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Abstract

We examine the decomposition of forced Taylor-Green and Arn’old-Beltrami-Childress (ABC)

flows into coherent and incoherent components using an orthonormal wavelet decomposition. We

ask whether wavelet coefficient thresholding based on the Donoho-Johnstone criterion can extract

a coherent vortex signal while leaving behind Gaussian random noise. We find that no threshold

yields a strictly Gaussian incoherent component, and that the most Gaussian incoherent flow is

found for data compression lower than that achieved with the fully iterated Donoho-Johnstone

threshold. Moreover, even at such low compression, the incoherent component shows clear signs of

large-scale spatial correlations that are signatures of the forcings used to drive the flows.
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I. INTRODUCTION

Previous work has explored the application of the discrete wavelet transform to two-

and three-dimensional turbulence simulation data in an effort to segregate the flow into

distinctly different components based on wavelet amplitudes (e.g. [1–3]). Farge et al. [1,

2] refer to this process as Coherent Vortex Extraction (CVE), reflecting the conjecture

that turbulent flows are comprised of coherent structures that dominate at energy bearing

scales and an incoherent background component which can be modeled as Gaussian random

noise. Segregation relies on application of a wavelet amplitude threshold. The one generally

employed is the universal threshold of Donoho and Johnstone [4]. This threshold is simple

to employ and minimizes the maximum error in the signal in the presence of additive and

uncorrelated Gaussian noise when the noise variance is known. As the noise variance is not

known a priori for a turbulent flow, CVE relies on an iterative scheme [5] to estimate it.

Application of the CVE methodology has led to the identification of two apparent compo-

nents in simulated turbulent flows: one reconstructed from a small percentage of the highest

amplitude wavelet coefficients, called coherent and more generally considered signal, and the

other reconstructed from the remaining coefficients, called incoherent and more generally

considered noise [2]. The coherent component has properties similar to the original flow. It

contains ∼ 99% of the kinetic energy of the unfiltered flow, has a relative kinetic helicity

distribution h = u·ω
|u||ω| which peaks near ±1, as the original flow being examined, and shows

a k−5/3 kinetic energy spectrum through the inertial range. The incoherent component, by

contrast, typically contains less than 1% of the flow energy, shows a peak in its helicity

distribution near h = 0, and exhibits a k2 kinetic energy spectrum [2, 3].

In this paper we report on the results of wavelet analysis of two 10243 simulations of

turbulence forced coherently at large scale, one as a Taylor-Green and the other as an

Arn’old-Beltrami-Childress (ABC) flow (Equations 3 and 4 below). We examine sensitivity

to three different wavelets, apply threshold filtering to either the magnitude of the vortic-

ity or the amplitudes of the individual components independently, and study compression

ratios ranging from 10 to 98.7%, the later achieved when the iterative Donoho-Johnstone

threshold is applied to the wavelet amplitudes of the individual vorticity components. We

find, independent of the wavelet or thresholding scheme employed, that the gross properties

of the coherent flow component are similar to those reported in previous CVE studies, and
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additionally that it maintains the temporal correlations of the original flow. In contrast

to previous work, however, we find that the incoherent flow component shows a k2 spec-

trum only when the threshold filter is applied to the individual vorticity components, not

when it is applied to the vorticity magnitude as in previous studies, and when it occurs,

the k2 scaling extends only over a small range of high wavenumbers. Moreover, although

the incoherent flow displays short temporal correlation, as would be expected for random

noise, the statistics at any single time are significantly non Gaussian. We examine this non

Gaussianity for a range of filter thresholds and find that it persists to very low compression

values. Further, we demonstrate that, even at low compression, the incoherent component

shows spatial correlations which reflect the large-scale properties of the original flow and

thus contains some residual signal that cannot be characterized as random noise.

This paper is organized as follows. In the next section we describe the forced Taylor-Green

and ABC flow simulation solutions we analyze. In Section III we briefly summarize the CVE

method as we apply it, and in IV present the results of that analysis. In Section V we look

at the single-point statistics of the incoherent component more closely to determine if they

are Gaussian, and examine the degree of Gaussianity as a function of compression. We also

examine the point-wise helicity distributions to determine if important vector alignments

are preserved. Finally, in Section VI we extend the analysis to include correlations within

the flows to understand the spatial structure and temporal persistence of both the coherent

and incoherent components, before concluding our discussion in Section VII.

II. FORCED TURBULENCE SIMULATIONS

We examine two flows resulting from direct numerical simulation of the forced incom-

pressible Navier-Stokes equations [6],

∂tu + u ·∇u = −∇p + ν∇2u + f (1)

and

∇ · u = 0, (2)

where u is the velocity, p the pressure, ν the kinematic viscosity, and f an applied spe-

cific body force. The equations are discretized pseudo-spectrally, employing 2/3 de-aliasing

(maximum wavenumber k = kmax = N/3) [7] in a triply periodic domain with N = 1024 grid
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points in each of the three directions, and time advanced using a second order Runga-Kutta

scheme. The resulting solutions are well resolved; the dissipative wavenumber is smaller

than kmax at all time steps. The product of kmax and the Kolmogorov dissipation scale,

η = (ν3/ε)1/4 with ε the energy injection rate, is 1.2 for both runs.

The simulations differ primarily in the body force applied. One employed a Taylor-Green

form

fTG = f0[sin(kFx) cos(kFy) cos(kF z)x̂

− cos(kFx) sin(kFy) cos(kF z)ŷ], (3)

with kF = 2 and a domain size of 2π. Taylor-Green forcing does not introduce net kinetic

helicity into the flow. The computed flow has an integral-scale Reynolds number of Re =

3950 and a Taylor-scale Reynolds number of Rλ = 800.

The other implemented an Arn’old-Beltrami-Childress (ABC) form

fABC = f0{[B cos(kFy) + C sin(kF z)]x̂

+[A sin(kFx) + C cos(kFz)]ŷ

+[A cos(kF x) + B sin(kFy)]ẑ}, (4)

with kF = 3, a domain size of 2π, A = 0.9, B = 1, and C = 1.1. ABC forcing does introduce

net positive helicity. The computed flow in this case has somewhat higher integral-scale and

Taylor-scale Reynolds numbers, Re = 6200 and Rλ = 1100 respectively.

III. COHERENT VORTEX EXTRACTION

We examine the simulation solutions using the multiresolution wavelet analysis and

thresholding techniques of Farge et al . [1, 2, 5] to separate the flow based on its vortic-

ity into the previously mentioned coherent (signal) and incoherent (noise) components. The

CVE method consists of three steps [e.g. 8]:

1. Decomposition: An orthogonal wavelet transform of each vector component of the

vorticity, ω ≡ [ωx, ωy, ωz], yields the wavelet coefficient vector ω̃, the projection of the

vorticity into wavelet space.
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2. Thresholding: A filter is applied to the wavelet coefficients based on the magnitude

of the vorticity vector. The threshold amplitude ADJ is taken to be the “universal

threshold” of [4],

ADJ =

√

4

3
Z ln N , (5)

where N is the total number of data points and Z ≡ 1

2
< ω · ω > is the enstrophy

of the flow; Z/3 is one-half the average variance of the three vorticity vector com-

ponents when their means are zero. The incoherent (noise) component of the flow is

then composed of those wavelet coefficient vectors with magnitude below the threshold

value and the coherent (signal) component of those that exceed it. Since the universal

threshold is defined in terms of the variance of the noise, and since the enstrophy

of the incoherent vorticity (noise component) is not known a priori, Equation (5) is

only a first estimate for the threshold value. It is refined iteratively [5] by successive

evaluation of the variance of the incoherent component after filtering based on the

previous threshold. The iteration converges when the variance of the incoherent vor-

ticity becomes stationary; when there no change in the assignment of the coefficients

as coherent or incoherent. This generally occurs after about 35 iterations.

Unlike previous work, we also examine a filtering scheme which employs the same fil-

ter threshold but applies it to each vorticity component separately and independently,

based on their individual amplitudes. This iteratively converges to somewhat different

results, primarily because it yields higher flow compression (Section IV), compres-

sions more in line with those achieved by single iteration and applied to the vorticity

magnitude [8–10].

3. Reconstruction: The coherent vorticity ωC is reconstructed by the inverse wavelet

transform of the wavelet vectors with magnitudes above the threshold value, or in

the case of the filter being applied to the components, by the inverse transform of

the wavelet coefficients with individual amplitudes that exceed the threshold value.

Since the wavelets employed are orthonormal, the incoherent component ωI can be

reconstructed either by inverse transformation of the low magnitude wavelet vectors or

low amplitude coefficients, or by subtracting the coherent component from the original

vorticity; ωI = ω − ωC .
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The data compression achieved by this process is defined as the fraction of coefficients

used to construct the incoherent component, or equivalently the fraction considered noise

and thus not needed in reconstruction of the signal (the coherent component approximation

to the original flow).

Finally, the coherent and incoherent flow velocities are reconstructed from the corre-

sponding vorticities via a spectral inverse curl. We note that the wavelet decomposition

introduces signal above the Orszag frequency kmax into both the coherent and incoherent

components. The total power in the wavelet coefficients is preserved (incoherent and co-

herent contributions above kmax sum to zero), but the spectra of the filtered components

individually reflect this redistribution (Figure 3).

IV. CVE ANALYSIS OF TAYLOR-GREEN AND ABC FLOWS

The most important findings from previous CVE decompositions of turbulent flow are:

1. Using less than 2.6% of the wavelet coefficients in the reconstruction of the coherent

vorticity yields a flow with nearly all (99.8%) of the kinetic energy and most of (79.8%)

the enstrophy of the original flow [9].

2. The incoherent vorticity has low amplitude and is described as spatially random,

structureless, and non-intermittent, though it displays an exponential distribution of

values [2, 9, 11, 12]. The incoherent velocity is nearly Gaussianly distributed with

very small variance [2, 9, 11, 12].

3. The relative kinetic helicity distribution of the incoherent component has the opposite

curvature to that of the original, peaking near h = 0 rather than at ±1 as that of the

original flow [2, 3, 12].

4. The kinetic energy spectrum of the coherent flow matches that of the original from the

integral scale through the inertial range where it follows k−5/3; differences between the

spectra are confined to the dissipative range. The incoherent component, on the other

hand, shows k2 spectrum, with a peak at the low wave number end of the dissipative

range where it joins the original flow spectrum [2, 3, 9, 12].
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Forcing Wavelet Compression (%) Kinetic Energy Retained (%) Enstrophy Retained (%)

|ω| |ωx,y,z| |ω| |ωx,y,z| |ω| |ωx,y,z|

Taylor-Green Haar 94.5 98.6 98.8 97.2 90.4 80.8

Taylor-Green Coifman12 91.8 97.6 99.98 99.8 98.1 94.9

Taylor-Green Coifman30 91.3 97.4 99.99 99.9 98.7 96.1

Arn’old-Beltrami-Childress Haar 94.6 98.7 99.1 97.9 89.7 79.8

Arn’old-Beltrami-Childress Coifman12 92.0 97.7 99.97 99.9 97.9 94.4

Arn’old-Beltrami-Childress Coifman30 91.4 97.4 99.99 99.9 98.5 95.7

TABLE I: Compression achieved and kinetic energy and enstrophy retained in the coherent compo-

nent of the flow after employing the iterative Donoho-Johnstone filter threshold on two-flows with

three wavelets. Results differ when application of the filter is based on the vorticity magnitude |ω|

vs. component amplitudes |ωx,y,z|.

These findings largely result from Coifman12 wavelet analysis of both run-down and

forced turbulent flows, though the results are reported to be robust to the choice of orthog-

onal wavelet, excluding the Haar [9], but not to biorthogonal decomposition [12]. Here we

investigate the effectiveness of CVE when employing the Haar, Coifman12, and Coifman30

wavelets in the analysis of Taylor-Green and ABC flows.

The gross properties of our CVE results are similar to those previously published, but as

summarized in Table I, the compressions we achieve when applying the iterative Donoho-

Johnstone threshold to the vorticity vector magnitude are significantly lower than those

previously reported in the literature. Consequently, our decompositions also show greater

retention of the flow kinetic energy and enstrophy by the coherent component. This de-

creased compression is likely due to our using a fully iterated threshold value rather than

that obtained by a single iteration as in most previous work [cf. 9]. We have applied single

iteration thresholds and then obtain similar compressions (e.g. 97.3% using the Coifman

12 wavelet on the TG flow) to those published. We also obtain higher compression ratios,

similar to those of previous single iteration studies, when we apply the full iterated threshold

to individual vorticity component amplitudes rather than the vorticity vector magnitude.

In those cases, the kinetic energy and enstrophy retained by the coherent flow are also

reduced (Table I). For any of the threshold determination schemes, we find, as previous
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FIG. 1: Logarithm of the probability density of the velocity P (ux) in (a) and vorticity P (ωx) in (b).

The coherent (dashed) and incoherent (dot-dashed) components of the original (solid) Taylor-Green

flow were computed using the Coifman12 wavelet in the CVE analysis (iterative Donoho-Johnstone

threshold applied to vorticity magnitude). Dotted curves indicate Gaussian PDFs with the same

mean and variance. Insets show incoherent flow velocity and vorticity PDFs and the Gaussian

fits over a narrower range of values. The flow is quite isotropic with nearly identical PDFs for

the y and z velocity and vorticity, though the z velocity is more Gaussian with somewhat smaller

variance.

authors, that the gross properties of the coherent velocity and vorticity distributions are in

good qualitative agreement with those of the unfiltered flow (Figure 1). We defer a quan-

titative assessment of the incoherent distributions to the next section (Section V). There

we motivate even weaker compression of the signal than that achieved by application of the

iterative Donoho-Johnstone threshold.
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The detailed coherent and incoherent Taylor-Green and the ABC kinetic helicity and

kinetic energy distributions are similarly sensitive to the filter threshold. While the the

original flows and their coherent components show relative helicity distributions similar to

those reported in earlier studies when the flows are well resolved and have little mean strain

[13–15], peaking weakly near h = ±1, the incoherent flow components typically display an

helicity maximum near h = 0 as in previous CVE studies (Figure 2). We note, however,

that the incoherent ABC helicity distribution remains asymmetric, showing weak residual

net helicity introduced by the forcing even at very low wavelet compression. Additionally,

while the coherent flow kinetic energy spectra qualitatively match those of the original

flows through the dissipative range and the incoherent power spectra peak at high k values

(Figure 3), the later show the k2 scaling reported in previous CVE studies only when the

filter is based on individual vorticity amplitudes rather than the vector magnitude, and even

then over only a very limited range of wavenumbers. This again likely reflects the increased

compression achieved in our work when the fully-iterated threshold is applied the vorticity

vector components and in previous studies when a single iteration threshold is applied to

the vorticity magnitude.

V. A CLOSER LOOK AT THE ITERATIVE DONOHO-JOHNSTONE THRESH-

OLD

Separating a turbulent flow into coherent and incoherent components by wavelet trans-

formation requires careful consideration of the threshold used in the filter operation. CVE

estimates the variance of the noise as that of the vorticity and applies an iterative scheme [5]

to estimate the universal threshold [4] based on convergence of the incoherent vorticity vari-

ance, though often that convergence is approximated by the variance after a single itera-

tion [8–10] or the variance of the total vorticity itself (no iteration) [3, 16]. The fully iterated

threshold would yield optimal de-noising if the flow vorticity were indeed composed of co-

herent signal and incoherent noise and if the later were both Gaussianly distributed and

spatially uncorrelated. If such were the case, one would also expect the incoherent helicity

distribution to reflect random velocity and vorticity vector orientations and the incoherent

kinetic energy to scale as k2.
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A. Is the incoherent vorticity Gaussianly distributed?

We tested the hypothesis that each vector component of the incoherent vorticity is inde-

pendently Gaussianly distributed using the Pearson χ2 and the Anderson-Darling tests [17–

19]. We took the model distribution to be Gaussian with the same mean and variance as the

incoherent data. To make the binned χ2 test less sensitive to outliers, data that was further

than ±4.5σ from the mean and thus corresponding to a model prediction of less than 5.5

points within the bin was excluded. The Anderson-Darling test is more robust to outliers and

only values where the cumulative density function of the model Gaussian distribution had

value zero or one to machine precision were omitted. Validation tests with 10243 Gaussianly

distributed random numbers in place of the incoherent flow vorticity components confirmed

with better than 99% confidence that in these test cases the hypothesis could not be dis-

missed. As a secondary validation criteria we confirmed that the probabilities-to-exceed in

the random number cases were uniformly distributed.

We performed these tests on the incoherent vorticity identified using the iterative Donoho-

Johnstone threshold applied to the vorticity magnitude (standard CVE analysis) in solutions

with both flow forcings and employing all three wavelets. Both tests indicated that the

incoherent flow vorticity is in all cases significantly non Gaussianly distributed . The χ2 test

yields zero probability-to-exceed to machine precision. The measured reduced χ2 and the

Anderson-Darling test statistic A2 (W 2
n in [18] and [19]) have values of ∼ 1100 and ∼ 106

respectively. The Gaussian distribution is rejected at the 1% significance level when these

values exceed 1.02 and 1.09 for our binned χ2 and Anderson-Darling tests respectively. We

note that while the incoherent velocity appears by eye to be quite Gaussianly distributed,

carefully evaluation indicates that it it too shows non Gaussianity (χ2 ∼ 300 and A2 ∼ 5×105

respectively), though less than the incoherent vorticity. Here we focus on the Gaussianity of

the incoherent vorticity because it is that quantity which underlies the applicability of the

iterative Donoho-Johnstone threshold in CVE and CVS turbulence modeling.

Employing the same hypothesis tests, we examined a range of arbitrary wavelet amplitude

thresholds. Compression near 80% yielded the most Gaussianly distributed (by either test)

incoherent vorticity, with only weak sensitivity to the wavelet employed or the simulation

solution studied (Figure 4a), though these most Gaussian distributions remain statistically

non Gaussian with very large A2 values and zero probability-to-exceed reduced χ2 values. We
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FIG. 2: Relative kinetic helicity distribution in the (a) Taylor-Green and (b) ABC flows. Black

curves plot values for the original flow (solid) and the coherent (dashed) and incoherent (dot-

dashed) components, the later found using the Coifman12 wavelet in the CVE analysis (iterative

Donoho-Johnstone threshold applied to the vorticity vector magnitude). Red and blue curves show

the same components obtained using the most Gaussian vorticity and 60% compression thresholds

respectively. Green curves plot values obtained when applying the iterative Donoho-Johnstone

threshold to individual vorticity component amplitudes. Insets display incoherent results over a

limited range, and dotted curves in inset (a) indicate helicity distribution of randomized vector

components (§V B).

also tested the Gaussianity of the incoherent distributions after thresholding the individual

vorticity components rather than the vorticity vector magnitude. For any given compres-

sion rate, filtering the individual vorticity components yields more Gaussianly distributed

(though still significantly non Gaussian) incoherent vorticity values than does filtering based

on the vorticity vector magnitude. However, since, for a given threshold value, the overall
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FIG. 3: Kinetic energy spectra of the (a) Taylor-Green and (b) ABC flows. Black curves for

the original flow (solid) and coherent (dashed) and incoherent (dot-dashed) components, the later

determined using the Coifman12 wavelet in the CVE analysis (iterative Donoho-Johnstone thresh-

old applied to the vorticity vector magnitude). Red and blue curves show the same components

obtained using the most Gaussian vorticity and 60% compression thresholds respectively. Green

curves for values obtained by applying the iterative Donoho-Johnstone threshold to individual vor-

ticity component amplitudes. Note that the wavelet decomposition introduces power above the

Orszag frequency kmax into both the coherent and incoherent components (§III), but that these

sum to zero in amplitude. Fiducial k−5/3 and k2 lines shown for reference.

the compression is greater when the filter is based on vector component amplitudes than it is

when based on vector magnitude, the Gaussianity of the incoherent vorticity is comparably

less when the fully iterated threshold is applied to the vorticity vector components than

when the same threshold is applied to the vector magnitude (Figure 4a).

We note that, while the Gaussianity of the incoherent flow monotonically increases with
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decreasing compression down to 80%, it then somewhat counterintuitively decreases again

from the minimum A2 value as even lower threshold values are employed (Figure 4). We

understand this as follows: at very low compression ratios the incoherent vorticity component

is composed of the few wavelets of lowest amplitude and its distribution is strongly peak at

zero since many nearly zero vorticity values contribute to the probability density. As the

compression ratio increases and more wavelets are added to the incoherent component, the

distribution “rounds out,” with wavelets of many scales randomly contributing. A minimum

A2 value is reached, before, with further compression, the non Gaussian nature of the original

vorticity distribution dominates the incoherent component, with the two becoming one and

the same at 100% compression. Interestingly, and somewhat unexpectedly, near the most

Gaussian value the curves collapse more completely when A2 is plotted against threshold

value itself (Figure 4b) than when it is plotted against the compression achieved (Figure 4a).

While the compression achieved for a given threshold depends on the details of wavelet

employed, the Gaussianity of the noise seems to depend only on the threshold value itself.

B. Does the incoherent flow helicity indicate random vector orientations?

The existence of a wavelet filter that yields a more Gaussianly distributed noise compo-

nent than that found via the iterative Donoho-Johnstone scheme, suggests that the condi-

tions necessary for the successful application of the universal threshold may not be met in

these turbulence simulation solutions, that the two component decomposition fails because

the incoherent component is both non Gaussian and retains correlations which persist to

very low amplitudes in the turbulent flow.

Figure 2a shows that the kinetic helicity distribution of the incoherent component of the

Taylor-Green flow peaks at h = 0 and has opposite curvature to that of the original, as it

also does in previous work [2, 3, 12]. Vectors of random magnitude and orientation would

show uniformly distributed helicity (with normalized P (h) = 0.5). The incoherent helicity

distribution differs from this, though scrambling the individual incoherent vorticity and ve-

locity vectors by randomly sampling their components produces helicity distributions that

are close to uniform (dotted curves in inset of Figure 2a) indicating that it is the helicity

vector direction that is to some degree preserved by the incoherent flow. Thus, application

of the threshold filter to individual vorticity component amplitudes rather than the vector
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FIG. 4: In (4a), the Anderson-Darling test statistic A2 measuring the Gaussianity of the incoherent

component of the flow as a function of compression, and in (b) A2 as a function of threshold value

ADJ. Filled and empty symbols indicate analysis on the Taylor-Green and ABC solutions respec-

tively. The incoherent component was extracted using the Haar (circles), Coifman12 (squares),

and Coifman30 (triangles) wavelets. The threshold yielding the most Gaussian incoherent com-

ponent with the Coifman12 wavelet is shown in red and that yielding 60% compression in blue

(60% compression symbols for Taylor-Green and ABC flows directly overlap). The incoherent A2

values obtained using the iterative Donoho-Johnstone threshold applied to the individual vorticity

amplitudes are those with the highest compression, with those employing the Coifman12 wavelet

shown in green. Colors correspond to those in all figures. Black curves highlight Coifman12 and

Haar analysis of the Taylor-Green flow.

magnitude yields an incoherent helicity distribution closest to that of randomly oriented

vectors because such component filtering serves to scramble the vorticity and velocity vector

directions. Without such scrambling, as when the threshold filter is applied to the vortic-

ity vector magnitudes (the usual CVE procedure), a residual of the original flow helicity
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contaminates in the incoherent component. This is true for all filter thresholds, with no

wavelet decomposition of the Taylor-Green flow yielding strictly randomly oriented vorticity

and velocity vectors, and a consequent uniform helicity distribution, in the incoherent flow.

Analysis of the ABC flow (Figure 2b) confirms this result. Net helicity is introduced into

the ABC flow via the driving, and the incoherent component in all cases reflects this bias,

albeit very weakly at 60% compression.

C. Does the incoherent kinetic energy scale as k2?

A spatially uncorrelated three-dimensional random field (equal power in all spectral

modes independent of direction) necessitates power scaling as k2. This scaling is reported for

the incoherent flow component of previously published wavelet decompositions [2, 3, 9, 12].

We find it to hold only over a very limited range of high wavenumbers and then only when

the each component of the vorticity is filtered independently, not when the filtering is ap-

plied to the vorticity vector magnitude, though it is the later procedure which is followed

in previous studies. In our studies, filtering by the vorticity vector magnitude yields much

steeper incoherent kinetic energy spectra (Figure 3). This likely results because, it is only

by filtering the vorticity components separately that we achieve compression rates compara-

ble to those previously published, and it is this overall compression that largely determines

low wavenumber contributions to the incoherent component. We have computed the single

iteration incoherent energy spectra for both the TG and ABC flows and these show flatter

spectra, akin to those reported by previous authors, though some uncertainty remains as

published fully iterated results do not show the steeper slope that we find [cf. 9].

The simulations studied here were force coherently, with turbulence developing from the

instability of the large-scale flow driven with a well defined geometry. The steeper incoherent

power spectrum observed in our work may reflect the coherent nature of our low wave number

driving, with that coherence partially destroyed when the filter is applied to individual

component amplitudes, flattening the noise spectrum toward k2. However, we note that

previous CVE studies which also show the flatter spectrum examined both run-down and

forced turbulence simulation solutions resulting from a range for forcing schemes. It is

thus likely that it is the high compressions achieved in those studies and in our component

filtering analysis, rather than the particulars of the flow forcing, that underly the enhanced
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low wavenumber power spectrum observed. It is unclear, therefore, whether the limited

k2 spectra observed necessarily implies the existence of a spatially uncorrelated random

component in the flow.

VI. SPATIAL AND TEMPORAL CORRELATIONS

The coherence of our driving scheme is also reflected in persistent spatial correlations

evident in the incoherent component of the Taylor-Green and ABC flows even at very low

compressions. As an example, the Taylor-Green forcing (Equation 3) has a cosine form

in the z direction, with alternating regions of oppositely signed forcing producing regions

of high vorticity at the interfaces. The autocorrelation of the enstrophy in that direction

shows these alternating regions clearly in both the coherent and incoherent components

(Figure 5a). In fact, when employing the iterative Donoho-Johnstone threshold the large

scale correlations have a larger amplitude in the incoherent flow component than they do in

the original flow because smaller scale fluctuations contribute less to the correlation measure.

At lower compressions the signature of the large scale forcing is reduced but persists. We note

that the spatial autocorrelation plot in Figure 5a shows two curves for each of the incoherent

components. This reflects oscillations in the incoherent component at the Nyquist frequency,

not seen in the original flow, due to enhanced power above the Orszag frequency kmax as a

result of the wavelet filtering (see §III).

Understanding the temporal correlation of the incoherent component is important to ef-

forts aimed at using CVE filtering and incoherent component modeling as simulation tools.

We find such temporal correlations to be less pronounced than the spatial correlations. We

computed the temporal correlation of one vorticity component between 40 volumetric snap-

shots spanning 0.4 turnover times of the Taylor-Green flow (the turnover time here defined in

terms of the integral length scale and the root-mean-square velocity). The iterative Donoho-

Johnstone filter threshold was vary stable over these snapshots. The number of iterations

required for convergence varied between 32 and 38, and the threshold values differed by at

most 1.3% between any two snapshots. A full width half maximum de-correlation time of

∼ 0.056 was found for both the original flow and coherent component while one of ! 0.01

was obtained for the incoherent component. Slightly shorter temporal correlation times were

found for lower compressions, but even the iterative Donoho-Johnstone scheme applied to
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FIG. 5: In (a), spatial autocorrelation ρz of the Taylor-Green enstrophy as a function of the spatial

lag ∆z, and in (b), the temporal correlation ρτ of Taylor-Green vorticity ωx as a function of tempo-

ral lag τ (vorticity chosen here only to reduce the computational cost of time series analysis). Black

curves for the original flow (solid) and coherent (dashed) and incoherent (dot-dashed) components,

the later determined using the Coifman12 wavelet in the CVE analysis (iterative Donoho-Johnstone

threshold applied to the vorticity vector magnitude). Red and blue curves show the same com-

ponents obtained using the most Gaussian vorticity and 60% compression thresholds respectively.

The iterative Donoho-Johnstone threshold applied to the individual vorticity amplitudes is shown

in green. The coherent components (dashed lines) in (a) underlie the solid curve and are thus

hidden from view. The double curve for each of the incoherent components (dot-dashed lines) in

(a) reflects grid oscillation of the incoherent component at the Nyquist frequency, not seen in the

original flow, due to enhanced power above the Orszag frequency kmax as a result of the wavelet

filtering (§III).
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the individual vorticity amplitudes (maximum compression) yielded an incoherent flow with

very short temporal correlation (Figure 5b).

VII. CONCLUSION

Wavelet filtering promises significant compression of turbulence simulation data and pos-

sible modeling schemes based on evolving the coherent flow component only. The coherent

flow identified in the CVE analysis shares many properties with the original solutions using

only a small fraction of the wavelet coefficients. A scheme which evolves these coefficients

while modeling the remaining incoherent contribution would yield a tremendous decrease

in computation effort [16]. The difficulty lies in how best to model the incoherent or noise

component.

Our results suggest that the incoherent component of forced turbulence, when extracted

using an orthonormal wavelet decomposition, cannot be strictly modeled as Gaussian ran-

dom noise. It retains residual vector correlations (helicity) found in the original flow and

spectral energy distribution and spatial correlations that reflect the forcing function. These

difficulties can be diminished by reducing the threshold criterion, thereby reducing the com-

pression achieved, but they persist at some level for all thresholds we examined. The tur-

bulent flows we examined (forced coherently at large scale as a Taylor-Green or Arn’old-

Beltrami-Childress (ABC) flow) cannot be conceptually separated into coherent signal and

incoherent noise with distinctly different properties. The filtering operation always to some

extent removes flow in addition to any noise component that may be present. The short

temporal correlation time of the incoherent component does however suggest that if, despite

these difficulties, a model of the low amplitude coefficients can be developed, that model

could be based on the current state of the coherent flow, independent of its evolution.

Another item of significant interest to modeling efforts is the flow divergence introduced

by CVE filtering. We found that ???. Careful study of the sensitivity of this result to the

wavelet type, filtering scheme, and compression achieved is left for future study.
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