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We present a model for the scaling of mixing in weakly rotating stratified flows charac-
terized by their Rossby, Froude and Reynolds numbers Ro, Fr, Re. It is based on quasi-
equipartition between kinetic and potential modes, sub-dominant vertical velocity w, and
lessening of the energy transfer to small scales as measured by a dissipation efficiency
β = εV /εD, with εV the kinetic energy dissipation and εD = u3rms/Lint its dimensional
expression, w, urms the vertical and rms velocities, and Lint the integral scale. We
determine the domains of validity of such laws for a large numerical study of the unforced
Boussinesq equations mostly on grids of 10243 points, with Ro/Fr > 2.5, and with
1600 6 Re ≈ 5.4× 104; the Prandtl number is one, initial conditions are either isotropic
and at large scale for the velocity, and zero for the temperature θ, or in geostrophic
balance. Three regimes in Froude number, as for stratified flows, are observed: dominant
waves, eddy-wave interactions and strong turbulence. A wave-turbulence balance for the
transfer time τtr = Nτ2NL, with τNL = Lint/urms the turn-over time and N the Brunt-
Väisälä frequency, leads to β growing linearly with Fr in the intermediate regime, with a
saturation at β ≈ 0.3 or more, depending on initial conditions for larger Froude numbers.
The Ellison scale is also found to scale linearly with Fr. The flux Richardson number
Rf = Bf/[Bf + εV ], with Bf = N 〈wθ〉 the buoyancy flux, transitions for roughly the
same parameter values as for β. These regimes for the present study are delimited by
RB = ReFr2 ≈ 2 and RB ≈ 200. With Γf = Rf/[1−Rf ] the mixing efficiency, putting
together the three relationships of the model allows for the prediction of the scaling
Γf ∼ Fr−2 ∼ R−1B in the low and intermediate regimes for high Re, whereas for higher

Froude numbers, Γf ∼ R−1/2B , a scaling already found in observations: as turbulence
strengthens, β ∼ 1, w ≈ urms, and smaller buoyancy fluxes altogether correspond to a
decoupling of velocity and temperature fluctuations, the latter becoming passive.
[J. Fluid Mech. 844, 519-545 (2018), https://doi.org/10.1017/jfm.2018.192]

1. Introduction

Mixing, which takes place for a large domain of flow parameters in fully devel-
oped turbulence (FDT), in engineering and geophysical flows, has been analyzed ex-
tensively (Peltier & Caulfield 2003; Dimotakis 2005; Ivey et al. 2008). One central issue
is that of mixing efficiency, which can be defined in many ways (see Mashayek et al.
(2017) and references therein), for example as the ratio in the momentum equation of
the buoyancy flux to the rate of kinetic energy dissipation (see §4 for more details).
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For example, in the ocean, it affects chemistry and plankton dynamics, as well as the
global circulation and hence the climate on long time-scales (Ivey et al. 2008; McWilliams
2016). The mean circulation of the ocean and atmosphere is modified by a combination
of stratification and dissipation, but rotation can also play a role. In the oceanic context,
data indicates an enhanced vertical mixing that can be compared with the Osborn (1980)
model, stating that the adimensionalized diffusivity is proportional to the turbulence
intensity parameter, RI = εV /[νN

2], with an efficiency Γf = Bf/εV ≈ 0.2 as soon
as RI & 10 (see also Lindborg & Brethouwer (2008); Karimpour & Venayagamoorthy
(2015)); εV is the rate of dissipation of the kinetic energy EV , ν the kinematic vis-
cosity, Bf the buoyancy flux, and N is the Brunt-Väisälä frequency. Unsurprisingly,
though, there is evidence that this efficiency coefficient does depend on the intensity
of the turbulence within a stratified flow (Smyth et al. 2001; Ivey et al. 2008), and
exhibits temporal variability associated with secondary instabilities of Kelvin-Helmholtz
rolls (Mashayek & Peltier 2013), as well as a variation with Prandtl number (Smyth et al.
2001). Indeed, mixing efficiency is in part governed by secondary instabilities that develop
three-dimensional eddies at high Reynolds numbers. These eddies can dominate the whole
process irrespective of Froude number but in ways that may depend on other parameters
of the flow, e.g., in the presence or not of shear, leading to a lack of monotonicity in its
variation with the Richardson number (Peltier & Caulfield 2003). Thus, a one-parameter
modeling of such flows based on stratification alone may be insufficient.

The amount of kinetic energy available for dissipation at small scales in rotating
stratified turbulence (RST) is a crucial quantity for sub-grid scale parameterizations
in oceanic and climate models, and depends on the amount of energy that is transferred
to these small scales in the presence of inertia-gravity waves, through breaking at small
scales of the large-scale quasi-geostrophic (QG) balance (Lelong & Riley 1991; Staquet &
Sommeria 2002; Riley & deBruynKops 2003), and a lowering of the Richardson number
below some critical value. Wave-turbulence interactions allow for coupling to the mean
flow (Finnigan 1999); they have been measured in the stratosphere as well as in the upper
ocean and lead to vertical mixing and enhanced dissipation (see e.g., (Klymak et al. 2008;
van Haren et al. 2016)). Few studies have considered mixing in decaying rotating stratified
flows. Lagrangian diffusion in RST is studied in Cambon et al. (2004); with N/f taking
the values of 0.1, 1 and 10, as well as 0 and ∞, a reduced diffusivity is found in the
vertical, but not in the horizontal. The role of N/f , with f twice the rotation rate, as
a governing parameter for the intensity of lateral mixing with geostrophic adjustment
has also been stressed in Lelong & Sundermeyer (2005). Experimentally, it was shown
in Praud et al. (2006) that structures develop an aspect ratio proportional to f/N (see
also Waite & Bartello (2006); Kurien & Smith (2014) for direct numerical simulations for
the forced case): in RST, there is a progressive shift from a vertical scale due entirely to
stratification, the buoyancy scale LB = 2π

√
EV /N , to one corresponding to QG where

rotation and stratification are in balance with pressure gradients. Finally, Dritschel &
McKiver (2015) studied the influence of N/f on large-scale quasi-geostrophic balance;
they found it weak, the flows remaining balanced throughout the studied parameter
regime, although vertical velocity increases with f/N for Fr2 << Ro << 1.

It is in this context that we now analyze several sets of direct numerical simulations
(DNS) of decaying RST, motivated by atmospheric and oceanic applications, with
Reynolds numbers up to Re ≈ 1.85 × 104, an upper value comparable to that in the
Mesosphere and Lower Thermosphere (Liu et al. 2013). We show that three simple scaling
laws for the potential to kinetic energy ratio, the vertical to kinetic energy ratio, and the
effective dissipation coefficient together lead to the recovery of a well-known scaling for
mixing as a function of Froude number at high Reynolds numbers, and that these scalings
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persist even when significantly different initial conditions–i.e., those in quasi–geostrophic
balance– are used.

2. Problem setting

The Boussinesq equations, with constant rotation and stable stratification are:

∂tu +∇p+ u · ∇u = fu× ẑ −Nθẑ + νδu , (2.1)

∂tθ + u · ∇θ = Nw + κδθ , (2.2)

with u = (u, v, w) the incompressible velocity field, ∇ · u = 0, and p the pressure; θ
represents temperature (or density) fluctuations, in units of a velocity, since we want
to stress the energetics of these flows. These fluctuations are super-imposed on a stably
stratified background with a linear vertical profile θ̄(z) = θ0+z∂z θ̄, ∂z θ̄ < 0. Introducing
the buoyancy b = Nθ (note the choice of sign), with point-wise vertical flux b(x)w(x),
as well as the integrated buoyancy flux

Bf = 〈Nθw〉 , (2.3)

one recovers the more standard form of the equations in terms of b. N =
√
−(g/θ0)∂z θ̄

is the Brunt-Väisälä frequency, and ν = κ are the viscosity and thermal diffusivity.
The Boussinesq equations are integrated using direct numerical simulations. A cubic
box of n3p = 10243 points is used for 56 runs (see Table 1), with a linear dimension
Lbox = 2π, resulting in wave numbers in the range 1 6 k 6 kM = np/3 using a standard
2/3 dealiasing rule. All length scales defined below are thus expressed in terms of the
fundamental length Lbox = 2π, which of course can be rescaled to the physical problem
when necessary. Another smaller set of runs, at lower resolutions, is also analyzed (see
Table 2). The pseudo-spectral code we use, GHOST (Geophysical High-Order Suite for
Turbulence), is parallelized in a hybrid fashion with both MPI and Open-MP (Mininni
et al. 2011) and demonstrates scalability to in excess of 130,000 cores. It includes many
solvers for fluid and magnetohydrodynamic turbulence, and it now also has the capability
to simulate non-cubic geometry (Oks et al. 2018). GHOST has been tested in the purely
stratified case against the numerical results of Kimura & Herring (1996) for random
initial conditions, and of Riley & deBruynKops (2003) for the Taylor-Green flow.

For the runs of Table 1, the potential energy is initially zero, and initial conditions
for the initial velocity, with a non-zero vertical component, are isotropic, random and
centered on the large scales (2π/L0 = k0 = 2.5); energies are defined as:

EV =
1

2

∫
‖u(x)‖2d3x , EP =

1

2

∫
|θ(x)|2d3x , ET = EV + EP ,

ET being the total energy. They can also be written in terms of their respective isotropic
Fourier spectra, with

∫
EV,P (k)dk = EV,P . Similarly, the kinetic, potential and total

rates of energy dissipation are:

εV = ν

∫
‖ω(x)‖2d3x , εP = κ

∫
‖∇θ(x)‖2d3x , εT = εV + εP . (2.4)

Note that εV can be measured relative to its dimensional evaluation of kinetic energy
dissipation for a fully turbulent flow as:

β ≡ εV /εD , εD ≡ u3rms/Lint , urms = [
〈
|u|2

〉
]1/2 , Lint = 2π

∫
[EV (k)/k] dk∫
EV (k) dk

, (2.5)
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where Lint is the integral scale (Monin & Yaglom 1979). β is a key parameter of the
phenomenological and theoretical understanding of the interactions between waves and
turbulence (Zakharov et al. 1992), as also discussed in §3.3.

The governing dimensionless parameters of the Boussinesq equations measure the
strength of nonlinear interactions relative to dissipation, rotation and stratification; they
are the Reynolds (Re), Rossby (Ro) and Froude (Fr) numbers, defined as usual as:

Re =
urmsLint

ν
, Ro =

urms
fLint

, F r =
urms
NLint

, (2.6)

with the Prandtl number Pr = ν/κ taken equal to unity. The buoyancy Reynolds number,
the Richardson number, and the turbulent intensity are defined as:

RB ≡ ReFr2 , Ri ≡ [N/ 〈∂zu⊥〉]2 , RI ≡ εV /[νN2] . (2.7)

Ri is based on a shear time computed on vertical gradients of the horizontal wind, namely
τshear = [〈∂zu⊥〉]−1. All these parameters are discussed further in Appendices §9.1, §9.2.
In the presence of stratification, a variety of length-scales can be relevant (Thorpe 1987;
Mater & Venayagamoorthy 2014), e.g.

LB = 2π
√
EV /N , LEll = 2π

√
EP /N , `Oz = 2π

√
εV /N3 , (2.8)

or the buoyancy, Ellison and Ozmidov scales. In purely stratified flows, LB is the scale
for which the vertical Froude number becomes of order one (Billant & Chomaz 2001);
it measures the thickness of the vertical layers. On the other hand, the Ellison scale
corresponds to the vertical distance traveled by a particle of fluid before being completely
mixed, and it is thought to be significantly smaller than the integral scale in strongly
stratified flows, as we shall show later (see Fig. 6b). LB and LEll vary as 1/N , but differ
by a field-amplitude ratio,

√
EV /EP . Finally, the Ozmidov scale is the scale beyond

which isotropy is thought to be recovered together with a classical Kolmogorov range.

3. Global behavior and scaling

3.1. Overview of the runs

Runs with an emphasis on realistic parameters for the mesosphere and lower thermo-
sphere, and which overlap with the present data base, were investigated for the energy
partition between waves and slow modes and the link with kinetic-potential energy
exchanges in Marino et al. (2015b), as well as for parametric characteristic time-scale
variations in (Rosenberg et al. 2016) (see also Rosenberg et al. (2017)). Here, the runs on
grids of 10243 points cover the following parameter ranges (see Table 1): 0.11 6 Ro 6 41,
1985 6 Re 6 18590, 0.001 6 Fr 6 5.5, 0.02 < RB < 1.2 × 105 and 2.47 6 N/f 6 312.
Two purely stratified runs are included as well. Note that, even though the ratio in values
of Reynolds numbers across all these runs is close to ten, most runs are within a factor
≈ 4 of each other in Re, with as high a value as can be realized on the chosen grid, thus
breaking large-scale balance toward isotropization, as studied already in Herring (1980)
using a closure model of turbulence (see Pumir et al. (2016); Rubinstein et al. (2017)
and Iyer et al. (2017) for recent references).

Two other small series of runs at lower resolutions have been performed (see Table
2). The first study (Q runs) is focused on the role of initial conditions, taking now
geostrophically balanced fields at t = 0, which should radiate waves much less initially.
The second small set of (Z) runs deals with the variation of effective dissipation β defined
in equation (2.5) with Reynolds number at fixed N/f = 5, with Re varying by a factor
in excess of 10, between 1650 and 18590, when including runs of Table 1.
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All statistics are computed dynamically around the peak of dissipation, when the flow
is most developed and starts its self-similar temporal decay. This is in contrast to what
is done in Stretch et al. (2010), where the data for mixing is taken when more than
90% of the energy has dissipated, after roughly ten turnover times. Specifically, our data
is averaged on a number of outputs around the peak of enstrophy, covering a relative
variation in the amplitude of enstrophy of ≈ 2.5%. This results in using of the order
of 18 outputs on average for each run, with no more than 49 and no fewer than 6; the
physical time interval on which these averages were performed is of the order of a fraction
of a turn-over time. We find that urms and Lint do not vary much across the first large
parametric study, from 0.66 to 0.89 for the former, and from 1.39 to 2.78 for the latter.
Note that some of the runs tabulated in Rosenberg et al. (2016) have been removed from
the data set in Table 1, which has been reduced from 65 to 56 runs. This is because of
various factors: archiving issues in view of the large data base that was created several
years ago, or because the variation of enstrophy at peak was insufficient to satisfy the
averaging criterion, or because some of the data files were corrupted.

The accuracy of the computations is quantified through the ratio of the maximum
to the Kolmogorov dissipation wavenumber, kM/kη, with kη = [εV /ν

3]1/4; this is done
under the assumption that the small scales have recovered a Kolmogorov spectrum, i.e.
that the Ozmidov length scale is resolved, or for RB > 1, which is the case for the
majority of our runs. For all flows of Table 1, we have 0.39 6 kη/kM 6 1.3, with roughly
17% slightly under-resolved runs which all have N/f > 10. We have also checked that
the overall shape of the curves plotted in the figures did not depend on the resolution.

Strong activity develops at small scales, with layer destabilization, as found as well
by a number of authors in the purely stratified case. An example of such structures is
given in the visualizations found in Rosenberg et al. (2015) for a flow which corresponds
rather closely to some of the runs computed in this data base (specifically, run Id=11,
19, 33 and 43), but done on a grid of 40963 points, allowing for a substantially higher
Reynolds number. Prominent in this flow with N/f = 4.95, Fr ≈ 0.0242, Re ≈ 54000,
is the juxtaposition of large-scale eddies and an intense vortical activity at their rims in
what can be called vortex lanes. Such a complex small-scale flow corresponds to local
overturning instabilities, with local Richardson numbers well below 0.25 for a substantial
portion of the flow (see e.g. Figs. 10 and 11 in Rosenberg et al. (2015)).

In all the figures in the present work, different symbols are used for different binning,
mainly in Rossby number; stars/asterisks are used for runs with QG initial conditions
(ICs), whereas the hollow shapes are always for the θ(t = 0) = 0 ICs. Furthermore, the
sizes of all symbols refer to the resolution and Reynolds number (see caption of Fig. 1).

3.2. Energy ratios

We show in Fig. 1 the variation of central energetic quantities, as a function of Froude
number, with binning in Rossby number. The widths of the bins are chosen so as to
have approximately the same number of data points in each bin, as for all other figures.
The energy ratio rE ≡ EP /EV (left) varies roughly between 0.2 and 0.4, as long as the
velocity and temperature remain coupled through buoyancy, i.e. for Fr < 1. At high
Fr, EP /EV becomes negligible since the velocity is no longer constrained effectively by
the waves and we have a quasi passive scalar regime with θ(t = 0) = 0 for most of
the runs. The scaling in Fr−2 at high Fr, as advocated for oceanic turbulence in Wells
et al. (2010) (see also Maffioli et al. (2016) for purely stratified flows), may be present as
well, although we have a scarcity of points in that domain. We thus conclude that in the
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Table 1. Nomenclature of the runs performed on grids of 10243 points, with Id, Fr,Ro and
Re the identification of runs and their Froude, Rossby and Reynolds numbers, the runs being
ordered by Fr (see also Rosenberg et al. (2016)). Initial conditions are centered on the large
scales and are isotropic for the velocity field, and zero for the temperature. Runs 62 to 65 are
purely stratified. Note that the 9 runs marked with a star are not included in the present study
(see §3.1); they are specifically runs Id=4, 8, 10, 21, 30, 38, 50, 62 and 63.

Id Fr Ro Re —— Id Fr Ro Re —— Id Fr Ro Re

1 0.0013 0.129 10905 2 0.0023 0.115 9895 3 0.0061 0.120 10680
4* 0.0064 0.633 9270 . 5 0.0073 0.225 13945 . 6 0.0116 0.305 14680
7 0.0119 2.98 13500 . 8* 0.0127 0.635 8930 . 9 0.021 0.147 11080

10* 0.0215 0.464 13450 . 11 0.022 0.116 10980 . 12 0.0262 4.58 10980

13 0.028 0.14 10720 . 14 0.030 9.4 10520 . 15 0.033 4.58 13020
16 0.036 9.1 13200 . 17 0.038 0.140 10530 . 18 0.041 0.607 9840
19 0.042 0.211 14840 . 20 0.045 3.02 12790 . 21* 0.047 9.23 8880
22 0.048 4.5 12370 . 23 0.049 4.57 18590 . 24 0.049 9.2 18550

25 0.049 9.3 12770 . 26 0.057 0.28 13730 . 27 0.057 0.14 9750
28 0.061 3.03 11650 . 29 0.062 0.61 9640 . 30* 0.067 920 13750
31 0.067 9.2 11730 . 32 0.073 3.04 12210 . 33 0.086 0.43 12110
34 0.088 0.49 8525 . 35 0.09 4.6 11010 . 36 0.10 9.3 7720

37 0.10 6.9 8200 . 38* 0.10 0.49 8200 . 39 0.10 9.4 10750
40 0.10 7.0 10750 . 41 0.10 7.1 16230 . 42 0.13 0.33 7560
43 0.14 0.67 7600 . 44 0.14 0.98 7440 . 45 0.14 1.4 7330
46 0.16 9.8 9580 . 47 0.19 38 2520 . 48 0.20 5.0 8720

49 0.20 10.1 8760 . 50* 0.21 41 6270 . 51 0.26 10.3 8580
52 0.34 0.84 5020 . 53 0.38 11.4 7120 . 54 0.40 42.2 1980
55 0.47 1.2 4500 . 56 0.55 11.1 7140 . 57 0.6 1.5 5010
58 0.89 2.2 4710 . 59 1.25 12.5 6470 . 60 2.7 12.5 4020

61 5.5 13.7 4260 . . . . . . 62* 0.012 ∞ 15225
63* 0.027 ∞ 11800 . 64 0.07 ∞ 11490 . 65 0.20 ∞ 8800

intermediate regime of wave-vortex interactions:

θrms ∼ urms . (3.1)

The result rE ≈ 1 from below (see also Mater et al. (2013)) is compatible with the
experimental, observational and numerical data compiled in Zilitinkevich et al. (2008).
We also find εP /εV ≈ 1/3, as measured in the stratosphere (Lindborg 2006). In fact, such
a quasi-equipartition of energy is present in a large range of wave-numbers, as shown in
Marino et al. (2015b) in the forced case. It immediately implies that the Ellison scale
LEll goes as LintFr, for which in fact the scaling is excellent (see Fig. 6b below), and
that LEll ∼ LB ∼ urms/N . Note also that a pattern is discernible in EP /EV with,
on average, higher relative vertical velocity and higher relative potential energy at low
Rossby number. As a function of Reynolds number, rE decreases on average for Re larger
than ≈ 104, because of the initial conditions (not shown).

The ratio of vertical to total kinetic energy
〈
w2/2

〉
/EV is given in Fig. 1(b). At low

Fr,RB , with weak nonlinear mode coupling, its high value for the runs of Table 1 is
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Table 2. Parameters for two other sets of DNS identified by Id and ordered, for each set,
by their Froude number Fr, with Ro and Re the Rossby and Reynolds numbers computed at
the time of maximum of enstrophy for each run. RB = ReFr2, and n3

p is the total number of
grid points for each run. In runs Zx, x = [1, 8], the initial conditions are large-scale isotropic
and random for the velocity field, and zero for the temperature as for the runs of Table 1,
whereas in the Qx runs, x = [9, 17], initial conditions are in geostrophic balance for velocity and
temperature fluctuations. For both sets, N/f ≈ 5, a value close to what is found in the ocean.

Id np Fr Ro Re RB . Id np Fr Ro Re RB

Z1 256 0.042 0.208 3458 6.1 . Z2 512 0.063 0.316 6202 24.6
Z3 256 0.064 0.321 3358 13.7 . Z4 512 0.064 0.321 6643 27.2
Z5 128 0.065 0.325 1694 7.1 . Z6 256 0.097 0.487 2951 27.8
Z7 256 0.651 3.255 1657 702 . Z8 256 3.296 16.481 1706 18578

Q9 256 0.007 0.036 5221 .25 . Q10 256 0.015 0.073 4973 1.1
Q11 256 0.039 0.197 3706 5.6 . Q12 128 0.067 0.335 1617 7.2
Q13 256 0.075 0.373 3130 17.6 . Q14 512 0.076 0.382 6278 36.3
Q15 256 0.111 0.555 2537 31.2 . Q16 256 0.577 2.817 2003 667
Q17 256 1.290 6.451 2008 3341 .

due to initial conditions, taken with a rough equipartition between velocity modes in
all directions, in order to let anisotropy develop dynamically. A similar reduction in
vertical velocity for rapidly rotating flows in the absence of stratification was observed in
laboratory experiments (van Bokhoven et al. 2009), together with a weaker dissipation.
In an intermediate range of parameters, around Fr ≈ 0.1, there is a small plateau, the
stratification being strong enough to prevent most of the vertical motions; so,

wrms / urms . (3.2)

As turbulence strengthens with increasing Fr, vertical motions develop slowly after that
plateau, with an approximate scaling

〈
w2
〉
∼
〈
u2⊥
〉
Fr1/4. The origin of such a weak

scaling is not clear, and no scaling is found in terms of N/f . We recall here that the
vertical velocity wêz is also a direct measure of wave activity since, in a wave-vortex
decomposition, as performed e.g. in Bartello (1995); Herbert et al. (2016), vortical modes
have vanishing w. The presence of rotation facilitates vertical motions in the form of
upward propagating inertial waves along Taylor columns that would form if there was no
stratification, as clearly observed, including when the small scales develop strong vorticity
(Davidson et al. 2006; Mininni et al. 2012): the vertical velocity is leaving a trace of the
influence of rotation on the system and its increase is consistent with a wave-vortex
analysis. The scaling in equation (3.2) may seem unexpected. Dimensional analysis using
incompressibility at large scale would predict wrms/urms ∼ Fr, ruled out by the data
with isotropic ICs, but in agreement with the data with QG initial conditions at low
Froude numbers, with this energy ratio reaching the value obtained with the isotropic
ICs for Fr ≈ 0.1. We know that strong vertical velocities develop for intermediate Fr
when the buoyancy and nonlinear terms balance each other, leading to a “saturation”
vertical energy spectrum E‖ ∼ N2k−3‖ . The model developed in Rorai et al. (2014),

adding the buoyancy flux to a Vieillefosse description of intermittency for FDT, leads to
E‖ ≈ EP ≈ EV under the hypothesis that the characteristic vertical scale is the buoyancy
scale. In these intermittent regions identified by low Richardson numbers, high vertical
velocities appear, due to strong turbulent stirring leading to overturning of layers. Note
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Figure 1. (Color online) Variation with Froude number of the ratio of potential to kinetic energy
(a), of vertical to kinetic energy (b), and of the rate of kinetic energy dissipation compared to its
dimensional evaluation, β = εV /εD (c). Colors/symbols indicate binning in Rossby number for
all runs: blue triangles for 0 < Ro 6 0.3, black circles for 0.3 < Ro 6 2.9, filled green diamonds
for 2.9 < Ro 6 6.0, red squares for 6.0 < Ro 6 10.0, and magenta inverted triangles for Ro > 10
(see insert). The runs of Table 2 are indicated either by a star for those with quasi-geostrophic
initial conditions (Q runs), or by a hollow symbol for the runs with θ(t = 0) = 0; their relative
size is proportional to viscosity, thus inversely proportional to Re and to numerical resolution.
We define the three dynamical regimes as: I for strong waves (Fr . 0.01), II for eddy-wave
interactions (0.01 . Fr . 0.2), and III for strong stratified turbulence (Fr & 0.2), as indicated
in (c); note the quasi-linear scaling of β with Fr in regime II, namely β ∼ Fr0.91.

that it is argued in Maffioli & Davidson (2016) that gradients are much larger in the
vertical, or that w is really at small scale. Thus, these authors advocate

〈
w2
〉
∼ εV /N .

With εV ∼ εDFr (see §3.3 below), this leads again to w/u⊥ ∼ Fr. On the other hand,
in their paper, β is viewed as a constant denoted Ak < 1, independent of dimensionless
parameters, so their estimate is rather w/u⊥ ∼ Fr1/2, unlike our data at high Fr.

3.3. Effective versus dimensional dissipation and the three regimes of RST

The dissipation efficiency of rotating stratified flows β is shown in Fig. 1(c) as a function
of Fr; it clearly displays three regimes. For small Fr up to Fr ≈ 0.01, εV is low and
constant. Similar low dissipation efficiency, of the order of a few percents, is obtained for
runs corresponding to the Upper Troposphere and Lower Stratosphere region, with low
Froude numbers, as analyzed for example in Paoli et al. (2014) using a sub-grid model.
We find that, above Fr ≈ 0.01, β grows quasi-linearly with Fr, with a least-square fit
giving a slope of 0.91 after which β saturates, for Fr & 0.2. Thus,

β = εV /εD ∼ Fr [Intermediate regime, II ] , (3.3)

thereby defining the three dynamical regimes of RST, namely I, II & III, ordered by
increasing Fr. Such a scaling is also found when examining the small-scale energy flux in
the forced case in the presence of an inverse cascade (Marino et al. 2015a). β saturates
at a value close to unity for highly turbulent flows at higher Froude numbers, as found
as well in Maffioli & Davidson (2016), although their values at peak of enstrophy are
a bit higher. It may be related to the fact that they compute in boxes of small aspect
ratio, between 1/4 and 1/6, a geometry that can favor vertical gradients and shear, and
which can lead to a more active turbulence, as found in Oks et al. (2018). When the
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Figure 2. (Color online) Variation of β = εV /εD (a) and εD = u3
rms/Lint (b) with turbulent

intensity RI = εV /[νN
2] = βRB . In (c) is shown Ri1/2 ≡ Nτshear as a function of the buoyancy

Reynolds number RB = ReFr2, with τshear = 〈∂zu⊥〉. All plots have binning in Rossby number,
and symbols are as described in the caption of Fig. 1. The scaling Nτshear ≈ R−0.56

B extends
through regimes I & II with lower RB and Fr, and possibly regime III.

turbulence strengthens, so does the direct energy cascade through baroclinic instability,
frontogenesis and nonlinear coupling of eddies (McWilliams 2016). It should finally be
noted that we do not expect actual transitional values of β, between regimes I & II, and
II & III, to be similar for similar control parameters in different flow geometries, but we
do expect the scaling β ∼ Fr to hold, as shown here contrasting isotropic versus QG
initial conditions (see also the dimensional argument in the Appendix indicating how the
transfer time to small scales is moderated by the stratification).

If we now examine the variations of β with RI = εV /[νN
2], we see in Fig. 2(a) that we

again have good scaling throughout, with β ∼ R1/3
I ∼ β1/3R1/3

B . It is easy to show that

this is compatible with equation (3.3), since β ∼ R1/2
B ∼ Fr, omitting a dependency in

Re1/3, although it appears clearly in Fig. 2 that, at fixedRI and lowerRe, β is measurably
larger since Fr is larger. This indicates that care must be taken when interpreting data as
a function of dimensionless parameters. In RB , the transitions between the three regimes
occur respectively for ≈ 2 and ≈ 200. Such values are relevant for example in the ocean
thermocline, where RB ≈ 10 − 100 (Fleury & Lueck 1994), as well as in lakes in which
an average for RB is ≈ 200 (Bouffard & Boegman 2013).

The dimensional kinetic energy dissipation εD (Fig. 2b) is constant across parameters,
and across initial conditions, except for very small or large Fr values. A slight trend
towards smaller values at higher RI , which can be attributed to smaller rms velocities, is

discernible. Finally, we show in Fig. 2(c) that Ri1/2 ∼ R−1/2B , a scaling compatible with
Ri ∼ Fr−2 at constant Reynolds number. At low Fr, this relation gives the strength
of vertical gradients (slanted because of rotation), and at higher Fr, it indicates a
progressive return to isotropy and to only a single time-scale determining the dynamics,
transfer and dissipation of such turbulent flows. Note that the three results in equations
(3.1–3.3) may not be entirely new but, taken together, they define the key ingredients
for establishing the scaling of the mixing efficiency which is discussed in §4.

4. Mixing and dissipation

4.1. Definitions of mixing efficiency and flux Richardson number

Irreversible mixing is found in the laboratory to be triggered by merging Kelvin-
Helmholtz billows (Patterson et al. 2006), highly unstable as Re increases. In the absence
of rotation, parameter space has been separated into three regions in terms of Fr and
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Figure 3. (Color online) Variation with Froude number of the flux Richardson number Rf
and of the mixing efficiency Γf (a,b), both defined in equation (4.1), as well as of the effective
diffusivity κρ/κ (c), with κρ = N−1 〈wθ〉. Binning is performed in Ro (see Fig. 1 for symbols).
A transition at Fr ≈ 0.02 is seen in all three plots. Scalings are given as indications.

Re (Luketina & Imberger 1989): for small Re and Fr, waves are dominant and there
are no turbulent motions, whereas for high Fr and Re, isotropic turbulence prevails. The
intermediate region with roughly Fr 6 1, RB > 10 is where turbulence is anisotropic and
strongly interacting with waves. The data on which these conclusions are based comes
from the analysis of turbulent plumes active in tidal estuary flows (Stillinger et al. 1983;
Stacey et al. 1999). We find similar transitions with mild rotation, as shown in §3.3.

In terms of the temporal evolution of vertical kinetic and potential energy density, one
is led to compare the buoyancy flux Bf = N 〈wθ〉 with the dissipation rates, the Coriolis
force not affecting the energy balance. Performing space-averaging, one can write:

DtEV = −Bf + εV , DtEP = Bf + εP .

In order to quantify the relative magnitudes of these terms, several expressions have
been introduced in the literature. Concerning the momentum equation, one traditionally
defines the flux Richardson number Rf and its associated mixing efficiency Γf as:

Rf =
Bf

Bf + εV
, Γf =

Rf
1−Rf

=
Bf
εV

. (4.1)

The functional variation of Rf with gradient Richardson number is central to numerical
studies of geophysical flows. The mixing efficiency Γf is singular for Rf = 1, i.e. for
fully mixed potential and kinetic modes (see Mashayek & Peltier (2013); Salehipour
& Peltier (2015); Mashayek et al. (2017) for a discussion on the definitions of mixing
efficiency). This corresponds to negligible kinetic energy dissipation, i.e. a limit of zero
Froude number. As we shall see in Fig. 3, Γf does reach high values at low Fr, in excess
of 103. Many recent works indicate variations with parameters as Re grows.

4.2. Mixing and effective diffusivity as a function of parameters

We evaluate Γf at peak of dissipation, whereas in Stretch et al. (2010), it is computed
as the ratio of two time integrals after more than 90% of the energy has dissipated. Since
energy decay in turbulence is self-similar, these two methods should lead to comparable
scalings. We show in Figs. 3(a,b) Rf and Γf as a function of Froude number. At low Fr,
εV is negligible compared to Bf , and Rf ≈ 1. A sharp transition occurs for Fr ≈ 0.02,
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Figure 4. (Color online) (a): Variation of mixing efficiency Γf with Reynolds number, with
binning in Froude number (see insert). (b): Variation with Fr of the ratio of the vertical flux of
horizontal velocity to the vertical flux of buoyancy, with binning in Rossby number. The size of
symbols for both plots is described in the caption of Fig. 1.

with Rf decreasing continuously thereafter, and no visible saturation. The decline in Rf
begins in the intermediate range in which waves and vortices interact strongly. Similarly,
Γf shows a transition for Fr ≈ 0.02, with a change in slope from Γf ≈ Fr−2 to ≈ Fr−1,
as Fr grows (approximate scalings), and with a variation of several orders of magnitude.
At higher Fr (regimes II & III), a power-law scaling seems likely, as for Rf . The variation
of Rf with Richardson number mirrors its variation in terms of Fr (not shown). Another
example of strong variation of Γf is found in Bluteau et al. (2013) where Γf = 0.2 is only
valid in the range 7 < RB < 100, whereas we find it for 100 . RB . 1000.

The overall variation of Γf with Fr and RB is similar to that found in the absence of
rotation but with shear (Mater & Venayagamoorthy 2014). These authors further note
that the centroid of such a curve depends on what flows are studied, as for example in the
data of Lozovatsky & Fernando (2013) where the centroid is shifted to higher RB . This
presents a challenge, since parameterization schemes are mostly based on DNS, which
may still be at too low a value of RB , and since using RB implies studying variations in
terms of both stratification (through Fr) and of turbulence (through Re). The variations
with Reynolds and buoyancy Reynolds numbers are discussed further in §7.

In Fig. 3(c) we plot the effective diffusivity κρ, relative to the molecular diffusivity κ.
It is proportional to the buoyancy flux Bf . Taking the notation in Ivey et al. (2008):

κρ = Bf/N
2 , κρ/κ = 〈wθ〉 /[Nκ] ; (4.2)

κρ is comparable to κ at low Fr, and its increase with Fr is close to a linear variation,
a least-square fit giving κρ/κ ≈ Fr0.97. Finally, a saturation begins to occur at high Fr.
This behavior can be interpreted as being due to an increase in buoyancy flux because of
more vigorous stirring whenRB increases, at relatively constant Re. When comparing the
high-Fr values of κρ/κ to the model proposed in Barry et al. (2001), a rough agreement is
obtained. Similarly, when examining a compilation of observational data for both salinity
and temperature in the ocean together with numerical data for purely stratified flows,
it is found in Bouffard & Boegman (2013) that a transition occurs in κρ, at RB ≈ 100,
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Figure 5. (Color online) Variation with N/f = Ro/Fr of the buoyancy flux Bf = 〈Nwθ〉 (a),
and of the dissipation efficiency β = εV /εD (b), with binning in Ro (see insert); symbols are as
in Fig. 1. For a given N/f , both can take a large range of values.

between a R3/2
B and a R1/2

B scaling (see also Shih et al. (2005) for the latter). This
enhancement of dissipation and of transport coefficients, such as anomalous diffusivity,
is expected in turbulent flows as shown in numerous studies of FDT (Ishihara et al.
2009), as well as in the strongly stratified case (Ivey et al. 2008). In this latter instance,
it is probably due to strong intermittency, a signature of strongly stably stratified flows
(Rorai et al. 2014), such as in the planetary boundary layer (Finnigan 1999), or in the
ocean (D’Asaro et al. 2011).

We show in Fig. 4(a) the mixing efficiency Γf as a function of Reynolds number.
Around Re ≈ 104, which covers many of the runs of Table 1, Γf takes on a variety of
values corresponding to how strongly the flow is stratified, with variations in excess of
1000. However, at lower Re (for most of the runs of Table 2), Γf remains at lower values,
the peak in Γf being linked to the development of small-scale instabilities as Re and RB
grow. Finally, another measure of the small-scale mixing efficiency of a flow is the ratio of
the vertical fluxes of horizontal velocity to that of temperature fluctuations, as analyzed
in Zilitinkevich et al. (2013). It is shown in Fig. 4(b) as a function of Fr; no clear scaling
emerges although one could advocate a Fr−1 decrease for regimes II and III. Also, this
ratio appears to be higher in the intermediate regime, on average.

5. The combined roles of rotation and stratification

The addition of rotation leads to the propagation of inertia-gravity waves whose
dispersion relation depends on N/f . Thus, the atmosphere, with N/f ∼ 100, and the
ocean where N/f . 10 may differ in their statistical properties. For all runs of this paper,
N/f > 2.5, so that stratification dominates. It is thus not surprising that the classical
picture of mixing in stratified flows has not been changed in a significant way when weak
rotation is included but in the absence of scale separation and of forcing. We do see
an effect of rotation on the magnitude of the potential energy (see e.g. Fig. 1a), strong
rotation altering the large scales where the energy is contained. It was shown in Marino
et al. (2015a) that rotation and stratification play complementary roles in the relative
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strength of the direct and inverse constant-flux energy cascades in the forced case: the
small-scale cascade is weaker the smaller the Froude number, and conversely the large-
scale cascade is stronger the smaller Ro is, in both cases affecting the effective dissipation
of energy in the small scales and thus, presumably, the mixing properties of such flows.
For the flows of Table 1, all micro Rossby numbers, Rω = ωrms/f , are larger than 3.1,
with Ro > 0.11. Thus, the small-scale vorticity created by the nonlinear dynamics of the
flow, including in the presence of strong waves, is dominant at small scale, compared to
the imposed rotation; note that such values for Rω are plausible for geophysical flows.

Figs. 5(a,b) give the variations with N/f of the buoyancy flux Bf and of the dissipation
efficiency β. At a given N/f , there is less buoyancy flux the higher the Rossby number,
and for a given bin in Ro, Bf is larger the higher N/f : as the Froude number increases,
the buoyancy flux decreases. The efficiency of dissipation is higher the higher the Rossby
number (Fig. 5b), again at fixed N/f . Perhaps the scaling of β with Fr is somewhat
modified by rotation, leading to the slightly sub-linear law observed in Fig. 1(c): there
may be less direct energy transfer for strong rotation, as is observed in the forced case
(Marino et al. 2015a), and thus it takes a higher Froude number to reach a given level of
dissipation. A clear effect of the Rossby number on dissipation in RST was also shown
in the forced case in Pouquet et al. (2017).

Thus, the absence in the overall statistical properties of clear scaling in Ro simply shows
that the energy transfer to the small scales is dominated by a combination of stratification
and turbulence. However, the primary purpose of this study is not to examine the role
of rotation directly. Such a study would be helped by analyzing flows with N/f < 1,
a parameter range which is relevant neither to the atmosphere nor to the ocean. For
N/f > 1, the most important role of rotation in such flows is the triggering of an inverse
cascade of energy to the large scales, attenuating the energy transfer to the small scales
(Pouquet & Marino 2013; Marino et al. 2015a; Pouquet et al. 2017). In the absence of
forcing and of scale separation, such an inverse cascade cannot develop in general.

6. The Ellison scale and a generalized mixing efficiency

Similarly to characteristic time scales, one can also examine characteristic length scales.
A comparison of the Thorpe and Ellison scales in stratified turbulence was performed
in Mater et al. (2013) (see also Dillon (1982)). The Thorpe scale LT corresponds to the
vertical distance a parcel of fluid must be moved to produce a stable density profile,
suppressing inversions, and as such gives an idea of the size of local mixing structures in
the fluid; it was computed as a function of RB for the purely stratified case in Métais
& Herring (1989). In Mater et al. (2013), LT is found to be strongly linearly correlated
with the Ellison scale LEll. Furthermore, the Thorpe length normalized by the Ozmidov
scale is found to vary as Fr−3/2 for Fr > 1 and as Fr−1/2 for Fr < 1, the latter with
an excellent scaling for 0.05 6 Fr 6 0.3. Thus, LT ∼ LB for Fr < 1, whereas LT ∼ Lint
for Fr > 1. In the latter case, stratification is weak and structures in density follow the
integral length scale, whereas in the former case of strong stratification, density changes
occur over the vertical layer width, i.e. the buoyancy scale. Note that this also implies
that, at small Froude number, LT /Lint ∼ Fr and that EP ∼ EV (Mater et al. 2013).

In Fig. 6 are shown the variations of LEll normalized by the Ozmidov scale (a) and
integral scale (b), as a function of N/f (a), and of Fr (b), with binning in Rossby
number. We conclude that the Ellison scale is larger, the larger Fr is, as expected. As a
function of Froude number, LEll/`Oz decreases, in a linear fashion for the intermediate
regime, and with little dispersion among the runs (not shown). One could argue that
with `Oz = [εV /N

3]1/2, for small Froude number, `Oz/Lint ∼ Fr2 in the intermediate
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Figure 6. (Color online) Ellison scale LEll = θrms/N relative to the Ozmidov scale `Oz (a)
or the integral scale Lint (b), as a function of N/f (a), and of Fr (b). In (c) is given `Oz/Lint
as a function of Fr. All plots have binning in Ro (and see caption of Fig. 1). Note the small
dispersion in the scaling of length scales versus Froude number (approximate scalings are given).

regime in which β ∼ Fr, whereas for high Fr, `Oz/Lint ∼ Fr3/2, in rough agreement
with scaling laws, as indicated in Fig. 6(c) giving `Oz/Lint = f(Fr) with least-square
fits of respectively 1.93 and 1.48, the transitions taking place for Fr ≈ 0.01 and Fr ≈ 0.2,
in agreement with the transitions for β (see Fig. 1c).

On the other hand, the linear variation LEll/Lint ∼ Fr in Fig. 6(b), with a least-
square fit giving ∼ Fr1.04, is a direct consequence of the scaling law θrms ∼ urms. The
only transition in this power-law behavior takes place for Fr = O(1), in which case
LEll . Lint, with LEll remaining smaller than Lint because of the 1/k factor in the
definition of Lint. There is also an indication of a slight saturation at low Fr.

Another measure of the relative importance of terms in the Boussinesq equations is
defined through the ratio of the two dissipative terms for momentum and temperature,
which can differ even at unit Prandtl number. We use the following definitions (see also
Osborn (1980); Venayagamoorthy & Koseff (2016)):

R∗f =
εP
εT

, Γ ∗f =
R∗f

1−R∗f
=
εP
εV

, (6.1)

with εT = εV + εP already defined in equation (2.4). Γ ∗f , called the irreversible mixing
efficiency in Mater & Venayagamoorthy (2014), relates to the partition of energy dissipa-
tion between the kinetic and potential modes, i.e. to the importance of the waves versus
nonlinear eddies at small scales. R∗f is shown in Fig. 7(a) as a function of Richardson
number Ri. In the first regime of strong waves (Ri > 1), it is small since the influence
of initial conditions prevails, and similarly for the low Ri regime in which the potential-
kinetic exchanges are inefficient, leading to an abrupt decrease in R∗f . For intermediate

values of Ri, almost from 10−3 to roughly 10, R∗f stays rather constant in a range between
0.3 and 0.4. Note also that this data is consistent with the variations of εV and εP with
Fr studied in Sozza et al. (2015) in a thin layer box.

We finally examine in Fig. 7(b) the variations of Γ ∗f with Rif2/N2 = [τshearf ]2, thus
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Figure 7. (Color online) Potential energy dissipation normalized by total dissipation,
R∗f = εP /εT , vs. Richardson number Ri (a), and Γ ∗f = εP /εV vs. Rif2/N2 = [τshearf ]2 (b).
Binning is performed in Ro (see inserts, and caption of Fig. 1).

combining the effects of stratification and rotation. A rather small variation of Γ∗ ≈ 0.5
is obtained, with the low points corresponding to small f . There is a slow decline for
small Ro and large Ri which may be related to sensitivity to initial conditions at low Fr:
in regime I, εV ≈ εP is compatible with EP ≈ EV since, when the waves are strong to
moderate, there is little nonlinear transfer and the dissipation is mostly contained in the
large scales. Also, the highest value of Γ ∗f ≈ 0.7 for Fr ≈ 0.01, corresponds obviously to
flows with comparable kinetic and potential energy dissipation. This is likely associated
in that regime to strong waves and intermittent bursts which are due to wave breaking
which temporarily relax the flow to a quasi-equipartition of kinetic and potential energies
across a wide range of scales, the more so the smaller the scale, as observed for example
in Rosenberg et al. (2015). Our results corroborate those of Venayagamoorthy & Koseff
(2016): different measures of mixing, such as Γf or Γ ∗f , give rather equivalent information,
although it is not clear if this result will persist in the presence of forcing, at much higher
buoyancy Reynolds numbers.

7. Role of Reynolds number

The variation of the intensity of the turbulence in rotating stratified flows can be
measured by the Reynolds number, as well as by the buoyancy Reynolds number. Having
high-enough Re and RB is known to be important for turbulent flows, to allow for
coherent structures to develop including in the presence of strong stratification (see e.g.
Laval et al. (2003)). However, from a numerical point of view, having high Re,RB for
low Fr is quite challenging and remains a goal for the near future. When taking the data
for the runs of Tables 1 and 2 for a possible scaling of the dissipation efficiency β with
RB , we observe some scatter (see Fig. 8a). Specifically, we see that in the intermediate
regime (RB between 10 and a few 100), at fixed RB , there is a measurable variation
in β, by contrast to regimes I, and to a lesser extent regime III. This scatter in regime
II is larger than when examining variations with the Froude number itself, irrespective
of the rotation (see Fig. 1(c)). In Fig. 8b, we see that overall, there is markedly less
scatter when plotting β as a function of the parameter [NTL]−2 as discussed in Mater



16 A. Pouquet, D. Rosenberg, R. Marino and C. Herbert

10
-5

10
0

10
5

10
10

Rb

10
-2

10
-1

10
0

[ 0.0, 0.3]

[ 0.3, 3.0]

[ 3.0, 6.0]

[ 6.0,10.0]

[10.0, Inf](a)

10
-10

10
-5

10
0

10
5

(NT
L
)

-2

10
-2

10
-1

10
0

 slope=0.25

(b)

10
3

10
4

10
5

Re

10
-2

10
-1

10
0

(c)

Figure 8. (Color online) Dissipation efficiency β = εV /εD as a function of (a) RB ; (b) [NTL]−2;

(c) Re (see §9.1 for a discussion of NTL = NEV /εV ). Note the scaling β ∼ [NTL]−1/2 in (b).

& Venayagamoorthy (2014) (see Appendix §9.1), with TL ≡ EV /εV the effective kinetic
energy transfer time. Expressing εV = βεD, we see that NTL = [βFr]−1; thus, the choice
of the abscissa in Fig. 8(b) is to be able to make a direct comparison with RB which
scales as Fr2 at fixed Re. We also note that the regime transitions in terms of Richardson
number occur for Ri ≈ 0.1 and Ri ≈ 10 (not shown).

The difference in data points scatter between Fig. 8(a,b) can be attributed to the
variations with Reynolds number, as displayed in Figure 8(c). It shows clearly that the
Reynolds number alone does not allow for predicting the effectiveness of dissipation,
and consequently that of mixing efficiency, with a wide scattering of data points for
β, irrespective of the initial conditions tested in this paper. However, we see that at a
given Re, QG initial conditions lead to a substantially lower dissipation efficiency. We
further note that Reynolds numbers are still quite low for these runs, when comparing
with geophysical flows. Similar conclusions can be drawn for the variation with Re of the
ratio of the Ellison scale normalized by the integral scale (not shown). Finally, in order
to connect with laboratory experiments in particular, it might be useful to study more
in depth regime I at low RB , so that one can investigate the possibility of a dependence
on Re of the dissipation efficiency β because of viscous coupling between layers (Riley &
deBruynKops 2003; Brethouwer et al. 2007).

8. Discussion, conclusion and perspectives

A parametric study of mildly rotating stratified turbulence without forcing leads to a
rather systematic quantitative assessment of its mixing and dissipative properties which
depend on the Froude number provided the Reynolds number is high enough. Three
different regimes are observed, in agreement with previous studies of purely stratified
flows. These regimes are also identifiable in terms of the interaction parameter RI .
The three basic laws illustrated in Fig. 1 are compatible with an intermediate regime
characterized by the dynamics of waves and eddies interacting nonlinearly weakly, even
though the full weak turbulence formalism leading to a set of closed integro-differential
equations in terms of energy spectra cannot work for stratified flows when the Froude
number in the vertical of order unity (Billant & Chomaz 2001). It is thus somewhat
remarkable that the simple phenomenology embodied in the parameter β ∼ Fr, i.e. the
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efficiency of the turbulent dissipation, based on a ratio of characteristic time scales (see
equation (9.4)), may still apply on average for such flows.

Together with θrms ∼ urms and a scaling for w/u⊥ going as a quasi-constant at
intermediate Fr, these laws imply that the mixing efficiency Γf ∼ Fr−2 as soon as Fr >

0.01, and Γf ∼ Fr−1 ∼ R−1/2B for Fr . O(1). We emphasize that the actual values of the
control parameter for the change of regimes may depend on the geometry and topology
of such flows. In the intermediate regime, β ∼ Fr, showing the connection between
buoyancy flux and nonlinear transfer leading to dissipation, with Γfβ

2 ∼ 1. Note that,
withRI ∼ FrRB , this scaling law in the intermediate regime differs when expressed using
RI . Finally the mixing efficiency measured in terms of the ratio of potential to kinetic

energy dissipation, is shown to be rather constant. The scaling Γf ∼ Fr−1 ∼ R−1/2B ,
in regime III at high Fr and RB , simply stems from the decoupling of the velocity and
temperature, together with β ≈ 1, leading to Bf ∼ N .

Note also that Γf and Rf seem to be more sensitive to parameters with a clear indi-
cation of the three physical regimes in terms of Fr, RB or RI , than either 〈wu⊥〉 / 〈wθ〉
or EP /EV . Furthermore, if w2/u2⊥ ∼ Fr as advocated in Maffioli & Davidson (2016),
then the phenomenological arguments developed in our paper lead straightforwardly to

Γf ∼ R−3/4B , which cannot be entirely ruled out given the scatter in data points for
Γf , although it is not compatible with the data of Fig. 1(b) with wrms/urms ∼ 1. We
verified that taking as initial conditions geostrophically balanced flows did not alter our
conclusions; similarly, having non-zero potential energy, but still unbalanced and with
w 6= 0 ICs, we obtained the same fundamental scalings.

Local variations in Richardson number may trigger local density micro-structures, as
observed in the ocean (Phillips 1972; Peltier & Caulfield 2003). If the agreement of our
results, without shear but with rotation, with previous results mainly for sheared purely
stratified flows is striking, it remains to be seen whether it will persist in the presence of
forcing, i.e. in the presence of a strong inverse cascade. We note that Waite & Bartello
(2006) already observed three regimes in the presence of forcing, with a switch for the
energy cascade from predominantly inverse to direct.

Within the confines of the present parametric study with a wide range of buoyancy
Reynolds numbers, Γf is in fact rather variable, as in the purely stratified case. Rotation
is essential for the existence of a dual constant-flux cascade of energy, implying two-
dimensional (horizontal) lateral mixing as well as vertical. If such mixing occurs in
proportion to the ratio of the inverse to direct cascade, it will scale as [RoFr]−1 (Marino
et al. 2015a). In the absence of forcing, with large-scale initial conditions and with
rotation weaker than stratification, all effects associated with the presence of rotation are
severely quenched. As discussed in Mashayek & Peltier (2013), shear can induce vortex
pairing at moderate Reynolds number, reinforcing the potential for an inverse cascade
in the presence of rotation but, on the other hand, as Re increases, 3D instabilities take
over and shearing leads to enhanced dissipation.

Another issue, when incorporating rotation or stratification, will be to consider the
role of anisotropy on statistics, spectra and structures, the role of nonlocal interactions
among scales, and the role of potential vorticity PV and the magnitude of its nonlinear
part; these will be the topic of future work. Several other extensions of the present
study are desirable. On the one hand, a larger scanning in terms of Reynolds numbers is
needed, but only feasible today at values comparable to or lower than what is presently
achieved in this paper, without using modeling such as eddy viscosity or hyper-viscosity,
or some other partial truncation of modes such as computing in boxes with small aspect
ratio. From the numerical standpoint, the condition `Oz >> η, RI >> 1 for strong
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and stratified turbulence to develop is hard to fulfill even with resolutions allowed by
high-performance computing using available present-day technology. For example, in
de Bruyn Kops (2015), the highest buoyancy Reynolds number that is reached, on a grid
of 81922X4096 points, is ≈ 220, still quite low compared to atmospheric and oceanic
values (see also Iyer et al. (2017) for a FDT run on a grid of 81923 points with a Taylor
Reynolds number of 1300). In the context of the turbulent planetary boundary layer (see
e.g. Sukoriansky et al. (2005)), one can write simplified expressions for vertical mixing,
governed by vertical velocity, and horizontal mixing on the basis of a return to isotropy
model; this leads to agreement between these models, and laboratory and atmospheric
data. One can also model the time-evolution of a mixing event by following characteristic
length scales (Smyth et al. 2001).

For the oceans, the collapsing of mixing efficiency at high RI,B embodied in the Γf ∼
R−1/2B scaling, might imply the lessening of water mass motions in the ocean, by at least
a factor of 2 as found for the Antarctic Bottom Water (de Lavergne et al. 2016). The tide
impinging upon oceanic bottom topography leads to the formation of small scales which,
beyond the Ozmidov scale, become isotropic. This could imply that the strong dissipation
and mixing which is observed, for example at the Hawaian ridge (Klymak et al. 2008), is
propagating upward, in particular at mid latitudes where rotation plays a role, to scales
of the order of 1 km. This may lead to exchanges of light and dense waters and abyssal
sinking (Ferrari et al. 2016), thereby affecting the net circulation patterns of the ocean.
Thus, a better understanding of the dynamics of rotating stratified turbulence, and of
the scaling of its mixing and dissipative properties with control parameters, may lead to
better parametrization schemes to model more accurately these global phenomena.
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9. Appendices

Many parameters and characteristic time-scales and length scales have been defined
in the literature for rotating stratified turbulence, and we regroup some of them here for
completeness. They allow for the definition of slightly different dimensionless parameters
for which we also give an overview.

9.1. Appendix A: Characteristic time scales

The four global control parameters of the Boussinesq equations written in §2 can be
written as the ratio of large-scale characteristic times, namely:

Re =
τdiss
τNL

, Ro =
τwr
τNL

, F r =
τwg
τNL

, (9.1)

with τdiss = L2
int/ν, τNL = Lint/urms, τwg = 1/N and τwr = 1/f respectively the

dissipation and eddy turn-over times, and the gravity and inertial wave periods; finally,
Pr = τκ/τdiss with τκ = L2

int/κ. The integral scale Lint was defined in §2. When
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linearizing the Boussinesq equations, one obtains inertia-gravity modes of frequency

ωk = ±
√
N2k2⊥ + f2k2‖/k, with k‖,⊥ referring to the vertical and horizontal directions

(see e.g. Bartello (1995)). However, for the sake of simplicity, we define the above
parameters using isotropy, i.e. omitting [k⊥, k‖] factors which would appear through
the dispersion relation. One can define an effective transfer time for the kinetic energy,
measured directly from observational or numerical data, as:

TL ≡ EV /εV , (9.2)

whereas τNL = EV /εD = βTL is based on a-priori large-scale characteristics of the flow,
with β = εV /εD as defined in equation (2.5).

In the absence of imposed shear, the Richardson number is based on a shear time
τshear built from the vertical gradient of the mean horizontal wind u⊥:

τshear = 1/〈∂zu⊥〉 , Ri = [Nτshear]
2. (9.3)

As such, Ri can be viewed as measuring the strength, in terms of time-scales, of the
formation of internal turbulent shear layers due to nonlinear interactions to that of the
vertical layers due to the gravity waves, omitting the effect of rotation.

In the presence of several characteristic time and length scales, dimensional analysis is
undetermined, even without rotation and for a unit Prandtl number. One particular set of
parameters has been proposed in Mater & Venayagamoorthy (2014), and we now analyze
it, with some variation in notation. The crucial point is to emphasize the difference
between the effective kinetic energy dissipation rate, εV , and its dimensional evaluation,
εD, through their ratio β = εV /εD.
It is traditional in wave turbulence (Zakharov et al. 1992) to model the weaker transfer
of energy to small scales due to the waves, when compared to a fully turbulent flow, by
introducing a transfer time written a priori on dimensional grounds as:

τtr ≡ τNL
τNL
τwg

=
τNL
Fr

, (9.4)

using the small parameter adequate for the problem at small scale, here Fr << 1. Thus,
τtr > τNL, as expected. In the purely rotating case, one would use τwr = τNLRo (Cambon
& Jacquin 1989).

It is then deduced that consistency between the two definitions of a transfer time,
namely taking TL and τtr to be proportional, immediately implies that one must have:

β ∼ Fr (9.5)

in the intermediate range. This scaling, confirmed by numerical data (Fig. 1c), can be
extended to Fr = 1. Then, τtr = τNL: the energy is transferred to small scales in an
eddy turn-over time, the hallmark of Fully Developed Turbulence.

Note that a second characteristic time was also introduced in Mater & Venayagamoor-
thy (2014), based again on εV , and now on viscosity, namely:

Tλ = [ν/εV ]1/2 = τNL/[βRe]
1/2 . (9.6)

The dependence of Tλ on
√
ν indicates that this time is linked to the Taylor scale λV =

urms/ωrms =
√
u2rmsν/εV , by writing λV = urmsTλ. Other relevant scales are discussed

in Barry et al. (2001); Davis & Monismith (2011); Mater & Venayagamoorthy (2014).
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9.2. Appendix B: A note on dimensional analysis

Control parameters can be defined using the characteristic times mentioned above:

Rg ≡ [τtr/Tλ]2 = u4rms/[νεV ] = β−1Re , (9.7)

Fg ≡ τw/τtr = [NTL]−1 = βFr , (9.8)

RI ≡ RgF 2
g = εV /[νN

2] = βRB , (9.9)

with RB ≡ ReFr2 already defined in §2. The difference between the two formulations
in terms of [Re, Fr] and [Rg, Fg] is the appearance of the measured efficiency of energy
dissipation in turbulent flows interacting with waves in the latter case, as opposed to a
purely dimensional expression in the former case. Fg and Rg correspond to the choice of
definition of Froude and Reynolds numbers in Maffioli et al. (2016) in terms of εV (with
εV /[Nu

2
rms] = Fg). Note that extending this second set of parameters to the rotating

case, one will define Rog as [fτtr]
−1 and thus N/f = Ro/Fr = Rog/Fg will remain the

same in both formulations. It is not clear whether considering these different parameters
and characteristic scales allows for a better assessment of these flows. For example, when
taking this second set of parameters, τtr varies by a factor 20 within the confine of the
data base in Table 1, whereas, as noted in §3, urms and Lint, and thus τNL, vary by of
the order of a factor of 2.

To illustrate this point, we examine in Fig. 9 the variation with [NTL]−2 = F+2
g of

LEll/`Oz (a), of Γf (b), and of the normalized diffusivity κρ/κ (c), with κρ = 〈wθ〉N . The
choice of power of Fg on the abscissa is to be able to compare with variations in RB ,RI .
The least-square fit for LEll/`Oz ≈ F

−1/2
g for regimes I and II is in agreement with the

data in Fig. 6, with in the intermediate regime (II), LEll/`Oz ≈ Fr−1, and Fg ∼ Fr2.
However, it extends now through two regimes, showing that the Fg parameter allows to
cross smoothly through these regimes, with only saturation when Fg & 1, F r & 1, now
moving into the third regime of stratified but strong turbulence.
The two scalings that can be identified for the mixing efficiency Γf are in agreement
with previous figures, in particular with Γf ∼ F−2g at small NTL, and Γf ∼ F−1g at large
NTL, with a cross-over at F 2

g ≈ 10−6.
Finally, the normalized eddy diffusivity again shows scaling behavior for Fg sufficiently
large. At lower Fg, it saturates to values close to unity except for three data points which
are both at low Froude and low Rossby numbers, with Richardson numbers between
5 and 10 and buoyancy Reynolds numbers close to 5: these flows are in a transitional
regime sensitive to fluctuations close to the threshold of instabilities.

9.3. Appendix C: Derived dimensionless parameters

One can also define micro-Froude and micro-Rossby numbers, Fω and Rω, based on
the effective kinetic energy dissipation rate εV , with ωrms the rms vorticity, ω = ∇× u:

Fω ≡
[
εV
νN2

]1/2
=
ωrms
N

, Rω ≡
[
εV
νf2

]1/2
=
ωrms
f

,
Rω
Fω

=
N

f
. (9.10)

The runs of Table 1 have 11.5 6 Rω 6 3244: the intrinsic vorticity of the flow dominates
the imposed rotation at small scales for all runs. Note that

RI ≡ F 2
ω = εV /[νN

2]

is called any of: the buoyancy Reynolds number (Ivey et al. 2008), or the activity
parameter (Stretch et al. 2010), or the turbulence intensity parameter (de Lavergne et al.
2016). The buoyancy Reynolds number RB is what RI would be under the assumption
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Figure 9. (Color online) Variation with [NTL]−2 = F 2
g of LEll/`Oz (a) and of Γf (b), as well

as of the normalized eddy diffusivity κρ/κ (c), all with binning in Ro (symbols as in Fig. 1).

that the turbulence has reached its full potential, and that the dissipation rate is equal
to its dimensional expression, εD. Thus, RI is an expression that is compatible with a
small-scale Kolmogorov isotropic energy spectrum, with RB and RI differing by a factor
β, namely RB ≡ ReFr2 = εD/[νN

2] = β−1RI . In terms of ratio of characteristic length

scales, assuming a Kolmogorov spectrum, EV (k) ∼ ε2/3V k−5/3, one can also write:

RI = [`Oz/η]4/3 , Rω = [`Ze/η]2/3 = β1/2Re1/2Ro , (9.11)

with as usual the dissipation and Ozmidov scales defined as η = 2π[εV /ν
3]−1/4, `Oz =

2π
√
εV /N3 (see §2), and equivalently for rotation the Zeman scale `Ze = 2π

√
εV /f3. It is

thus clear that RI represents a dimensional estimate of the ratio of inertial to dissipative
forces for stratified turbulence.
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