Modeling the effects of irrigation on land surface fluxes and states over the conterminous United States: Sensitivity to input data and model parameters

Guoyong Leng,1,2,3 Maoyi Huang,2 Qiuhong Tang,1 William J. Sacks,4 Huimin Lei,2,5 and L. Ruby Leung2

Received 20 February 2013; revised 13 August 2013; accepted 25 August 2013; published 11 September 2013.

[1] Previous studies on irrigation impacts on land surface fluxes/states were mainly conducted as sensitivity experiments, with limited analysis of uncertainties from the input data and model irrigation schemes used. In this study, we calibrated and evaluated the performance of irrigation water use simulated by the Community Land Model version 4 (CLM4) against observations from agriculture census. We investigated the impacts of irrigation on land surface fluxes and states over the conterminous United States (CONUS) and explored possible directions of improvement. Specifically, we found large uncertainty in the irrigation area data from two widely used sources and CLM4 tended to produce unrealistically large temporal variations of irrigation demand for applications at the water resources region scale over CONUS. At seasonal to interannual time scales, the effects of irrigation on surface energy partitioning appeared to be large and persistent, and more pronounced in dry than wet years. Even with model calibration to yield overall good agreement with the irrigation amounts from the National Agricultural Statistics Service, differences between the two irrigation area data sets still dominate the differences in the interannual variability of land surface responses to irrigation. Our results suggest that irrigation amount simulated by CLM4 can be improved by calibrating model parameter values and accurate representation of the spatial distribution and intensity of irrigated areas. Furthermore, through a set of numerical experiments, the deficiency in the current parameterization is evaluated and a critical path forward to a realistic assessment of irrigation impacts using an earth system modeling approach is recommended.

1. Introduction

[2] Humans are affecting the regional climate not only by changing land cover but also through changes in land management practice. In hot and dry regions, irrigation practice increases the amount of water available for plants, releasing more water into the air through evapotranspiration [Boucher et al., 2004]. Globally, the increase in water vapor flows from land (2600 km3 yr−1) caused by irrigation is in the same order of magnitude as the decrease (3600 km3 yr−1) induced by deforestation [Gordon et al., 2005]. Thus, irrigated agriculture management practices can have substantial impact on regional/local climate and land surface hydrology [Pielke et al., 2007; Sacks et al., 2009]. Over the past 200 years, the global irrigated area has increased from 8 × 106 ha around the year 1800 to 2.52 × 108 ha around the year 2000 [Thenkabail et al., 2009]. World agriculture has consumed about 87% of global fresh water withdrawal by humans [Douglas et al., 2009] and significantly disturbed the hydrological cycle [Kustu et al., 2010]. Understanding the impact of irrigation on land surface fluxes/states and their interactions with atmospheric processes is crucial for understanding historical climate change and modeling future climate at local and regional scales [Bonfils and Lobell, 2007; Diffenbaugh, 2009].

[3] The impacts of irrigation on land surface water budget and energy fluxes have received a lot of attentions in recent years. Many studies have used land surface model uncoupled [Douglas et al., 2006; Haddeland et al., 2006; Biggs et al., 2008] or coupled [Adegoke et al., 2003; Douglas et al., 2009; Kueppers et al., 2007; Saeed et al., 2009] with regional
atmospheric model. The uncoupled model (i.e., offline) simulations show that irrigation generally leads to decrease in runoff [Haddeland et al., 2006; Tang et al., 2007], increase in latent heat flux, decrease in sensible heat flux, and consequently cooling of the land surface [Shibuo et al., 2007; Tang et al., 2007]. In some areas with extensive irrigation, the cooling effect by irrigation can match or even exceed the impacts of greenhouse warming [Difffenbaugh, 2009; Kueppers et al., 2007; Lobell et al., 2008; Puma and Cook, 2010]. The irrigation effects could potentially enhance shallow and deep convections and increase cloud formation [Kawase et al., 2008; Qian et al., 2013] and precipitation [DeAngelis et al., 2010; Koster et al., 2004; Segal et al., 1998] by modifying the depths of planetary boundary layer, lifting condensation level, and mixing layer. Irrigation practice over a large area may even alter the large-scale circulations and therefore have broader implications for human society [Douglas et al., 2009; Lee et al., 2009; Saeed et al., 2009]. Although irrigation cooling effect is estimated to be negligible for global average near-surface temperature, irrigation has significantly altered regional and local climate in many northern midlatitude regions such as the central and southeastern United States, southern and Southeast Asia, and the agricultural regions of southeastern China [Sacks et al., 2009]. Irrigation impacts are likely to increase in the context of a rapid increase of global food demand [Tilman et al., 2011] and a growing world population that is expected to reach about 9 billion by middle of the century [van Vuuren et al., 2012] in the Shared Socioeconomic Pathways for the Intergovernmental Panel on Climate Change fifth Assessment Report on climate change.

[p] As previous modeling studies focused mostly on the potential effects of irrigation, limited studies reported the irrigation volume and area simulated by the models [Haddeland et al., 2006; Hanasaki et al., 2006; Tang et al., 2007]. Due to differences in model physics and irrigation scheme, the magnitude and spatial pattern of irrigation volume simulated by the models can differ rather substantially [Sacks et al., 2009; Sorooshian et al., 2012] and may potentially influence the simulated effects of irrigation on land surface water budget and energy fluxes and regional/local climate. The question of how much water should be added into the soil columns to mimic irrigation has been assessed recently mainly through sensitivity studies [Kanamaru and Kanamitsu, 2008; Kueppers and Snyder, 2011; Lobell et al., 2009]. Kueppers et al. [2008] found that the simulated effects of irrigation were model dependent, with even sign change for daily minimum temperature. More specifically, the modeled effects of irrigation are complicated by both the area and volume of irrigation [Ozdogan et al., 2010]. Model parameter and input data uncertainties combined could also lead to uncertain predictions, resulting in ambiguous representation of controlling processes [Franks et al., 1997] in irrigation modeling studies.

[p] This study aims to evaluate and improve the irrigation simulations from CLM4 driven by observed atmospheric conditions using statistics from census. More specifically, we assess the performance of the irrigation scheme in CLM4 using different prescribed irrigated area maps and calibrate the related model parameters using observational irrigation water amount from agricultural census. With the calibrated irrigation scheme, this study also investigates the impacts of irrigation on land surface fluxes and states over the conterminous United States. This paper is organized as follows: Section 2 includes a brief description of CLM4, experimental design, and data. Section 3 presents the model performance to the prescribed irrigated area maps and model parameters. It demonstrates the irrigation impacts on surface heating fluxes and runoff and shows the potential of improving the irrigation representations in CLM by constraining water availability. Conclusion and Discussion are summarized in section 4.

2. Data and Methodology

2.1. Data

[6] Accurate geospatial information on the extent of irrigated area is fundamental and crucial to many aspects of Earth systems science and global change studies, including interactions between the land surface and atmosphere [Ozdogan and Gutman, 2008]. In recent years, several studies have addressed the challenges of irrigation extent mapping using census data or by remote-sensing techniques for classification of potential irrigation. Siebert et al. [2005] provided a Global Map of Irrigated Area (GMIA) representing the fraction of area equipped for irrigation around the year of 2000 with a spatial resolution of 5 arc minutes (hereafter denoted as FGMIA). They combined input data sets from various sources such as The Food and Agriculture Organization of the United Nations reports, the United Nations, Ministries of Agriculture and land use, and land cover data set from United States Geological Survey (USGS) for the year 2000. This map has been widely used in modeling [Sacks et al., 2009; Saeed et al., 2009] and observational studies [Bonfils and Lobell, 2007; Zhu et al., 2012] and has become the de facto information source for spatial distribution of global irrigated areas of the present day.

[7] Ozdogan and Gutman [2008] produced a high-resolution (~500 m) irrigated area map (hereafter denoted as FMODIS) for the continental United States using a remote-sensing approach. They combined the Nadir Bidirectional Distribution Function Adjusted Reflectance (NBAR) data acquired during 2001, gridded climate-based indices of surface moisture status and a map of cultivated areas as inputs to their data set. This new map provides a reasonably accurate spatial distribution of irrigation extent circa 2001, which has been comprehensively validated against agricultural statistics (i.e., The National Agricultural Statistics Service reports for the year 2002) at the state and county level. The new map, provided in terms of percentage of potential irrigation area in each grid cell, has been used in land surface modeling studies [Ozdogan et al., 2010] and climate modeling studies [Qian et al., 2013].

[8] Conducted every 5 years, the U.S. Department of Agriculture’s (USDA) Agricultural Statistics Service (NASS) reports comprehensive agricultural data collected from every state and county in the nation and is the leading source of facts and figures of U.S. farms. This data set provides the detailed information on U.S. farms and ranches, including the acres irrigated and acre-feet water withdrawal for irrigation through sampling of existing farms, and is the only source of comprehensive agricultural data at the state and county level in the United States. We collected the gross irrigation withdrawal data from Census of Agriculture (http://
As modeling of irrigation water demand is (among other things) directly related to the geospatial information on irrigated cropland, it is expected that errors from the irrigation extent map may influence the irrigation water demand estimates. This is especially true for those regions with large discrepancy among different irrigated fraction data sets. Hence, both gridded data sets were mapped to 0.125° resolution as inputs to CLM4 to investigate the characteristics of different irrigation maps on simulated land surface fluxes and state. We also aggregated the two irrigation fraction data sets to water resources region level and compared them with the 2002 USDA (U.S. Department of Agriculture) Census of Agriculture (hereafter denoted as NASS2002) to quantify the uncertainties from irrigation map. The 0.05° resolution actual evapotranspiration based entirely on satellite data was obtained from the uncertainties from irrigation map. The 0.05° resolution actual evapotranspiration based entirely on satellite data was obtained from the 0.05° resolution actual evapotranspiration based entirely on satellite data.

2.2. Methodology

2.2.1. Model Description and Configurations

The Community Land Model version 4.0 (CLM4) is the land surface model used in this study. CLM4 represents extensive modifications in its model structure and parameterizations over previous CLM versions, including enhancements in the representations of hydrological processes such as runoff generation, groundwater dynamics, soil hydrology, snow module, and surface albedo. CLM4 has been designed and used for studies of interannual and interdecadal variability, paleoclimate regimes, and projections of future changes of the global climate system. CLM4 has been designed and used for studies of interannual and interdecadal variability, paleoclimate regimes, and projections of future changes of the global climate system.

Driven by observed phenology from the 2002 USDA (U.S. Department of Agriculture) Census of Agriculture (hereafter denoted as NASS2002), CLM4 simulates evapotranspiration in each soil layer as the amount of water that will be added through irrigation. The target soil moisture content in each soil layer is a weighted average of (1) the minimum soil moisture content that results in no water stress in that layer and (2) the soil moisture content at saturation in that layer:

\[W_{\text{target}} = (1 - F_{\text{irrig}}) \times W_{\text{sat},i} + F_{\text{irrig}} \times W_{\text{sat}} \]

where \(W_{\text{sat},i} \) is the soil water matric potential (mm) and \(W_{\text{sat}} \) is the soil water matric potential (mm) when the stomata are fully open, and then converting this value to units of kg m\(^{-2}\). \(W_{\text{sat},i} \) is calculated simply by converting the effective porosity [see Oleson et al., 2010, section 7.2] to units of kg m\(^{-2}\). \(W_{\text{sat}} \) is determined by inverting equation (2) to solve for the value of \(S_i \) (soil wetness) that makes \(\Psi_i = \Psi_o \) (where \(\Psi_i \) is the soil water matric potential and \(\Psi_o \) is the soil water potential when the stomata are fully open), and then converting this value to units of kg m\(^{-2}\). \(W_{\text{sat},i} \) is calculated simply by converting the effective porosity [see Oleson et al., 2010, section 7.2] to units of kg m\(^{-2}\). The default weighted factor value (i.e., \(F_{\text{irrig}} = 0.7 \)) was determined empirically so that the global, annual irrigation amounts approximately match the observed gross irrigation water use near year 2000 (i.e., total water withdrawals for irrigation: \(\sim 2500–3000 \) km\(^3\)year\(^{-1}\) [Shiklomanov, 2000]). The total water deficit (\(W_{\text{deficit}} \), kg m\(^{-2}\)) of the column is then determined by

\[W_{\text{deficit}} = \sum_i \max(W_{\text{target},i} - W_{\text{liq},i}, 0) \]

where \(W_{\text{liq},i} \) (kg m\(^{-2}\)) is the current soil water content of layer \(i \). The max function ensures that a surplus in any layer cannot reduce the deficit in other layers. The sum is taken only over soil layers that contain roots. In addition, if the temperature of

\[W_{\text{sat}_i} = \frac{\Psi_i - \Psi_o}{\beta_i} \]

where \(\Psi_i \) is the soil water matric potential (mm) and \(\Psi_o \) is the soil water potential when the stomata are fully open, and then converting this value to units of kg m\(^{-2}\).
any soil layer is below freezing, then the sum only includes layers above the topmost frozen soil layer.

[15] The amount of water added to this column through irrigation is then equal to W_{deficit}. This irrigation is applied at a constant rate over 4 hours after 6 A.M. Irrigation water is applied directly to the ground surface, bypassing canopy interception, which would mimic a drip irrigation system. The irrigation amount is removed from the total liquid runoff to simulate the removal from local rivers within each grid cell. We note that the CLM4 irrigation scheme used in this study, as well as models used in many other previous studies [e.g., Kueppers et al., 2007; Lobell et al., 2008; Sacks et al., 2009; Ozdogan et al., 2010; Sorooshian et al., 2011], does not explicitly account for irrigation fed by groundwater. Although groundwater is an important source of irrigation water in some regions, this study focuses only on irrigation using surface water and its effects on surface fluxes. The implementation and application of a groundwater pumping scheme is addressed in a follow-up study [Leng et al., 2013] that aims to evaluate the effects of groundwater-fed irrigation on terrestrial hydrology over the conterminous United States.

[16] High-quality atmospheric forcing data sets are critical for modeling studies. This study uses the assimilated forcing data sets derived by the multi-institutional North American Land Data Assimilation System (NLDAS) project [Cosgrove et al., 2003]. These comprehensive forcing data sets include precipitation, shortwave and longwave radiation, air temperature, humidity, and wind speed, which are available at 0.125 grid resolutions hourly across the conterminous United States (details given by Cosgrove et al. [2003]). Precipitation data were produced by combining observations from field stations, level 4 precipitation retrievals from Next Generation Weather Radar systems and satellites, and are well suited for hydrologic studies. The NLDAS phase II (i.e., NLDAS-2) meteorological field [Xia et al., 2012] is used to force CLM4 at an hourly time step from 1979–2007. Soil, vegetation, and land cover characteristics of the grid cells were derived from the 0.05° CLM input data set developed by Ke et al. [2012].

2.2.2 Experimental Design

[17] Numerical experiments described below are summarized in Table 1. A default simulation without irrigation (hereafter denoted CLMnoirrig) was conducted in offline mode from 1979–2007, using the initial condition generated by recycling the NLDAS2 forcing in 1979–2007 for 36 cycles (i.e., ~1000 years) until all state variables in CLM4, including soil moisture, temperature, and groundwater table depth, reached equilibrium. Additionally, four 29 year offline simulations were performed from 1979–2007 as sensitivity experiments. All the 29 year simulations started from a common initial condition as used in the default simulation.

The first two simulations included irrigation (hereafter denoted CLMGMAIA,nocal and CLMMODIS,nocal), which used irrigation fraction data from FGMA and FMODIS, respectively with $F_{\text{irrig}} = 0.7$, the default single value for each grid cell in CLM4. The difference between these two runs with irrigation and the default run (i.e., CLMnoirrig) provided an estimate of the response of land surface fluxes and states to irrigation, while the difference between the two runs with irrigation provides a comparison of characteristics using different irrigation fraction data. We then calibrated F_{irrig} by perturbing it between (0, 1) at a regular interval of 0.05 using FGMA and FMODIS as inputs, respectively, and by comparing the simulated irrigation amounts with the NASS2002 census data to select the best parameter value for each water resources region. Each grid cell was then assigned the calibrated F_{irrig} value in order to capture the realistic irrigation amount at the water resources region scale. Two additional experiments, denoted as CLMGMAIA,cal and CLMMODIS,cal respectively, were then conducted with the new set of calibrated parameters for each simulation using FGMA and FMODIS as the irrigation fraction data.

[18] To illustrate the importance of interannual variability of land surface variables to irrigation, we selected a relatively wet year, 1997 and a relatively dry year, 2007 from the 29 year simulation results after calibration (i.e., CLMGMAIA,cal and CLMMODIS,cal) based on the Palmer Drought Severity Index data [Dai, 2011] to focus our analysis. All times are given in Coordinated Universal Time (UTC). The last two year (i.e., 2007) experiments (i.e., CLMGMAIA,con and CLMMODIS,con) were performed to examine the effects of constraints from local water availability for irrigation. That is, the actual irrigation amount is the minimum of the irrigation demand and total runoff (Q_{runoff}) at each time step, different from the standard assumption in the irrigation scheme in CLM4 that water is always available to meet irrigation demands, as true in other irrigation simulations in this paper (i.e., CLMGMAIA,nocal, CLMMODIS,nocal, CLMGMAIA,cal and CLMMODIS,cal) and previous modeling studies [e.g., Sacks et al., 2009; Ozdogan et al., 2010]. This represents the opposite extreme from unlimited water supply in that we assume that water for irrigation can only come from local water availability, while in reality, water can come from water storage such as rivers and reservoirs. We used the dry year 2007 to investigate the characteristics of irrigation influence on land surface fluxes and states after accounting for the constraints of water availability. In the following analyses, we focus on six water resources regions (i.e., Lower Mississippi, Missouri, Texas Gulf, Upper Colorado, Pacific Northwest, and California in Figure S1) with the highest irrigation rates, where we expect the direct irrigation effects to be the strongest.

Table 1. Description of Numerical Experiments

<table>
<thead>
<tr>
<th>Name</th>
<th>Irrigation</th>
<th>Weighted Factor (F_{irrig})</th>
<th>Irrigated Fraction Map</th>
<th>Constrained by Total Runoff</th>
<th>Simulation Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLMnoirrig</td>
<td>No</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1979–2007</td>
</tr>
<tr>
<td>CLMGMAIA,nocal</td>
<td>Yes</td>
<td>Default</td>
<td>FGMA</td>
<td>No</td>
<td>1979–2007</td>
</tr>
<tr>
<td>CLMMODIS,nocal</td>
<td>Yes</td>
<td>Default</td>
<td>FMODIS</td>
<td>No</td>
<td>1979–2007</td>
</tr>
<tr>
<td>CLMGMAIA,cal</td>
<td>Yes</td>
<td>Calibrated</td>
<td>FGMA</td>
<td>No</td>
<td>1979–2007</td>
</tr>
<tr>
<td>CLMMODIS,cal</td>
<td>Yes</td>
<td>Calibrated</td>
<td>FMODIS</td>
<td>No</td>
<td>1979–2007</td>
</tr>
<tr>
<td>CLMGMAIA,con</td>
<td>Yes</td>
<td>Calibrated</td>
<td>FGMA</td>
<td>Yes</td>
<td>2007</td>
</tr>
<tr>
<td>CLMMODIS,con</td>
<td>Yes</td>
<td>Calibrated</td>
<td>FMODIS</td>
<td>Yes</td>
<td>2007</td>
</tr>
</tbody>
</table>

LENG ET AL.: EFFECTS OF IRRIGATION OVER CONUS

9792
3. Results

3.1. Uncertainties From Irrigated Area Data Set

Figures 1a and 1b show the spatial distributions of irrigation from FGMIA and FMODIS in CONUS, respectively. Both irrigation maps show remarkable agreement with a strong east-west divide. At the continental scale, major irrigated areas from both maps are distributed along the dry lowland valleys in California, Columbia River basin, and Snake River Basin of Idaho, as well as in the high mountains of Colorado. In central U.S., irrigation areas are found in the semiarid areas of western Kansas, Oklahoma, Texas, and Nebraska. In the Eastern parts of the country, irrigated land is mostly found along the Mississippi valley, agricultural regions of the eastern coastal plain, and southwestern Georgia where high water demand crops such as cotton are planted. The FGMIA map indicates that over 70% (by area) of all irrigated lands in the US are located in the semiarid western US, with smaller fraction of irrigated land in the eastern part of the country, where irrigation is supplemental to rain-fed crops.

The FMODIS map, as discussed in section 2.1, was derived from remotely sensed land surface properties and therefore is more observationally based but subject to uncertainties embedded in remote-sensing products. It estimates the total area equipped for irrigation in the continental U.S. to be 215,539 km², which shows a small bias of about 2% compared to the total irrigated area of 212,470 km² in NASS2002 (Figure 2). In contrast, the FGMIA map estimates the total irrigated area to be 267,282 km², which is about 25% larger than the NASS2002. This may be due to the fact that FGMIA for the U.S. was produced by assigning the maximum of the irrigated areas within a county as reported by the United States Geological Survey (USGS) and USDA census surveys, to agricultural land area provided by USGS and the United States Environmental Protection Agency at 30 m resolution [Siebert et al., 2005]. Consequently, irrigation fractions derived using such a procedure inherently suffer from positive biases. The estimated and reported irrigated areas for each water resources region are also given, which shows significant disagreement between the two data sets, especially in the eastern U.S., where irrigated areas from FGMIA are generally higher than NASS2002, and vice versa from FMODIS. High annual rainfall, the potential irrigation index derived from average annual inputs and a mixture of agricultural and natural vegetation, all made it difficult to distinguish irrigated cropland from rain-fed cropland using the Moderate Resolution Imaging Spectroradiometer (MODIS) based approach [Ozdogan and Gutman, 2008]. However, the pattern and fraction of irrigated area in major irrigated water resources regions such as Lower Mississippi, Arkansas White Red, and Texas show remarkable agreement with those reported in the NASS2002 data set.

Figure 1. The percentage of each 0.125 × 0.125 grid cell defined as equipped for irrigation from (a) FGMIA and (b) FMODIS.

3.2. Experiments Before Calibration

Figures 3a and 3b show the distribution of irrigation demand in the growing season (May–October) simulated by the CLMGMIA,nocal and CLMMODIS,nocal, respectively. The simulated irrigation demand is concentrated over the western US, Mississippi, Missouri, and Texas Gulf, consistent with the spatial pattern of irrigated areas. The irrigation amounts from CLMGMIA,nocal and CLMMODIS,nocal are dominated by the western U.S. where the water demands by crops cannot be met with the average annual precipitation below 20 in. The simulated irrigation demand is generally high in California, Pacific Northwest, Missouri, and Lower Mississippi with concentrated irrigated areas. Consistent with the difference in irrigated area, more irrigation demand is found in the western U.S. from CLMGMIA than CLMMODIS.

Figure 4 shows the interannual variation of irrigation amounts simulated by CLMGMIA,nocal and CLMMODIS,nocal and that reported by NASS census data. Overall, the two noncalibrated CLM4 simulations show substantially higher irrigation demand in most major water resources regions compared to NASS. This suggests that the default F_{irrig} value calibrated based on global irrigation amount may not work well on a regional basis and emphasizes the need for calibration and validation in modeling studies. It is interesting to note that the irrigation demand in CLMGMIA,nocal is much higher than in CLMMODIS,nocal in Upper Colorado although the irrigated areas in this region from FGMIA and FMODIS generally agree with each other (Figure 2). This may be related to the large spatial variability of precipitation amount and seasonality in the continental mountainous areas so regional mean irrigation demands depend more on the spatial distribution of irrigated areas in relation to the precipitation than the total irrigated areas of the region. This highlights the importance of correctly estimating the spatial distribution of irrigated area in climatologically diverse regions.

3.3. Experiments With Parameter Calibration

Figures 5a and 5b show the spatial distribution of the calibrated F_{irrig} values for each water resources region based on FGMIA and FMODIS, respectively. High values of F_{irrig} for FMODIS are found in the western U.S. as the irrigated area is relatively low compared to NASS. The opposite is found for F_{irrig} for FGMIA. Such differences between the calibrated F_{irrig} values based on different grid-based irrigated fraction products (i.e., F_{GMIA} and F_{MODIS}) are expected, given the same irrigation amount from NASS is used as the calibration target for a specific water resources region.
resources region and the large discrepancy between FGMIA and FMODIS in terms of spatial distribution and magnitude as shown in Figure 1.

Figures 6a and 6b show the spatial distribution of irrigation demand in the growing season simulated by the calibrated simulations, CLMGMIA,cal and CLMMODIS,cal, respectively. Compared to the simulations before calibration, both CLMGMIA,cal and CLMMODIS,cal simulated lower irrigation demands after calibration that better capture the amplitude and interannual variations of irrigation amounts in the major water resources regions (Figure 7). With calibration, CLMGMIA,cal produced results generally closer to NASS than CLMMODIS,cal.

Irrigation effects simulated by models are dependent on their ability to simulate evapotranspiration (ET) at the land surface. Figure 8 shows a comparison between the simulated summertime (i.e., June, July, and August) ET from CLMnoirrig, CLMGMIA,cal, CLMMODIS,cal, and the MODIS data. From Figure 8, the simulated ET from CLMnoirrig, CLMGMIA,cal, and CLMMODIS,cal all match the MODIS ET from Tang et al. [2009a, 2009b] estimates aggregated into model resolution (i.e., 0.125°) reasonably well in terms of spatial distribution and magnitude, but CLMGMIA,cal and CLMMODIS,cal show some improvements in simulating ET in agricultural areas such as the Central Valley, Columbia Basin, and the Arkansas Red river basin in general. To further evaluate the ET simulations, we compared the simulated and MODIS-based ET at the county level for all counties with an irrigation fraction greater than 0 in Figure 9. It is evident from Figure 9 that by adding irrigation, the mean annual ET fluxes simulated by CLM have smaller errors and correlate better with the MODIS ET than CLMnoirrig, even before calibration. The calibration further improved the performance of CLM simulations, with CLMGMIA,cal being the best performing model, followed by CLMMODIS,cal.

3.4. Interannual Variability of Irrigation Impacts

The impacts of irrigation on surface latent heat flux (LH), total runoff, and 10 cm soil temperature simulated by CLM4 with the calibrated parameters are examined. Figure 10 shows the irrigation impacts on LH in a relatively wet year (i.e., 1997), dry year (i.e., 2007), and climatology mean from 1979 to 2007 using FGMIA and FMODIS, respectively. More specifically for 2007 when irrigation amounts were larger than normal in general due to extreme drought and severe drought conditions prevailed in western U.S. and southeastern U.S., though wetter than normal conditions were still found in the South Central region (i.e., Texas Gulf) based on the Palmer Modified Drought Index from the National Climatic Data Center [Dai, 2011].

In 2007, both CLMGMIA,cal and CLMMODIS,cal simulated large diurnal variation in the effects of irrigated agriculture on energy partitioning between sensible and latent heat fluxes. With irrigation, LH increases by 10–35 W m⁻² from May through September during day time (16:00–02:00 UTC) in Missouri, Texas Gulf, Lower Mississippi, and Upper Colorado. The effects are most pronounced in Pacific Northwest, Lower Mississippi, and even more so in California, owing to a longer dry season that extend from May to October. To a lesser extent, midday LH increases with irrigation are also simulated in winter and spring of 2007 with anomalously low precipitation in California. Generally, CLMGMIA,cal simulated larger effects than CLMMODIS,cal in Lower Mississippi, Missouri, Upper Colorado, and Pacific Northwest, partly because CLMGMIA,cal simulated higher irrigation demand than CLMMODIS,cal (Figure 6). Local effects can be more extreme. For example, irrigation shifts over 50 W m⁻² from...
Figure 7. Comparison of simulated annual irrigation demand by CLM$_{GMIA, cal}$ (white) and CLM$_{MODIS, cal}$ (gray) with NASS census data (black).

Figure 8. Difference of summer mean evapotranspiration between (e) MODIS ET and (a–d) simulated ET. Note that the no-irrigated grid cells in Figures 8a, 8b and Figures 8c, 8d are masked out using F$_{MODIS}$ and F$_{GMIA}$ data, respectively.
Figure 9. Simulated summer mean evapotranspiration from the CLM simulations compared against the MODIS data in 2001 at the county level.

Figure 10. Difference of diurnal latent heat flux simulated by CLM between the irrigation and no irrigation (default) run in a dry year, 2007 (the top two panels) and wet year, 1997 (the middle two panels) and climatology mean for 1979–2007 (bottom two panels) for six water resource regions. The first, third, and fifth panels represent the results simulated by CLM_{GMSA,cal}, while the second, fourth, and sixth panels represent the results simulated by CLM_{MODIS,cal}.
sensible heat to latent heat in the energy balance of many grid cells in California in July and August of the dry year. Effects of similar magnitude are also seen in eastern Lower Mississippi.

[28] Compared to 2007, both CLMGMIA,cal and CLMMODIS,cal show smaller effects in 1997, but large effects still exist in California and Lower Mississippi in 1997. At seasonal time scales, the effects of irrigation on energy partitioning appear to be large and persistent and more pronounced in dry years when reduced precipitation and higher evaporative losses drive higher irrigation demands.

[29] Figure 11 shows the irrigation impacts on the top 10 cm soil temperature in 1997 and 2007 simulated by CLMGMIA,cal and CLMMODIS,cal. Irrigation raises the soil water content, enabling evapotranspiration, which lower the temperature. In general, peak decrease in the 10 cm soil temperature occurred in July and August when changes in LH are largest (Figure 10). In California and Lower Mississippi, the 10 cm soil temperature decreases by 0.5 K during the summer peak. Consistent with the higher irrigation amounts and larger increase in LH, the simulated decrease of 10 cm soil temperature by CLMGMIA,cal is larger than CLMMODIS,cal.

[30] Figure 12 shows the irrigation impacts on the total runoff in 1997 and 2007 simulated by CLMGMIA,cal and CLMMODIS,cal. Even though we have calibrated the model

Figure 11. Difference of seasonal mean top 10 cm soil temperature simulated by CLMGMIA,cal (blue) and CLMMODIS,cal (red) and CLMnoirrig run in dry year, 2007 (the solid line) and wet year, 1997 (the dashed line) for six water resources regions.

Figure 12. Difference of seasonal mean total runoff simulated by CLMGMIA,cal (blue) and CLMMODIS,cal (red) and CLMnoirrig run in dry year, 2007 (the solid line) and wet year, 1997 (the dashed line) for six water resources regions.
parameters to yield overall good agreement with NASS for both simulations, their differences still dominate the interannual differences in runoff response. For example, with FMODIS, the interannual variability of irrigation impacts on runoff is smaller over all river basins in the western US compared to using FGMIA because the fractional irrigated area of the former is much smaller. This has important implications to modeling irrigation impacts and potential feedbacks in extreme conditions. We note that our estimates of irrigation effect on runoff fall within the range of previous studies when averaged over the continental scale or large river basins. By assuming water for irrigation was always available, Ozdogan et al. [2010] showed that irrigation could lead to runoff changes by 0.01 mm d$^{-1}$ (0.3 mm month$^{-1}$) when averaged over the continental U.S.; Haddeland et al. [2006] estimated that irrigation could lead to runoff changes from 42.3 mm yr$^{-1}$ to 26.5 mm yr$^{-1}$ (1.3 mm month$^{-1}$) and from 734 mm yr$^{-1}$ to 716 mm yr$^{-1}$ (1.5 mm month$^{-1}$) for the Colorado and Mekong river basins, respectively.

3.5. Experiments With the Constraints of Local Water Availability

In all the experiments reported so far, water is assumed to be available whenever needed to meet the irrigation demand. In other words, the irrigation demand calculated as a deficit between the soil moisture target in equation (1) and the soil moisture status at 6 A.M. of each day in the growing season is assumed to be always met by extracting water from the total runoff in the same grid cell. This could result in negative total runoff values under extreme conditions when the irrigation demand exceeds the total runoff at the given grid cell, which is not realistic but numerically allowed. Therefore, the CLM4 irrigation scheme only represents a first step toward a realistic representation of hydrology and water resources management practices in the real world. To achieve such a representation, substantial model developments are needed, including groundwater pumping, runoff and streamflow routing, and reservoir operation, which are out of the scope of this study but have been reported in a series of follow-up studies [i.e., Leng et al., 2013; Li et al., 2013; Voisin et al., 2013]. Briefly, sources of water for irrigation (i.e., groundwater versus surface water), routing of water along the flow path from hillslopes and subsurface systems into tributaries and then into major streams, and the storage and distribution of water in and from reservoirs are all important factors to be considered to understand water availability to satisfy irrigation demands at local and regional scales. Interested readers are referred to these papers for details.

In this study, the impacts of extreme conditions when the local total runoff cannot provide surface water to meet the irrigation water demand is explored in a simplistic way using the dry year 2007 as a case study to investigate irrigation effects with the constraints of local water availability at the intraseasonal time scale.

As discussed earlier, this experiment represents the opposite extreme from previous experiments where water is always available in that we assume water can only come from the liquid runoff of the local grid cell. Comparing the experiments with unlimited water availability and constrained water availability by local water supply can provide a range of irrigation impacts that bracket the reality when irrigation can be limited by availability from water storage such as streams, reservoirs, and groundwater. From CLMGMIA,con and CLMMODIS,con (i.e., the two 1 year simulations in Table 1), the magnitude of irrigation impacts are reduced significantly when irrigation is constrained by local water availability, especially in California, Lower Mississippi, and Pacific Northwest where extreme and severe droughts occurred in 2007 (Figures 13 and 14). Most previous studies did not consider water availability for irrigation and assumed that water was always available to meet irrigation demands [Ozdogan et al., 2010; Sacks et al., 2009]. Limited by local water availability, the energy and water balance components are influenced by irrigation in the same direction as

Figure 13. Difference of seasonal mean top 10 cm soil temperature simulated by CLMGMIA,con (blue) and CLMMODIS,con (red) and CLMnoirrig run in 2007. The solid line represents the simulation results after constraining irrigation amounts by the water availability, while the dashed line represents the results assuming the water for irrigation was available whenever needed.
simulations with no constraint of water availability, but with more moderate effects. For example, the change in 10 m soil temperature becomes negligible in California in 2007 when local water availability is considered, which reduces the irrigation amounts, resulting in less root uptake and transpiration, and much smaller effects of irrigation.

4. Conclusion and Discussion

Previous studies generally investigated irrigation effects based on sensitivity experiments. For example, Kueppers et al. [2007] forced the RegCM3 model root zone (top 1 m) soil moisture to field capacity every time step to simulate irrigation effects. Kanamaru and Kanamitsu [2008] investigated the effects of irrigation on regional climate using the Regional Spectral Model by prescribing root zone soil moisture to 100% and 50% saturated conditions respectively at each time step and compared their differences. Lobell et al. [2009] using the Community Atmospheric Model (i.e., CAM3.3), prescribed the top 30 cm soil moisture in each irrigated grid cell to values from 30% to 90% of the soil saturation. Boucher et al. [2004] and Sacks et al. [2009] applied realistic irrigation amounts constrained by observations to simulate irrigation effects. However, the irrigation schemes they used are less realistic in that Boucher et al. [2004] directly prescribed rather than simulated the evapotranspiration flux from irrigation and Sacks et al. [2009] applied irrigation evenly throughout the growing season regardless of the soil moisture state. Depending on each model’s parameterizations and input uncertainties especially at the regional scale, previous studies may yield ambiguous interpretation of the irrigation’s effect on regional climate. However, since the simulated irrigation amounts were usually not reported in previous studies, model uncertainty cannot be evaluated.

In this study, the effects of irrigation in the continental U.S. on surface fluxes and land surface states are examined using two different irrigation fraction data sets as inputs to CLM with model calibration using the NASS census data. The following is a summary of our findings.

1. Relative to the NASS census data, large discrepancy and uncertainties exist between the grid-based FGMIA and FMODIS data, which are important sources of uncertainty in modeling irrigation effects. Even with model calibration to yield overall good agreement with NASS, differences between FGMIA and FMODIS still dominate the differences in the interannual variability of land surface response to irrigation. With smaller irrigation fractional area in the FMODIS data, interannual variability of the impacts of irrigation is smaller compared to using the FGMIA data. This has important implications to modeling irrigation impacts in extreme conditions. Furthermore, even if both data sets agree on the total irrigated areas in a region, the total irrigation demands can still be very different in regions with large spatial variability of precipitation amount and seasonality. Since both data sets are subject to uncertainties associated with either the source data or methods used to derive them, it is critical to acknowledge and characterize/quantify uncertainties that propagated through the models in any impact studies using these data sets. Results from this study also highlight the importance of improving the estimates of the intensity and spatial distribution of irrigated area in modeling irrigation demands and impacts.

2. Our results suggest that the irrigation demands simulated by CLMGMIA,ocal and CLMMODIS,ocal using the default value of the F_{irrig} parameter previously obtained based on calibration of global gross irrigation withdrawal are both unreasonably high compared to NASS. After calibration using the NASS census data, CLMGMIA,cal and CLMMODIS,cal both more reliably simulated the irrigation demands in heavily irrigated water resources regions in term of amplitude and temporal variation. This suggests that global calibration of the F_{irrig} parameter may not capture large regional differences in irrigation amounts. By constraining
model performance using observations, we demonstrate that the performance of the irrigation scheme can be improved through calibration of model parameters.

3. With the calibrated parameters assigned to each grid, our results indicate that the effects of irrigation in the growing season on land surface fluxes and states are more pronounced in dry years, with more significant effects occurring locally at daytime.

4. By accounting for water availability, our tests indicate that the magnitude of irrigation effects is greatly reduced. Hence, in addition to irrigation data sets and model parameters, water availability for irrigation is another important factor that should be considered in assessing the impacts of irrigation. To more realistically represent water availability for irrigation, the effects of reservoirs on regulating streamflow should be considered to account for water supply from local and remote storages.

Overall, by constraining model performance using observations, this study demonstrates that the performance of the CLM4 irrigation scheme can be improved through parameter calibration. However, uncertainty in the irrigation area data must be reduced to further reduce uncertainty in simulating irrigation effects at the seasonal to interannual time scales. Through the water availability experiments, we evaluated the deficiency in the current parameterization and point out a critical path forward to a realistic assessment of irrigation impacts using an earth system modeling approach.

A more complete parameterization to simulate crop irrigation demands by incorporating phenological development with crop-specific parameters has been incorporated into later versions of CLM [Levis et al., 2012; Oleson et al., 2013]. Levis et al. [2012] demonstrated that by replacing the CLM’s unmanaged “grass-like” crop with managed corn, soybean, and temperate cereals as in Integrated Biosphere Simulator agricultural version [Kucharik and Brye, 2003], the coupled Community Atmosphere Model version 4 (CAM4)-CLM4 simulated significant changes in North American temperature and precipitation due to changes in the turbulent heat fluxes associated with improved leaf area index simulations of crops. However, irrigation was not considered in that study, which might have contributed to the overestimation of Midwestern North American temperatures in summer in their simulations. Nevertheless, their results suggest that crop-specific parameters may have important influence on ET and hence the assumption of a grass-like generic crop type in this study may have effects on our simulated irrigation effects that deserve further investigation in the future.

Furthermore, the assumption that water resources are freely available for irrigation and the lack of representations of factors controlling water supply for irrigation need to be relaxed and considered. For example, the water constraint experiments, CLM4GMAA_con and CLM4MODIS_con, were conducted based on the assumption that irrigation water could be only extracted from local runoff (i.e., Qrunoff), which is oversimplified compared to real-world scenarios in which irrigation water could be from rivers, reservoirs, and groundwater withdrawal. In addition, the model also assumes 100% irrigation efficiency, that is, the amount of water reaching the root zone of the plants is the same as the amount of water taken from the source (river, well). As with most other irrigation schemes used in land surface models, these limitations contribute to uncertainties in modeling irrigation impacts and should be further investigated in future studies. Therefore, to understand the complex interactions between climate, irrigation, and cropping systems, further research on this topic should be pursued using an Earth system approach.

Significant efforts have been made toward this path and have been reported in separate publications. A groundwater pumping scheme has been developed and implemented into CLM [Leng et al., 2013]; a physically based river routing module, the Model for Scale Adaptive River Transport (MOSART), has been developed and coupled with CLM [Li et al., 2013]; a water management module that simulate reservoir operations using operational rules with competing targets has been developed and coupled with CLM and MOSART [Voisin et al., 2013].

Although this study is performed using offline CLM simulations, it has important implications to coupled simulations since our results show that the irrigation amounts, hence surface fluxes, can be very sensitive to the irrigation areas and parameters used in the irrigation scheme. With offline simulations, however, the response of ET to irrigation may differ from that derived from coupled simulations. This difference is likely dependent on the role of land-atmosphere feedbacks on surface fluxes and boundary layer and cloud development. In regions such as the Central U.S. where land-atmosphere coupling strength is stronger [Koster et al., 2004], it may be more important to use coupled models to study irrigation effects. Hence, to quantify climate/hydrologic/ecological consequences of irrigation at regional and global scales, studies using coupled land-atmosphere models that include more realistic representations of irrigation amounts as well as sources in a modeling framework that integrates with river routing and water management will be pursued in the future.

Acknowledgments. This study was supported by the Integrated Earth System Modeling (IESM) project funded by Department of Energy Earth System Modeling program. The Pacific Northwest National Laboratory (PNNL) Platform for Regional Integrated Modeling and Analysis (PRIMA) Initiative provided the model configuration and data sets used in the numerical experiments. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RL01830. This work was also partly funded by the National Natural Science Foundation of China (41171031) and the National Basic Research Program of China (2012CB955403).

References

