refers to the fact

that the analytical moments involve integrals extending

from zero to infinite diameter, whereas the estimated

moments involve finite minimum and maximum di-

ameters. A method of accounting for truncation will be

discussed in section 4c.

4. Observed ice particle size distributions: Results

a. Selected size distributions

A total of 189 and 99 size spectra were observed in

cases 1 and 2, respectively, giving a grand total of

288 spectra. Figure 5 shows four individual spectra

for cases 1 (Fig. 5a) and 2 (Fig. 5b). The vertical lines

in Figs. 2c and 4c show the locations of these spectra.

Reference to Figs. 2a and 2c shows that the IWC de-

creases with distance away from the convective core. A

comparison of Figs. 5a and 2c shows that particle con-

centration and size also decrease with distance away

from the core. These variations can be attributed to

fallout and size sorting in the anvil outflow. In case 2, the

samples are somewhat symmetrically distributed with

respect to the convective core (see Fig. 4a) and conse-

quently particle sorting is not obvious. However, the

IWC is seen to decrease with distance on either side of

the convective core (Fig. 4c).

We see that spectra with a higher IWC extend to

larger sizes and are less steep than spectra with a lower

IWC. In both cases, the spectra are approximately ex-

ponential, especially at the lower values of the IWC, and

tend to have a common intercept on the ordinate. In this

respect the spectra are reminiscent of the Marshall–

Palmer distribution of raindrop sizes (Marshall and

Palmer 1948). However, unlike the Marshall–Palmer

distribution, these spectra exhibit a distinct curvature,

which becomes more pronounced as the IWC increases.

b. Transformed size distributions

We now apply the transformations presented in sec-

tion 3b to find which function—exponential, gamma, or

lognormal—best fits the data. Figures 6a and 6b show

the IPSDs for cases 1 and 2 with transformed con-

centration and diameter axes, ND/(E)N̂0 and D/(E)D̂*
[Eqs. (6), (7), and (8)], appropriate for the exponential

function (Figs. 6c and 6d will be discussed later). Since

the observed spectra do not collapse onto the theo-

retical curve (shown by the solid lines) and moreover

show systematic departures from it, we may conclude

that the exponential function is not a good fit for the

observed spectra.

Figures 7a and 7b (Figs. 7c and 7d will be discussed

later) show scatterplots of all the spectra for cases 1 and 2

FIG. 5. Four selected IPSDs for cases (a) 1 and (b) 2. The vertical

lines in Figs. 2c and 4c show the locations of these IPSDs.
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using D/(G)D̂* and N
D

/((G)N̂
0
Dm̂) as the transformed

particle size and concentration variables. If the observed

distributions obey the gamma function, then the plotted

points should collapse onto the exponential curve shown

by the solid line. The gamma function provides a fairly

good fit, in the midrange of scaled particle sizes, between

about D/D̂* 5 1 and 8. The fit is not good for smaller

and larger sizes, especially the larger sizes, where the

observed points depart systematically from the expected

curve. It may be noted that about 10% of all the points

plotted satisfy D/D̂* , 1. Of these about 30% lie in

the smallest size category, 0.01–0.015 cm, falling pro-

gressively to less than 2% for the size category 0.036–

0.044 cm. Particles with sizes larger than 0.044 cm have

D/D̂* $ 1.

Figures 8a and 8b (Figs. 8c and 8d will be discussed

later) show scatterplots of all the spectra for cases 1 and

2 using ln(D/(L)D̂*)/ŝ and ŝDN
D

/N̂
T

as the transformed

particle size and concentration variables. The solid lines

show the expected curves for the lognormal distribution.

FIG. 6. Observed distributions in transformed coordinates for all IPSDs along the flight line for cases (a),(c) 1 and

(b),(d) 2, both (a),(b) before and (c),(d) after truncation correction. Any exponential distribution should collapse

onto the black solid line. (See text for details.)

202 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 67



We see that the points scatter rather tightly around the

theoretical curve. A careful examination of the figures

reveals that the fit is better in the midsize range, the

scatter being greater at larger and smaller sizes. The

greater scatter at larger sizes is to be expected (in all

three cases) because of sampling fluctuations. Further-

more, we notice that in both cases the points tend to be

a little below the theoretical curve for normalized sizes

in the range of about 1 to 2 and a little above it in the

range 2 to 4. Some of these systematic deviations dis-

appear after correction for truncation (see section 4c

below).

Figures 6–8 suggest that the lognormal function pro-

vides a better fit to the observed particle size distribu-

tions. The exponential and gamma functions provide

a good fit at small and medium sizes but underestimate

the concentration at larger sizes. The function fits are

discussed further in section 4d.

c. Truncation correction

1) EQUATIONS

The equations derived in section 3b assume that the

size distributions extend from zero to infinite particle

FIG. 7. As Fig. 6, but for the gamma distribution.
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sizes. The observed distributions extend only from a

minimum nonzero diameter Dmin to a finite maximum

diameter Dmax. We now present a method for deter-

mining the parameters of the three distributions taking

account of this truncation.

For the exponential function, we derived the un-

corrected distribution parameters by solving Eqs. (4)

and (5), which relate the distribution parameters to the

untruncated moments. To find the truncation-corrected

parameters, we need to relate the parameters to the

truncated moments. The nth truncated moment of the

exponential distribution is given by

(E)M
n
(D

min
, D

max
) 5

ðDmax

Dmin

(E)N
D

Dn dD

5
(E)N

0

(E)Ln11
[g(n 1 1, x

max
)

� g(n 1 1, x
min

)], (29)

FIG. 8. As Fig. 6, but for the lognormal distribution. Any lognormal distribution should collapse onto the black solid

line exp(2x2), with x 5 ln(D/(L)D
*
)/s.
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where

x
min

5 (E)LD
min

5
D

min
(E)D*

,

x
max

5 (E)LD
max

5
D

max
(E)D*

, (30)

and g is the incomplete gamma function. Equation (29)

may be rewritten as

(E)M
n
(0, ‘) 5

M̂
n

r(n 1 1, x
max

)� r(n 1 1, x
min

)
, (31)

where r represents the ratio of the incomplete to the

complete gamma functions and we have replaced the

truncated moment, (E)Mn(Dmin, Dmax), by the observed

moment M̂n. To obtain the corrected distribution pa-

rameters, we need to solve Eq. (31) for n 5 2, 4. The

solution is obtained by an iterative procedure. First,

the previously calculated uncorrected parameters and

the observed values of Dmin and Dmax are used to calcu-

late xmin and xmax [Eq. (30)], which are then substituted

in Eq. (31) to obtain a first approximation to the un-

truncated moments, (E)Mn(0, ‘), n 5 2, 4. These are used

in Eq. (10) to calculate the first approximation to the

corrected parameters, which are in turn used to obtain

the next approximations to xmin, xmax, (E)Mn(0, ‘), and

the distribution parameters. The procedure is repeated

until successive approximations to the distribution pa-

rameters differ by less than a set criterion, usually 0.01%.

This procedure converges rapidly. Usually no more

than 10 iterations are needed. For the gamma function,

the procedure is similar to that for the exponential

distribution. By considering the truncated moments for

the gamma function, we obtain an equation similar to

Eq. (31),

(G)M
n
(0, ‘) 5

M̂
n

r(n 1 m 1 1, y
max

)� r(n 1 m 1 1, y
min

)
,

(32)

where

y
min

5 (G)LD
min

5
D

min
(G)D*

,

y
max

5 (G)LD
max

5
D

max
(G)D*

. (33)

Equation (32) is solved iteratively for n 5 1, 2, 4 to find

the truncation-corrected values of the distribution pa-

rameters (G)N0, (G)D* 5 1/(G)L, and m. Again, the con-

vergence is rapid except for negative value of m close

to 22. This is because the first moment, (G)M1(0, ‘),

does not exist for m # 22. It may be mentioned that an

absolute rather than a relative convergence criterion is

used for m. Convergence is considered achieved when

successive approximations to m differ by less than 0.01.

This is necessary because m can be close to zero.

For the lognormal distribution, the nth truncated

moment is given by

(L)M
n
(D

min
, D

max
) 5

(L)M
n
(0, ‘)[erf(z

max
)� erf(z

min
)]

2
,

(34)

where

z
min

5
[ln(D

min
/(L)D*)/s� ns]ffiffiffi

2
p ,

z
max

5
[ln(D

max
/(L)D*)/s� ns]ffiffiffi

2
p . (35)

Again, we rewrite (34) as

(L)M̂
n
(0, ‘) 5

2M̂
n

[erf(z
max

)� erf(z
min

)]
. (36)

This equation is solved iteratively for n 5 1, 2, 4 to get

truncation-corrected parameters N̂T , ŝ, and (L)D̂*. The

convergence is again rapid as in the case of the expo-

nential distribution.

2) TRUNCATION-CORRECTED TRANSFORMED

DISTRIBUTIONS

A comparison of the distribution parameters, before

and after truncation correction, will be presented in the

section 4e. Here we compare the transformed distribu-

tions before and after truncation correction. The right

panels of Figs. 6–8 show scatterplots of the transformed

distributions after truncation correction. For the expo-

nential function (Figs. 6c,d), there is very little change

after the truncation correction. In the case of the gamma

distribution (Figs. 7c,d), there is perhaps a small im-

provement in the fit to the theoretical curve after the

truncation correction. For the lognormal case (Figs.

8c,d), the agreement between the observed spectra and

the theoretical curve improves after the truncation

correction. Almost all the points at the left-hand side of

the plot, which show greater deviations from the theo-

retical curve, belong to the first size category used in the

plots. This size category may not have been sampled

properly or may suffer from artifacts of particle shat-

tering at the sensor probe. Of course, it is also possible

that the smaller particles do not conform to a lognormal

distribution.
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d. Which function provides a better fit to the
observed distributions?

A visual inspection of Figs. 6–8 shows that the log-

normal function provides a better fit to the data. The

observed IPSD departs from the exponential and

gamma functions at the small and large size ends, and

there is considerable scatter in the data points. At the

large size end, the deviations occur systematically in one

direction, the observed concentrations being generally

greater than expected. This is true to a smaller extent at

the small size end as well. In the case of the lognormal

distribution, on the other hand, the observed points

scatter tightly around the theoretical curve.

To quantify the above visual impressions, we present

the ratios of the observed to expected concentrations in

Fig. 9 for case 1 and Fig. 10 for case 2. The expected con-

centrations were computed for each observed spectrum

FIG. 9. Ratio of observed to theoretical concentration density as a function of particle diameter for case 1, (left)

before and (right) after truncation correction, for (a),(b) exponential, (c),(d) gamma, and (e),(f) lognormal distri-

bution. The solid thick line is the geometric mean and the thin lines are one standard deviation above and below the

mean. (For details, see text.)
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using the estimated parameters for that spectrum before

(left panels) and after (right panels) truncation correc-

tion. In addition, the mean and standard deviations of the

logarithms of the ratios were computed as a function of

particle size. The logarithms were used because the ratio

spans more than four orders of magnitude. The full lines

show the mean ratios and points differing from the mean

by 6one standard deviation.

In case 1, the observations do not fit the exponential

function well (Figs. 9a,b), the mean ratio being greater

than 1 for all but a small range of midsized particles. At

the large size end, the observed concentrations exceed

the theoretical concentrations by orders of magnitude.

Truncation correction does not improve the situation

(Fig. 9b). In case 2 (Figs. 10a,b) the exponential function

also does not provide a good fit to the observations ex-

cept for diameters less than about 1 mm.

The gamma function provides a somewhat better fit

(Figs. 9c,d and 10c,d) than the exponential function. In

case 1, without truncation correction, the mean ratios

hover around 1 for particle sizes smaller than about

1-mm diameter. For larger sizes, however, the mean ratio

exceeds 1 systematically and by a rather wide margin for

particles bigger than about 2–3-mm diameter (Fig. 9c).

FIG. 10. As in Fig. 9, but for case 2.
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Truncation correction improves the fit, with the mean

ratio being brought close to 1 for particles up to 4-mm

diameter (Fig. 9d). For larger particles, the mean ratio

rapidly increases above unity and becomes quite large.

In case 2 (Figs. 10c,d), the fit is not as good as in case 1,

and truncation correction does not improve the result.

The lognormal function provides a very good fit for

case 1 (Fig. 9e). The fit improves after truncation cor-

rection (Fig. 9f), with the mean ratio being close to 1 up

to a particle diameter of about 6 mm, which is near the

limit of the largest particle size measured. The scatter

around the mean ratio curve is smaller than in the other

cases. The lognormal distribution provides a good fit for

case 2 also (Fig. 10e). Truncation correction (Fig. 10f)

again improves the fit but not as much as in case 1.

The above tests tell us how well the three functions

represent the observed concentration densities. In many

cases, however, the moments of the distribution are of

greater interest. For example, we might be interested in

the ice water content, which is proportional to the 1.9th

moment, or the radar reflectivity, which is proportional

to 3.8th moment, for Rayleigh scattering, assuming the

Brown and Francis (1995) mass–diameter relationship.

To test how well the three functions reproduce these

moments, we have calculated the following ratios:

R
nE

5
M̂

n

(E)M̂
n

, R
nG

5
M̂

n

(G)M̂
n

,

R
nL

5
M̂

n

(L)M̂
n

, n 5 1.9, 3.8. (37)

The numerators, M̂n, are the observed moments. The

denominators are calculated using Eqs. (11) and (20) for

FIG. 11. Percent difference between observed and theoretical 1.9th and 3.8th moments before truncation correction for

the exponential (blue), gamma (red), and lognormal (black) fits along the flight track for cases (left) 1 and (right) 2.

FIG. 12. Parameters (a) (E)N̂
0

and (b) (E)D̂*, for exponential distribution, along the flight track for cases (left) 1 and

(right) 2, both before (black) and after (red) truncation correction.
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the gamma and lognormal case and Eq. (11) with m 5 0

for the exponential case.

Figure 11 shows the percentage deviations from unity

of the ratios for the 1.9th and 3.8th moments, for cases 1

and 2 respectively, plotted along the flight tracks. Note

the change in the ordinate scales between the plots for the

two moments. In case 1 (left panel), the computed 1.9th

moments agree with the observed moments to within 4%

for all three functional representations, although in

case 1, the exponential and gamma functions show a sys-

tematic derivation from unity for the 1.9th moment. The

3.8th moments also agree to within 5% for all three

functions. The small disagreements appear for the higher

ice water contents. In case 2 (right panel), both moments

show excellent agreement between observed and com-

puted moments for all three functions. We see that the

percentage deviations are somewhat larger and more er-

ratic for the gamma function. However, for both moments

and all three functions, the percentage deviations are

rather small. This excellent agreement is not surprising

since the parameters of the distributions were derived

using the first, second, and fourth moments calculated

from the IPSDs. Indeed, a comparison of calculated and

observed moments, of orders close to those used to esti-

mate the distribution parameters in the first place, does

not constitute a sensitive test of the closeness of the fitted

distribution to the observations. A similar calculation of

the ratios using the truncation-corrected distribution pa-

rameters (figure not shown) gave similar results.

e. Parameters of the distributions

In this section, we discuss the variation of the distri-

bution parameters along the flight tracks and correlations

between them. Figures 12a and 12b show (E)N̂0 and (E)D̂*

FIG. 13. Scatterplots of (E)N̂
0

vs (E)L (left) before and (right) after truncation correction, for cases (top) 1 and

(bottom) 2. Correlation coefficients (corr.) are displayed.

JANUARY 2010 T I A N E T A L . 209



for case 1 (left panel) and case 2 (right panel) before

(black) and after (red) truncation correction. Truncation

correction produces only small changes in (E)N̂
0

and little

or no change in (E)D̂*. Comparison with a plot of IWC

along the flight track for case 1 (Fig. 2c) shows that the

IWC and the parameters are correlated, with higher

values of (E)N̂0 and lower values of (E)D̂* being associ-

ated with smaller IWC. Figure 12 also indicates a cor-

relation between (E)N̂
0

and (E)L̂
0

(51/(E)D̂*). This

is confirmed by a scatterplot of (E)N̂
0

versus (E)L̂
0

(Figs. 13a,b), which shows an exponential relationship

between the two parameters. In case 1 (Fig. 13, top panel),

we see a ‘‘saturation’’ in the value of (E)L̂0 at about

20 cm21. Lo and Passarelli (1982) found saturation at

about 10–12 cm21 at temperatures warmer compared to

our case. Case 2 (Fig. 13, bottom) does not show satu-

ration. This may be because the slope does not fall below

about 40 cm21.

Figures 14a–c show a plot of the parameters of the

gamma distribution along the flight track for case 1 (left

panel). Comparison with Fig. 4c shows a correlation with

the IWC with lower values of IWC being associated with

higher (G)N̂0 and lower m. However, a similar plot for

case 2 (Fig. 14, right panel) does not show a strong

correlation with IWC. Both cases 1 and 2 suggest that

the parameters are correlated with each other. This is

confirmed by the scatterplots in Fig. 15 (case 1) and Fig. 16

(case 2). The correlation between (G)N̂0 and m̂ is almost

perfect in both cases (Figs. 15a,b and 16a,b), with (G)N̂0

being an exponential function of m. Ulbrich (1983) re-

ported a similar relationship for raindrop size distribu-

tions. There is a weaker linear relationship between (G)L̂

and m (Figs. 15c,d and 16c,d). Brandes et al. (2003) have

reported a quadratic relationship between (G)L̂ and m

for raindrop size distributions.

The parameters of the lognormal distribution are shown

in Fig. 17 for case 1 (left) and 2 (right). Comparison with

IWC along the flight track (Figs. 2c and 4c) suggests

a positive correlation between N̂
T

and IWC and a weaker

positive correlation between ŝ and IWC. Pairwise scat-

terplots for the three parameters are shown in Fig. 18

(case 1) and Fig. 19 (case 2). There is a fair negative cor-

relation between N̂T and (L)D̂* in both cases (Figs. 18a,b

and 19a,b). In case 1, the correlation improves after

truncation correction. There is a good positive correlation

between N̂
T

and ŝ in case 1 (Figs. 18c,d) but it is weak in

case 2 (Figs. 19c,d). The poor correlation in case 2 may be

due to the small range of values of ŝ. There is a fair cor-

relation between (L)D* and ŝ in both cases (Figs. 18e

and 19e). In both cases, the correlation improves rather

markedly after truncation correction (Figs. 18f and 19f).

5. Discussion

a. Comments on the functional representation
of PSDs

The exponential distribution has two adjustable pa-

rameters, whereas the gamma and lognormal distributions

FIG. 14. Parameters (a) (G)N̂
0
, (b) (G)D̂*, and (c) m̂ for gamma distribution for cases (left) 1 and (right) 2.
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each have three adjustable parameters. However, the

estimates of the parameters of the exponential distri-

bution, (L)D̂* and (E)N̂0, are correlated; the estimates

of the parameters of the gamma distribution, (G)D̂*, m̂,

and (G)N̂0, are also correlated in pairs. Therefore, the

exponential and gamma distributions have effectively

only between one and two freely adjustable parameters.

The three parameters of the lognormal function show

weaker correlations; therefore, the lognormal function

has close to three freely adjustable parameters.

The parameters of the exponential distribution have

the simple interpretation of intercept and slope on a

semilogarithmic plot of the PSD. A positive correlation

between (E)N0 and (E)L is understandable if it is assumed

that aggregation is the major factor shaping the size dis-

tribution. Then, if we start with an initial exponential

distribution, aggregation would tend to increase the con-

centration of larger particles and decrease that of smaller

particles, giving rise to a decrease in both (E)N0 and (E)L.

This tendency can be checked by breakup of larger par-

ticles, which may prevent the slope from decreasing below

a certain value. Indeed, breakup has sometimes been in-

voked to explain the observed saturation of (E)L̂.

The parameter m of the gamma distribution can be

related to the curvature of the size distribution on a

semilogarithmic plot, but the other two parameters

do not have a straightforward interpretation. Also,

there is no convincing physical explanation of the

observed correlations between the parameters of the

distribution.

The parameters of the lognormal distribution have

a straightforward interpretation: NT is the total particle

concentration, (L)D* is a measure of the ‘‘mean’’ particle

size, and s is a measure of the spread of the distribution.

Indeed, (L)D* 5 exp(hlnDi) and s2 5 hln2Di 2 hlnDi2,

where h i denotes averaging. The transformation of the

lognormal distribution also has a simple interpretation.

It involves shifting the zero of the size axis to the mean

size and scaling it by the standard deviation [x 5

ln(D/(L)D*)/s], while the normalization of the concen-

tration (y 5 sDND/NT) ensures that the area under the

transformed distribution is unity.

FIG. 15. Scatterplots of (G)N̂0 vs m̂ (top), and (G)L vs m̂ (bottom), both (left) before and (right) after truncation

corrections for case 1. Correlation coefficients (corr.) are displayed.
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b. Comparison of methods of scaling particle
size distributions

Here we compare our method of transforming particle

size distributions with other methods of normalizing the

distribution reported in the literature. Many of these

methods were initially developed for the analysis of

raindrop size distributions (RSDs) and subsequently

applied to the analysis of IPSDs. Sekhon and Srivastava

(1971) used median volume diameter to scale raindrop

diameter and a combination of rainwater content and

median volume diameter to scale concentration density.

Their scaling collapses the general exponential distri-

bution onto a ‘‘universal’’ curve. Testud et al. (2001)

used the mean mass diameter, Dm, and a concentration

density N0* to scale any RSD:

N
D

N
0
*

5 F
D

D
m

� �
. (38)

The scaling variables Dm and N0* are related to the third

and fourth moments of the RSD. With this normalization,

two-parameter exponential RSDs collapse onto a uni-

versal curve. However, RSDs involving more than two

parameters do not collapse onto a single curve. For ex-

ample, for the gamma function RSD, which involves

three parameters, (G)N0, L, and m, the normalization

eliminates two parameters, (G)N0 and L, but the function

F in Eq. (38) depends on the parameter m [see Eq. (15) in

Testud et al. 2001]. This dependence leads to consider-

able scatter in plots of RSD using D/Dm and ND/N0* as the

normalized diameter and concentration density variables.

Lee et al. (2004) have presented a generalization of

the Testud et al. normalization so that any two moments

of the RSD can be used to normalize the size and con-

centration density. Their normalization may be more

simply interpreted in terms of nondimensional size and

concentration density variables. Consider, for example,

the dimensions of the ith and jth moments:

[M
i
] 5 [N

D
DD][D]i, [M

j
] 5 [N

D
DD][D] j, (39)

where the square brackets denote dimensions. From the

above equations, we find the following combinations of

FIG. 16. As in Fig. 15, but for case 2.
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moments with dimensions of particle size and concen-

tration density:

[D] 5
[M

j
]

[M
i
]

( )1/( j�i)

,

[N
D

] 5 [M
i
]( j11)/( j�i)[M

j
]�(i11)/( j�i). (40)

Thus, we can use the following scales to normalize the

diameter and concentration density:

D* 5
M

j

M
i

� �1/( j�i)

, N* 5 M
( j11)/( j�i)
i M

�(i11)/( j�i)
j . (41)

These are the variables used by Lee et al. to normalize

the RSD [see their Eq. (15)]. We can even generalize the

above normalization by using two moments to generate

a diameter scale and two other moments to generate

a concentration density scale.

Field et al. (2005) used the following pairs of moments

to scale 9000 observed IPSDs: second and third, second

and fourth, and third and fourth (see their Fig. 11). Their

normalized spectra show considerable scatter; they do

not collapse on to a single curve. Field et al. (2007) used

the sum of a gamma and an exponential function to

represent their normalized universal distribution. There

is a rather large scatter around the universal curve be-

cause a two-moment normalization cannot collapse a

three-parameter size distributions onto a single curve,

and the observed distributions probably require three

parameters for a more accurate representation. We have

used the second and fourth moments to apply normali-

zation similar to that of Field et al. to our data. The re-

sults (not shown) were similar to those of Field et al. The

PSD transformations presented here differ from the

other normalizations cited above in that they are de-

signed to collapse specific multiparameter particle size

distributions to a single curve, whose form is predicted in

advance, irrespective of the values of the parameters of

the distribution.

6. Summary and conclusions

We have presented methods for transforming expo-

nential, gamma, and lognormal function particle size

spectra. In the case of the general exponential distribu-

tion with two free parameters, two moments are needed

to transform the spectra. We have used the second and

fourth moments to derive characteristic size and con-

centration density scales. We have shown that using

these scales, any exponential size distribution can be

transformed into a standard exponential distribution

FIG. 17. Parameters ŝ, (L)D̂*, and N̂T for lognormal distribution along the flight track, both before (black) and after

(red) truncation correction, for cases (left) 1 and (right) 2.
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independent of the values of its parameters. For the

gamma and lognormal functions, both of which have

three free parameters, we have used three moments to

transform the distributions. We have used the first, sec-

ond, and fourth moments to derive size and concentration

density scales for each of the distributions. We have

shown that using these scales, the gamma and the log-

normal distributions can be transformed to standard ex-

ponential and Gaussian forms, respectively, independent

of the values of the parameters of the distributions.

We have applied these transformations to two cases of

observed ice particle size distributions, in convectively

generated cirrus, obtained during the TC4 campaign in

Costa Rica. We have found that the observed distribu-

tions are not well fitted by the exponential function ex-

cept in the midsize range of particle sizes; moreover, the

observations depart systematically from the expected

curve. The gamma function provides a better fit over the

midrange and small sizes but underestimates the concen-

trations at larger sizes. The lognormal function provides

FIG. 18. Scatterplots of (top) N̂
T

vs (L)D̂*, (middle) N̂
T

vs ŝ, and (bottom) (L)D̂* vs ŝ, both (left) before and (right)

after truncation correction, for case 1. Correlation coefficients (corr.) are displayed.
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the best fit to the data. This conclusion has been supported

by an examination of the ratios of observed to theoreti-

cally expected concentrations and their means and stan-

dard deviations. Our conclusions are based on two cases of

observations of ice particles in tropic cirrus. They should

be examined using a larger dataset including data from

temperate-latitude ice clouds.

Our findings have implications for the remote sensing

of ice in clouds. If the three parameters of the lognormal

function, used to specify the observed IPSDs, are in-

dependent, then it is likely that we will need a minimum

of three measurables to remotely sense ice in clouds. We

have examined the three parameters for our observa-

tions for possible relationships among them and have

found that they generally show only fair to weak cor-

relation. We propose to pursue this aspect of the work

further by analyzing more extensive datasets on IPSDs

including data from temperate-latitude clouds.
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D. Bouniol, 2005: The retrieval of ice-cloud properties from

cloud radar and lidar synergy. J. Appl. Meteor., 44, 860–875.

Twohy, C. H., A. J. Schanot, and W. A. Cooper, 1997: Measure-

ment of condensed water content in liquid and ice clouds using

an airborne counterflow virtual impactor. J. Atmos. Oceanic

Technol., 14, 197–202.

Ulbrich, C. W., 1983: Natural variations in the analytical form of

the raindrop-size distribution. J. Climate Appl. Meteor., 22,
1764–1775.

Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos.

Sci., 31, 1067–1078.

Willis, P. T., 1984: Functional fits to some observed drop size dis-

tributions and parameterization of rain. J. Atmos. Sci., 41,

1648–1661.

216 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 67


