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[1] With the launch of the Defense Meteorological Satellite
Program F-15 spacecraft in late 1999, data for calculating
Earth-directed, magnetospheric Poynting flux became
available for the 09-21 solar local time sectors. We have
assembled a data base for this key element of the upper
atmosphere energy budget, for the interval 2000-2005. Here
we briefly introduce the data set and show a subset that
reveals a pattern of extreme Poynting flux deposition
associated with a large east-west interplanetary magnetic field
component. At such times the dayside high-latitude Poynting
flux may exceed 170 mW/m*—an order of magmtude above
typical values. The likely source of these events is merging at
the magnetopause flank and lobe. A significant fraction of
these events occur with high speed solar wind. This pattern
of extreme Poynting flux deposition has, to date, eluded
detection. Energy deposition at these high rates is a likely
source of previously reported, but poorly understood, near-
cusp neutral density enhancements. Citation: Knipp, D.,
S. Eriksson, L. Kilcommons, G. Crowley, J. Lei, M. Hairston, and
K. Drake (2011), Extreme Poynting flux in the dayside thermosphere:
Examples and statistics, Geophys. Res. Lett., 38, L16102,
doi:10.1029/2011GL048302.

1. Introduction

[2] Earth’s upper atmosphere is powered by solar UV/EUV
photons, energy deposition from the magnetosphere above,
and tidal forcing from below. The highly time- and space-
variable, magnetospheric component is supplied as precipi-
tating particles and the flow of electromagnetic energy via
Earth-directed, Poynting flux, S;, where the subscript indi-
cates the magnetic field-aligned component. We exploit low
Earth orbit (LEO) measurements to investigate the source of
order-of-magnitude enhancements in dayside S| deposition
during large excursions of the east-west interplanetary mag-
netic field (IMF) component (B,). For geospace applications,
the Poynting vector, S = E x B/, is the result of the con-
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vection electric field, E, crossed with 6B, the perturbation of
the geomagnetic field with respect to the main field B, [Kelley
et al., 1991]. The Poynting vector is a fundamental measure
of electromagnetic energy transfer to a system. Poynting
divergence, V ¢ S, manifests as Joule heating and kinetic
energy of the ions that subsequently collide with atmospheric
neutrals. This energy launches traveling atmospheric dis-
turbances, drives ion and neutral upwelling, and supports
neutral atmospheric expansion, all of which contribute to
upper atmospheric disturbances.

[3] Global measures of S; for the Magnetosphere-
Ionosphere-Thermosphere (M-I-T) system do not exist,
however estimates of S along the path of a LEO orbiting
satellite(s) can aid in constraining the energy budget of such
an electromagnetically driven system. Many researchers have
used space-based E and B sensors for determining S| depo-
sition, assuming quasi-static conditions (see summary by
Richmond [2010]).

[4] Gary et al. [1995] reported average auroral zone S
values of 10-15 mW/m? for the Dynamics Explorer-2 satel-
lite. During the B.-negative phase of the April 2000 super-
storm, Huang and Burke [2004] showed a single example of
S from Defense Meteorolog1cal Satellite Program (DMSP)
F-13 exceeding 100 mW/m?. Korth et al. [2005] found
localized S of ~50 mW/m? during a sustained, strongly
northward IMF phase of the July 2000 superstorm. Weimer’s
[2005] statistical patterns produce local dayside Joule heating
rates of ~15 mW/m?, for large IMF B, values. In one 1nstance
Strangeway et al. [2000] reported S as high as 120 mW/m? at
4000 km with strong IMF B,, (~40 nT), and verified that the
S| is dominant over the particle energy input to the cusp-
region ionosphere. These studies were unable to draw enough
samples from the dayside region to reveal the patterns shown
here from DMSP measurements.

2. Data Sources

[5] Data from space environment sensors aboard DMSP
spacecraft quantify magnetospheric energy input to the upper
atmosphere. Relevant to this study are data from the mag-
netometer, ion drift meter (IDM), and the retarding potential
analyzer (RPA). The F-15 triaxial fluxgate magnetometer is
mounted on a 5-m boom, reducing its susceptibility to
spacecraft-generated contamination. We use magnetic per-
turbation vector values provided by the Air Force Research
Laboratory, calculated in the spacecraft frame. Differences
between measured and International Geomagnetic Reference
Field (IGRF) values of magnetic fields at the spacecraft
locations, 0B = Bc.s — Bigrr, are calculated [Huang and
Burke, 2004]. A further adjustment is made each half orbit
by fitting a high-order polynomial to the residuals outside of
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Figure 1. Southern Hemisphere binned and equal -area
-averaged S| for 2000-2005 covering —50° Mlat to —90° Mlat.
(a) Averaged, quietest day of month; (b) averaged, most dis-
turbed day of month. Negative values on the color bar indicate
Earth-directed S.

the auroral oval and subtracting the fit to remove the
remaining baseline. The IDM measures horizontal cross-
track and vertical components of plasma drifts, and the RPA
measures ion temperatures and the in-track component of
plasma drift [Rich and Hairston, 1994]. Preprocessing of the
IDM and RPA data removes Earth’s co-rotation velocity. The
electric field vector values are determined using E = -V x
Bigrr. We calculate S), using the following steps, where
x refers to the along-track component and y refers to the
cross-track component:

S = (E x 6B)/juo

S| = (Ex6By — Ey6By)/ 1o

System geometry dictates the energy flow is primarily Earth-
directed (negative). Our calculations show that S is field
aligned to within 10% above 55° Mlat.

3. Results

[¢6] Figure 1 shows polar views of DMSP S averaged into
approximately equal area bins in the southern hemisphere
(SH). There, the sun-synchronous orbit covers the largest
swaths of magnetic local time (MLT) as the magnetic pole
moves beneath the satellite. The data represent the most
geomagnetically quiet (Figure 1a) and disturbed (Figure 1b)
day of each month during 2000-2005 according to the Kp
index. Each image contains ~1000 passes. Some bins at the
edge of coverage represent less than 5 passes. Average values
of S are ~0.5 mW/m? for quiet times and ~3.0 mW/m?” for
disturbed times. Applying these values to the region above
50° Mlat gives hemispheric Poynting deposition of ~30 GW
and 180 GW respectively for quiet and disturbed times, in
good agreement with the range of Joule heating rates dis-
cussed by Knipp et al. [2004], Weimer [2005] and McHarg
et al. [2005]. Figure 1 provides the backdrop for studying
enhanced S during large IMF B,

[7] Snapshots, in Figure 2, of the S| at the DMSP-15 track
are in MLT-magnetic latitude (Mlat) format for the northern
hemisphere (NH) during an event with large swings in the
east-west IMF on August 24, 2005 (see Figure 2a). The orbit
track color-coding, and the magnitude of the excursion from
the track, indicate the intensity of the down-going Sj. In
Figure 2b the satellite crosses a post-noon deposition region
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where ) ~20 mW/m? while the solar wind speed was modest
(460 km/s) and the IMF had a westward component (By ~
+8 nT). Subsequently a significant solar wind shock arrived at
Earth, conveying solar wind speeds of 550 km/s or more. The
post-shock Sy, located slightly equatorward of the previous
measurement, exceeded 120 mW/m? (Figure 2c). At that time
B, was ~+21 nT. Figure 2d illustrates the S during the pas-
sage of an interplanetary coronal mass ejection (ICME) with
speed of ~640 km/s, when the By component was ~—20 nT
and S reached ~170 mW/m?. Durmg the event, the most
intense S| moved from post-noon (B, positive) to pre-noon
(B, negative) in the NH, consistent with the migration of NH
high-latitude merging site(s) under the influence of IMF B_+
and a varying east-west IMF component [Luhmann et al.,
1984; Reiff and Burch, 1985]. During southern hemisphere
(SH) crossings, which occur on the nightside, S was negli-
gible throughout the interval.

[s] The DMSP data shows that large IMF B, excursions,
typically accompanied by high speed solar wind, are asso-
ciated with enhanced dayside S. Figures 3a—3d show plots
of the maximum S| for each DMSP F-15 2000-2005 polar
pass meeting the condition: IMF IB,| > 10 nT. Figures 3a
and 3b display the cases for IMF B_+, while the Figures 3¢
and 3d show the IMF B.-cases. The S| values exceeding
75 mW/m* and 100 mW/m” are shown with cross-like
symbols and triangles, respectively. Based on the Svalgaard-
Mansurov effect [Svalgaard, 1968; Mansurov, 1969] and
Luhmann et al.’s [1984] geometry, the IMF B,-associated
S should maximize on the dusk side of noon in the north
and the dawn side in the south for B, > 0, and vice-versa
for B, < 0. We combine the data accordingly and find that
large values of S for NH B,— and SH B+ (Figures 3a and
3c) tend to cluster near 10 MLT, while large values for S
NH B,+ and SH B,~ (Figures 3b and 3d) tend to be closer
to noon. We expect that given a global distribution for S,
(which we cannot achieve with DMSP measurements), the
S| values for the latter case would be centered in the post
noon region.

[9] A few large values of S appear in the nightside for
IMF B.-cases. These are likely associated with substorms
and, perhaps, subauroral polarization streams. The 101-
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Figure 2. (a) Interplanetary magnetic field data; and NH S,
along three DMSP F15 passes for 24 August 2005. The
polar plots are in magnetic coordinates. The arrow at lower
left indicates the direction of spacecraft motion. (b) S after
a weak shock with IMF B,, ~ 8 nT. (c) Post-shock S while
the IMF B,, was ~21 nT and B, ~ =3 nT. (d) ICME S while
the IMF B, was ~—20 nT and B ~ 18 nT.
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Figure 3. Survey of Maximum S during IMF B, > 10 nT
events from 2000-2005. (top) The maximum S for inter-
vals of B, > 0 nT and IB,| > 10 nT. (a) NH IMF B,— and
SH IMF B,+ events. (b) NH IMF B,+ and SH IMF B,—
events. (bottom) The maximum S for intervals of B, <
0 nT and IB,l > 10 nT. (c) NH IMF B,~ and SH IMF
B,+ events. (d) NH IMF B+ and SH IMF B,— events. S
in excess of 75mW/m? is h1gh11ghted by colored “+” (NH)
and “x” (SH). S;| exceeding 100 mW/m? is highlighted by
colored upward triangles (NH) and colored downward trian-
gles (SH).

minute DMSP F-15 orbit sub-samples these events in both
time and space. Thus, large-to-extreme dayside S is
probably more common than Figure 3 indicates. Note that
DMSP F-15 does not pass through the post noon to dusk
sector, so our counts are skewed in favor of pre-noon
events.

4. Discussion and Conclusions

[10] The comparison of background S; deposition for
quiet and disturbed intervals from DMSP F-15 in Figure 1
shows, as expected, the disturbed intervals having a gener-
ally increased level of S. In addition the disturbed-time plot
suggests a coherent, enhanced dayside energy deposition
region compared to patchy structure on the nightside. This
enhancement maps to regions of flank and lobe-mantle mag-
netopause merging. Li et al. [2011] modeled these deposition
regions for large IMF clock angle (IB,| > B.), and argue the
deposition becomes more elongated in longitude as the clock
angle increases and becomes more intense as the solar wind
speed or the IMF magnitude increases.

[11] Individual satellite passes (Figure 2) from a period of
increasing solar wind speed and rotating IMF B, suggest
that both speed and extreme B,, excursions play a role in the
preferential dayside deposition. Figure 3 shows that inter-
vals of large IMF B, are often associated with localized
extreme S deposition. In the ~1500 passes represented in
Figure 3, there are numerous instances of an order-of-
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magnitude increase in dayside S (>75 mW/m?) when the
east-west IMF is large, regardless of the sign of IMF B, We
note that when IMF is southward, the extent of the dayside
events is more equatorward, consistent with the tendency for
an expanded polar cap convection system.

[12] Although the longitudinal extent of the S in Figures 2
and 3 cannot be determined from the DMSP measurements,
Maynard [2005] reported that newly opened field lines
resulting from cusp merging may couple to the ionosphere at
MLT locations extending as much as three hours away from
local noon. Modeling by Vennerstrom et al. [2005] revealed
that, as the east-west IMF magnitude grows, field aligned
currents (FACs) migrate in an IMF-dependent manner.
Observations by Anderson et al. [2008] showed a similar
result and inferred the associated E x B flow channels.
Eriksson et al. [2008] determined that, as the IMF B,, rotated
from large positive to large negative values during an ICME
passage, strong FACs and E x B flow channels moved from
the evening side, across noon, to the morning side. Juxtapo-
sition of intense electric fields associated with high-speed ion
flow channels and strong B, driven FACs produces the
extreme S| in the dayside high latitudes. A sunlit ionosphere
is crucial to providing FAC closure via an ionospheric Ped-
ersen current [Li et al., 2011].

[13] The triangles in Figure 3 indicate the many instances
of dayside S approaching or even exceedmg the value
associated with superstorm level (100 mW/m?) [Huang and
Burke, 2004]. The number of events is noteworthy given
that only ten superstorms (Dst < —250) occurred during the
interval 2000-2005. Several factors support this preferential
dayside deposition: (1) solar-enhanced conductance is
located on the dayside; (2) the dayside magnetic merging
configurations develop quickly and need not process energy
through the magnetotail in a substorm/storm process; (3) the
magnetopause-merging process is active during northward
and southward IMF.

[14] The large dayside S| events are important for M-I-T
coupling. Crowley et al. [2010] showed a longitudinally-
extended arc of dayside Joule heating along with uplifted
neutral density in the same NH region for the event in
Figure 2b. The data revealed thermospheric uplift at the
location of the strong energy source. Likewise, strong uplift
was modeled in the SH cusp region, but not on the night-
side, consistent with the absence of any nightside high-
latitude energy source near the satellite track in the winter
hemisphere. The B,-dominated energy deposition is likely
related to statistical cusp and dayside high-latitude neutral
density enhancements reported by Liihr et al. [2004] and
Moe and Moe [2008]. The influence of east-west IMF
excursions has additional ramifications. Immel et al. [2006]
found that B, exerts significant control over the develop-
ment and subsequent equatorward transport of composition
disturbances during periods of heightened geomagnetic
activity.

[15] Large IMF components tend to be present at the
leading edge of co-rotating interaction regions and during
ICMEs. In the case of ICMEs, and the most geoeffective
subset of these, magnetic clouds, the deposition can be of
long duration. The duration may be longer if the transient
structure has a lengthy leading sheath region with large
in-the-ecliptic IMF components and neutral or northward
B.. In fact, we were motivated to undertake this study
because satellite orbit determination algorithms revealed
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events with poorly specified, enhanced neutral density having
many of these IMF characteristics (B. Bowman, personal
communication, 2008).

[16] Consistent with Strangeway et al. [2005] our pre-
liminary check on energy flux from precipitating particles
shows particle energy deposition to be much less than that
from S;. However, there may be a substantial associated
flux of low energy electrons (~0.5 keV) that could effec-
tively energize matter in the upper F-region. Our investi-
gations of the association of large S events with low energy
electrons and the sensitivity of the extreme dayside S event
to solar wind speed, seasonal effects, and other IMF orien-
tations are ongoing.

[17] In this paper we focus on large dayside Poynting flux
deposition that has eluded detection. Prior to this study,
limitations in sensing S| have heretofore allowed a signifi-
cant mode of M-I-T coupling to go undetected in its fullest
sense. Here, we show Poynting deposition during intervals
of large east-west IMF when substantial energy, exceeding
100 mW/m?, can be deposited in the dayside high-latitude
M-I-T system. Intervals that might otherwise be considered
geomagnetically quiet in terms of geomagnetic storm indi-
ces are, in fact, rather active for the high-latitude dayside
thermosphere. The likely effects on the dayside thermo-
sphere are significant, yet have largely been unexplored.
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