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Abstract Under previous reconstructions of late Pliocene boundary conditions, climate models have
failed to reproduce the warm sea surface temperatures reconstructed in the North Atlantic. Using a
reconstruction of mid-Piacenzian paleogeography that has the Bering Strait and Canadian Arctic Archipelago
Straits closed, however, improves the simulation of the proxy-indicated warm sea surface temperatures in the
North Atlantic in the Community Climate System Model. We find that the closure of these small Arctic
gateways strengthens the Atlantic Meridional Overturning Circulation, by inhibiting freshwater transport
from the Pacific to the Arctic Ocean and from the Arctic Ocean to the Labrador Sea, leading to warmer sea
surface temperatures in the North Atlantic. This indicates that the state of the Arctic gateways may influence
the sensitivity of the North Atlantic climate in complex ways, and better understanding of the state of these
Arctic gateways for past time periods is needed.

1. Introduction

Data reconstructions and Pliocene Model Intercomparison Project Phase 1 (PlioMIP1) climate model simula-
tions of the Pliocene sea surface temperatures (SSTs), specifically during the mid-Piacenzian (mP, 3.264-
3.025 Ma), are in good agreement in most regions except at sites in the North Atlantic [Dowsett et al., 2013].
Higher levels of ocean heat transport, based on micropaleontological evidence [Dowsett et al., 1992] and carbon
isotopic composition of marine organic matter [Raymo et al., 1996], have been invoked to explain the origin of
this Pliocene warmth, but coupled climate models have failed to consistently reproduce the magnitude oragree
evenon the sign of the change in the Atlantic Meridional Overturning Circulation (AMOC) [Haywood and Valdes,
2004; Zhang et al., 2013]. Furthermore, an alternate explanation, which invokes the higher reconstructed con-
centrations of atmospheric carbon dioxide (CO,) during the Pliocene [Budyko et al., 1985; Crowley, 1991], is also
not sufficient and calls into question whether coupled climate models adequately simulate polar amplification.

Experiments have explored the AMOC responses to replacing the Barents Sea with land [Hill, 2015], a deepen-
ing of the sills along the eastern and western limbs of the Greenland-Scotland-Iceland ridge [Robinson et al.,
2011], and an extended drainage basin of the Hudson Bay and Baltic rivers [Hill, 2015]. Among these changes,
only changes to the Greenland-Scotland-Iceland ridge have led to a significant strengthening of the AMOC. A
new reconstruction of mP paleogeography [Dowsett et al., 2016] includes closure of the Bering and Canadian
Arctic Archipelago Straits. The impacts of the representation of these gateways and influences on pathways
of present-day ocean currents have been investigated with ocean-only [e.g., Wadley and Bigg, 2002] and
coupled ocean-sea ice models [e.g.,, Komuro and Hasumi, 2005]. Recent studies have also investigated the
climate system response to the closure of Bering Strait [e.g., Hu et al., 2015]. However, the climate response
to both ocean gateways closed during the Pliocene has yet to be explored.

Here we conduct a series of medium-resolution, coupled atmosphere-ocean-sea ice-land simulations to bet-
ter understand the North Atlantic climate response (particularly the AMOC and sea surface temperature field)
to the configuration of open and closed ocean gateways in the Bering Strait and the Canadian Arctic
Archipelago. We quantify the changes to freshwater transport to the North Atlantic with closure of these
gateways and subsequent impacts on the AMOC. The new simulation compares favorably to proxy recon-
structions of North Atlantic temperatures. This is important, as the mP warm period has been suggested as
a geologic example for the long-term response of the future Earth to present levels of global
atmospheric CO,.
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2. Model and Experimental Design

To identify the sensitivity of the late Pliocene climate to uncertainties in reconstructions of the Arctic Ocean
gateways, we conducted five coupled climate simulations with the Community Climate System Model ver-
sion 4 (CCSM4) (Methods, Text S1 in the supporting information) [Gent et al., 2011]. The baseline Pliocene
simulation uses the standard PlioMIP1 forcing protocol: atmospheric CO, set to 405 ppmv (parts per million
by volume) and the Pliocene Research, Interpretation, and Synoptic Mapping, version 3 (PRISM3) vegetation,
ice sheets, and topography [Haywood et al., 2011; Rosenbloom et al., 2013]. The land-sea geography is kept at
its modern configuration except for the filling of Hudson Bay. The updated PRISM4 mP paleoenvironmental
reconstruction, which considers change in dynamic topography associated with mantle flow and glacial iso-
static adjustment due to Piacenzian ice loading and will be used in PlioMIP2 (centered on an interglacial peak
MIS KM5c: 3.205 Ma), closes the Bering Strait (BS) and the straits through the Canadian Arctic Archipelago
(CAA: Northwest Passage and Nares Strait) [Haywood et al., 2016b]. We conduct three sensitivity simulations,
for comparison to our baseline PlioMIP1 simulation and a preindustrial simulation (Pl with 1850 conditions):
(1) only the BS closed, (2) only the CAA closed, and (3) both the BS and CAA closed. The first two sensitivity
simulations allow us to assess the linearity of the effects of the individual straits on the Arctic and
North Atlantic.

3. Proxy Reconstructions

The model simulations are compared to the reconstructions of North Atlantic SSTs compiled by Dowsett et al.
[2012, 2013] (Table S1). The confidence level of the proxy data records was evaluated by these authors based
on semiquantitative measure of confidence accounting for quality of the age control of the samples at each
site, number of samples at each site, fossil preservation and abundance, reliability of proxy method, or tech-
nique used; we retain only records with high to very high confidence level in this study. The model-proxy
comparison is conducted on the anomalies of the simulated Pliocene and preindustrial temperatures. In
order to ensure the consistency of model-proxy data comparison, published proxy anomalies (reference to
modern) are corrected with preindustrial minus present-day anomalies [Rayner et al., 2003; Reynolds
et al., 2002].

4. Results
4.1. Impacts of Closing Arctic Gateways on North Atlantic Ocean

CCSM4 reasonably reproduces observed SST and sea surface salinity (SSS) in the North Atlantic with warm and
saline conditions extending across the basin south of ~45°N and northward into the eastern Greenland-
Iceland-Norwegian (GIN) Seas (Figure S1). Cold and fresher conditions extend from the Fram Strait southward
along the eastern Greenland coast to the Labrador Sea. The baseline PlioMIP1 simulation is warmer and saltier
in the North Atlantic than the Pl simulation (Figure 1). In the Pl and PlioMIP1 simulations, deepwater formation
extends from the Labrador Sea to Irminger Sea, and the Greenland-Iceland-Norwegian Seas, similar as in obser-
vations (Figures 1 and S1) [e.g., Smethie et al., 2000; Danabasoglu et al., 2012]. The maximum AMOC in the
PlioMIP1 simulation is indistinguishable from the Pl control (Figure 2), also the case in PlioMIP1 simulations
by several other models [Zhang et al., 2013]. Areal sea ice extent in the CCSM4 PlioMIP1 simulation decreases
in the Arctic as compared to Pl (Figure S2) but persists through the summer [Rosenbloom et al., 2013].

With a closed Bering Strait at the Pliocene, saltier water in the Labrador and GIN Seas favors increased
deepwater formation in both regions (Figure 1). The AMOC strengthens by about 2.5 Sverdrups (Sv, 1Sv
equals 10° m?/s ), and meridional heat transport (MHT) convergence in the Atlantic between 40 and 60°N
increases by 0.036 PW or 10% as compared to the PlioMIP1 simulation with the BS open (Figure 2). The
strengthened AMOC is consistent with modeling results for modern [Goosse et al., 1997; Wadley and Bigg,
2002] and Quaternary [Hu et al., 2015] ocean circulations for a closed BS. Annual sea ice concentrations are
reduced by up to 15% in the waters west of Greenland (including Baffin Bay, the Davis Strait, and Labrador
Sea) and east of Greenland (including the East Greenland Current region and in the Barents Sea) as compared
to the PlioMIP1 simulation (Figure S2).

Closure of only the CAA straits, on the other hand, results in a significant freshening and cooling of the
Labrador and GIN Seas (Figure 1) and thus a large expansion of sea ice in these basins (Figure S2), as
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Figure 1. Comparison of SST (left), SSS (middle), and mixed layer depth (MLD, right). (@) Annual-mean SST (°C), annual-
mean SSS (psu), and winter (December to February) MLD in the PlioMIP1 simulation. (b) PlioMIP1 minus Pl changes in
SST, SSS, and MLD. (c-e) Changes in SST, SSS, and MLD with respect to the PlioMIP1 simulation for the Closed BS, Closed
CAA, and Closed BS+CAA experiments, respectively.

compared to the PlioMIP1 simulation. Deepwater formation is shut down except in the eastern North Atlantic
(Figure 1), resulting in a reduction of the AMOC by about 5Sv or 20% (Figure 2) and a decrease of MHT
convergence in the Atlantic between 40 and 60°N of —0.017 PW or —5% as compared to the PlioMIP1 simu-
lation with the CAA straits open. This contrasts with results from previous studies using a low-resolution
ocean model [Wadley and Bigg, 2002] and an ocean model with flux corrections [Goosse et al., 1997], but it
is consistent with results from an ocean-sea ice model [Komuro and Hasumi, 2005].

With the closure of both the Bering and Canadian Arctic Archipelago Straits, there is a freshening of and
decreased deepwater formation in the Norwegian Sea (Figure 1), and a displacement of the region of deep-
water formation southeastward into the Irminger Sea and the subpolar North Atlantic, resulting in more sal-
ine water emanating from the Labrador Sea even compared to the closed BS case. The model responds with
an even greater strengthening of the AMOC (~4.5 Sv or 18%), approximately doubling the response with only
the Bering Strait closed. As compared to the closed BS case, the strengthening of the AMOC is primarily
confined to between 40 and 60°N (Figure 2). MHT convergence in this latitudinal band increases by
0.098 PW or 30% as compared to the PlioMIP1 simulation. Sea ice has a dipole response, with large decreases
west of Greenland and increases from the tip of Greenland to the northern North Atlantic (Figure S2).
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Figure 2. Comparison of AMOC in Pliocene simulations. (@) Annual-mean AMOC (Sv) from PlioMIP1 simulation. Positive and
negative contours indicate clockwise and counterclockwise circulation, respectively. (b—d) Change in the AMOC as com-
pared to the PlioMIP1 simulation for the Closed BS, Closed CAA, and Closed BS+CAA experiments, respectively. Top
numbers in color bar are used by Figure 2a, and bottom numbers are used by Figures 2b-2d.

4.2. A Mechanism for Responses

The simulated responses can be understood by changes in the Arctic freshwater (liquid and sea ice) trans-
ports and subsequent effects on the SST, SSS, and deepwater formation in the North Atlantic. At present
[Aagaard and Carmack, 1989] and in the PlioMIP1 simulation, relatively fresh seawater is transported through
the Bering Strait into the Arctic, with additional freshwater being added to the Arctic Ocean through river run-
off and net precipitation (Figure 3 and Table S2). This freshwater is then exported from the Arctic to the North
Atlantic via two routes. The short route is through the Canadian Arctic Archipelago Straits (Northwest Passage
and Nares Strait) into Baffin Bay and out along the northeast coast of the Canadian Arctic. A major portion of
the Pacific water transported through the Bering Strait leaves the Arctic through the straits of the Canadian
Arctic Archipelago [Jahn et al., 2010]. The long route is through the Fram Strait, with a large contribution from
sea ice export. Previous work has shown that the CCSM4 represents the Arctic freshwater fluxes reasonably
well in present-day simulations [Jahn et al.,, 2012] and that changes in the Arctic freshwater export affect
the simulated deep convection in the North Atlantic in the CCSM4 more strongly than SST changes [Jahn
and Holland, 2013].

With a closed Bering Strait in the Pliocene, the total freshwater (liquid and solid, FW) transported to the North
Atlantic through the Fram Strait decreases by about 39% and through the CAA straits by 36%, with a total
reduction of the Arctic FW export of about 30% (Figure 3 and Table S2), resulting in a saltier Labrador and
GIN Seas (Figure 1). With an open BS but closed CAA, the total FW export stays about the same as in the base-
line Pliocene experiment, but all freshwater must be exported through the Fram Strait (Figure 3 and Table S2).
This more-than-doubled FW export by the long route explains the significant freshening and cooling of the
Labrador and GIN Seas (Figure 1), increased sea ice cover (Figure S2) and seasonal sea ice melt, and a shut-
down of deepwater formation except in the eastern North Atlantic (Figure 1).

For the mP simulation with closed BS and closed CAA straits, Arctic FW is transported entirely through the
Fram Strait and is sourced only from the local Arctic FW budget (P — E+R), as no Pacific FW is entering the
Arctic. Compared to the baseline PlioMIP1 experiment, this leads to a 30% reduction of the total FW export
from the Arctic, similar to the closed BS case. In contrast to the closed BS case, however, this reduction is
entirely due to a 36% decrease in the total liquid FW export from the Arctic (Table S2). The total sea ice export
stays at the same level as in the PlioMIP1 simulation. As all FW now leaves the Arctic east of Greenland, it leads
to a freshening of and decreased deepwater formation in the Norwegian Sea (Figure 1). At the same time, the
strongly reduced total liquid FW export together with the cutoff of the short export route through the CAA
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Figure 3. Arctic Ocean freshwater fluxes into and out of Arctic Ocean. Streamlines represent ocean surface circulation in
the PlioMIP1 simulation. Net freshwater (solid plus liquid, in km3/yr) input (positive values) and export (negative values)
are shown for the Pliocene simulations. Shaded blue area shows the region where winter ocean mixed layer depths are
greater than 120 m in the PlioMIP1 simulation. Other regions are labeled as BAS, Barents Sea; BS, Bering Strait; CAA,
Canadian Arctic Archipelago; EGC, East Greenland Current; FS, Fram Strait; GIN, Greenland-Iceland-Norwegian Sea; LS,
Labrador Sea; NAC, North Atlantic Current; and TD, Transport Drift. 3153.6 km3/yr equals 0.1 Sv.

results in a more saline Labrador and south Greenland Sea with increased deep convection, even compared
to the closed BS case (Figure 1). The stronger AMOC in the mP simulation with closed BS and closed CAA
straits is therefore due to the phase and pathway of the Arctic FW export, rather than being a linear combina-
tion of the AMOC response in the individual closure cases of the Bering and CAA straits (Figure 2).

4.3. Impact on North Atlantic and Arctic Temperatures

Our PlioMIP1 simulation, with open BS and CAA straits, has a 1.9°C increase in global mean annual tempera-
ture compared to the Pl control, with a polar amplification of ~3 times the global warming [Rosenbloom et al.,
2013]. Compared to proxy data, the PlioMIP1 simulation underestimates the reconstructed warm midlati-
tudes (40-60°N) of the North Atlantic (Figure 4). The model simulates on average 1.4°C warming (range 0.7
to 1.8°C) at midlatitude proxy sites characterized as high and very high confidence [Dowsett et al., 2012] relative
to the Pl simulation (Figure 4 and Table S1), while the warming is 5.1°C (range —0.2 to 8.8°C) derived from proxy
reconstructions. This data model mismatch is worsened in the closed CAA experiment with an average cooling
of 0.8°C (range —3.0 to 0.8°C) but is improved by closing the BS and further by closing both the BS and the CAA
straits, featuring a 2.4°C (range 1.8 to 4.0°C) and 3.2°C (range 1.9 to 5.5°C) warming, respectively (Table S1).

With the new mP PRISM4 reconstruction of Arctic gateways, the model still underestimates pan-Arctic
(greater than 60°N) warming. None of the simulations capture the strong warming reconstructed for
Ocean Drilling Program 907 near Iceland, a site assessed to be high confidence (Table S1). Other pan-
Arctic sites provide less confident temperature estimates due to dating and calibration uncertainties.
In particular, the large age range of many terrestrial records means that the proxy mean annual tem-
peratures may represent periods in the Pliocene with higher CO, than prescribed in the CCSM4
Pliocene simulations and/or could represent periods within the Pliocene with high summer insolation
anomalies in the Arctic [Haywood et al., 2016a; Prescott et al., 2014; R. Feng, personal communication].
Similarly, other differences in the paleogeography [Hill, 2015] or bathymetry in the North Atlantic
[Robinson et al., 2011] from modern could be important. Previous modeling has shown that an ice-free
Arctic in the summer provides a better match to the proxy temperature data [Ballantyne et al., 2013;
Howell et al., 2016]. Whether this speaks to models such as CCSM4 underestimating the sensitivity of
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Figure 4. Annual surface temperature change (°C) in Pliocene simulations (contours) and proxy SST reconstructions (filled
circles). (a—d) Change as compared to CCSM4 preindustrial simulation. Information about data points is presented in
Table S1. (e-g) Changes with respect to the PlioMIP1 simulation. Areas with differences significant above 99% (from
Student’s t test) are dotted.

Arctic sea ice to warming, or the need to include the chemistry-climate feedbacks [Unger and Yue, 2014]
associated with the changed vegetation not commonly included in paleoclimate simulations, remains an
open question.

4.4. Implications for Pliocene Greenland Ice Sheet

Ice-rafted detritus records suggest a significant expansion of the Greenland ice sheet (GrlS) during the M2
glacial event (~3.3 Ma) [Flesche Kleiven et al., 2002; Bierman et al., 2016] that temporarily punctuated the
relatively stable warm climate of the late Pliocene. The driver of this glaciation is not well understood,
though insolation and CO, variations are thought to have played important roles for the ice sheet forma-
tion [Contoux et al.,, 2015; Dolan et al., 2015; Koenig et al., 2015]. The results presented here suggest that
the cold SST feedback (when only closing the CAA straits but leaving BS open) may have been important
for this transition as well and possibly also for subsequent glaciations in the Pleistocene. These results
highlight the importance of further studies with coupled climate-ice sheet models for understanding
GrlS responses to the Arctic gateway configurations.

5. Conclusions

Our simulations show that closure of the relatively small Arctic gateways critically influences the AMOC,
by inhibiting freshwater transport from the Pacific to the Arctic Ocean and from the Arctic Ocean to

OTTO-BLIESNER ET AL.

ARCTIC GATEWAYS AND PLIOCENE CLIMATE 962



@AG U Geophysical Research Letters

10.1002/2016GL071805

Acknowledgments

We thank the CESM scientists and soft-
ware engineers for the development of
the Community Earth System Model,
Nan Rosenbloom for setting up and
running simulations, and the PRISM
group for the development of the
Pliocene boundary conditions. The
National Center for Atmospheric
Research (NCAR) is sponsored by the U.
S. National Science Foundation (NSF). B.
L.O.-B. and E.C.B. also acknowledge the
support of NSF-EAR award 1237211. A.
J.'s contribution is supported by NSF-
OPP award 1504348. RF. is supported
by NSF-PLR award 1418411. AH. is sup-
ported by the U.S. Department of
Energy (DOE), Office of Science (BER)
cooperative agreement DE-FC02-
97ER62402 and M.L. by DOE-BER award
DE-SC0012606. Computing resources
(ark:/85065/d7wd3xhc) were provided
by the Climate Simulation Laboratory at
NCAR’s Computational and Information
Systems Laboratory, sponsored by the
National Science Foundation and other
agencies. The model data are archived
on the High-Performance Storage
System at the NCAR-Wyoming
Supercomputing Center and are avail-
able from the authors on request (otto-
bli@ucar.edu).

the Labrador and Greenland-Iceland-Norwegian (GIN) Seas. The net result is a stronger AMOC and an
improved simulation of the proxy-indicated warm SSTs across the North Atlantic from south of
Greenland to the British Isles with closure of both the Bering Strait and straits in the Canadian Arctic
Archipelago. These results indicate the need to better assess the climate impact of these Arctic gateways
when using models in comparison to data for past time periods.

The Pliocene has been used as a geologic analogue to assess the long-term climate response to modern
CO, levels. Pliocene proxy reconstructions consistently show greater high-latitude warmth and possibly
more sensitive climate [Pagani et al, 2010] than simulated by state-of-the-art Earth system models
[Haywood et al., 2013]. Our results indicate that the state of the Arctic gateways may influence the sensi-
tivity of the North Atlantic climate in complex ways, making the Pliocene a better process than geologic
analogue to study the ability of models to realize the full sensitivity to processes and feedbacks that may
affect the Earth system sensitivity in the future.
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